Springfield's "classic rock" radio station broadcasts at a frequency of 102.1 mhz. what is the length of the radio wave in meters?

Answers

Answer 1
The frequency of the radio wave is:
[tex]f=102.1 MHz = 102.1 \cdot 10^6 Hz[/tex]

The wavelength of an electromagnetic wave is related to its frequency by the relationship
[tex]\lambda= \frac{c}{f} [/tex]
where c is the speed of light and f the frequency. Plugging numbers into the equation, we find
[tex]\lambda= \frac{3 \cdot 10^8 m/s}{102.1 \cdot 10^6 Hz}= 2.94 m[/tex]
and this is the wavelength of the radio waves in the problem.
Answer 2
Final answer:

Using the equation for the speed of light, we find that the wavelength of a radio wave broadcasting at 102.1 MHz frequency in Springfield is approximately 2.94 meters.

Explanation:

The length of a wave, often termed wavelength, can be deduced if the frequency is known, using the formula of the speed of light, which is wavelength times frequency (or c = λν). In this equation, 'c' signifies the speed of light (3 x 10^8 m/s), 'λ' is the wavelength, and 'ν' is the frequency. Given frequency = 102.1 MHz = 102.1 x 10^6 Hz, we can rearrange the formula to find the wavelength: λ = c/ν = 3 x 10^8 m/s / 102.1 x 10^6 Hz = 2.94 m. Therefore, the length of the wave is approximately 2.94 meters.

Learn more about Wavelength here:

https://brainly.com/question/32900586

#SPJ3


Related Questions

How can medical assistant use the knowledge of the nervous systems to care for the patient with Parkinson’s and other neurological disorders

Answers

Having a wide knowledge of the nervous system and the of how the brain’s different parts collaborate to organize all our movements, senses thoughts, and emotions enable the medical assistants to handle the cognitive and behavioral complications in the patient. It helps them to deal with wounds and falls since the nervous disorder generally affects cognition and movement. Having a wide knowledge of how the nerve impulses are transmitted from the nervous system to the brain, when it is then converted into feelings such as pleasure, pain, cold or hot, the medical assistant will be able to take response immediately on the patient prior they start complaining of sensory indications, such as discomfort, irritating, and unresponsiveness.

Physics 1315, what is faster speed; red light or gamma rays?

Answers

They travel at the same rate of speed

Two astronauts are playing catch with a ball in space. The first astronaut throws the ball; and A) the ball moves, but the astronaut doesn’t. B) the ball moves, and so does the astronaut. C) the ball doesn’t move, but the astronaut does. D) the ball doesn’t move, and neither does the astronaut.

Answers

B) the ball moves, and so does the astronaut.

 Two astronauts are playing catch with a ball in space. The first astronaut throws the ball, and the ball moves, and so does the astronaut because of the action-reaction law. When the ball goes forward, the astronaut goes backward.

plz give me the brainliest

Two astronauts are playing catch with a ball in the space. One astronaut throws the ball, then the ball moves, and so does the astronaut. Hence, option B is correct.

What is Newton's third law?

Newton's third law states that if two bodies meet, they exert forces on each other that are comparable in size and directed in the opposite direction.

Action and reaction law is another name for the third law. This law is critical in understanding issues involving static equilibrium, in which all the forces are in balance, but it also holds true for entities moving uniformly or quickly.

A game of catch is being played in space by two astronauts. A ball is thrown by the first astronaut, and thanks to the action-reaction rule, both the ball and the astronaut move. The astronaut is forced to move backwards as the ball advances.

To know more about Newton's third law:

https://brainly.com/question/23772134

#SPJ2

A particle is attached to a spring and is pushed so that the spring is compressed more and more. As a result, the spring exerts a greater and greater force on the particle. Similarly, a charged particle experiences a greater and greater force when pushed closer and closer to another particle that is fixed in position and has a charge of the same polarity. In spite of the similarity, the charged particle will not exhibit simple harmonic motion on being released, as will the particle on the spring. Explain why not.

Answers

In order for particles to perform a simple harmonic motion, we must follow the law of force of the form F = -kx, where x is the displacement of the object from the equilibrium position and k is the spring constant. The force shown in F = -kx is always the restoring force in the sense that the particles are pulled towards the equilibrium position.

The repulsive force felt when the charge q1 is pushed into another charge q2 of the same polarity is given by Coulomb's law
                                F = k *q1* q2 / r^2.
It is clear that Coulomb's law is an inverse-square relationship. It does not have the same mathematical form as the equation F = -kx. Thus, charged particles pushed towards another fixed charged particle of the same fixed polarity do not show a simple harmonic motion when released. Coulomb's law does not describe restoring force. When q1 is released, it just fly away from q2 and never returns.

A parallel circuit has two 8.0-ohm resistors and a power source of 9.0 volts. If a 12.5-ohm resistor is added to the circuit in parallel, how will the current be affected and what value will it have?

Answers

The initial equivalent resistance of the circuit is
[tex] \frac{1}{R_{eq}}= \frac{1}{R_1}+ \frac{1}{R_2}= \frac{1}{8 \Omega}+ \frac{1}{8 \Omega} = \frac{1}{4 \Omega} [/tex]
which means 
[tex]R_{eq}= 4 \Omega[/tex]
Therefore the initial current in the circuit is
[tex]I= \frac{V}{R}= \frac{9 V}{4 \Omega}=2.25 A [/tex]

When the new resistor of [tex]12.5 \Omega[/tex] is added to the circuit in parallel, the new equivalent resistance of the circuit is
[tex] \frac{1}{R_{eq}} = \frac{1}{8 \Omega} + \frac{1}{8 \Omega}+ \frac{1}{12.5 \Omega}= 0.33 \Omega^{-1}[/tex]
from which we find
[tex]R_{eq}=3 \Omega[/tex]
This means that the equivalent resistance of the circuit has decreased, and the new current is
[tex]I= \frac{V}{R_{eq}}= \frac{9 V}{3 \Omega}=3 A [/tex]
which means that the current in the circuit has increased.

Answer:

1/R1 + 1/R2 + ... = 1/Re

So...

1/17.2 + 1/22.4 = 1/Re

0.1021 = 1/Re

Re = 9.792 Ohms

Now use the Voltage equation V = IR

6 = I * 9.792

I = 6/9.792 = 0.613 Amps.Pato 0.61

Explanation:

A 5.3 kg cat and a 2.5 kg bowl of tuna fish are at opposite ends of the 4.0-m-long seesaw. how far to the left of the pivot must a 3.7 kg cat stand to keep the seesaw balanced?

Answers

Moment about the pivot must be equal for the seesaw to balance. Initially, the first cat and the bowl are at 2 m from the pivot.

The moment due to cat = 5.3*2 = 10.6 kg.m
The moment due to bowl = 2.5*2 = 5 kg.m
The unbalanced moment = 10.6 - 5 = 5.6 kg.m

Therefore, the 3.7 kg cat should stand at a distance x from the pivot in left to balance the 5.6 kg.m.
That is,
3.7*x = 5.6 => x = 5.6/3.7 = 1.5134 m to the left (on the side of the bowl)
Final answer:

To keep the seesaw balanced, the 3.7 kg cat must stand 2.06 meters to the left of the pivot.

Explanation:

To keep the seesaw balanced, the torques (rotational forces) on both sides of the pivot must be equal. The torque is given by the product of the mass and the distance from the pivot. In this case, the 5.3 kg cat and the 2.5 kg bowl of tuna fish create a torque on one side, while the 3.7 kg cat creates a torque on the other side. Let's denote the distance from the pivot to the 5.3 kg cat as x:

Torque on one side = 5.3 kg * x

Torque on the other side = 2.5 kg * 1.5 m + 3.7 kg * (4 m - x)

Setting these two torques equal to each other and solving for x:

5.3 kg * x = 2.5 kg * 1.5 m + 3.7 kg * (4 m - x)

Simplifying the equation:

5.3x = 3.75 + 14.8 - 3.7x

9x = 18.55

x = 2.06 meters

Therefore, the 3.7 kg cat must stand 2.06 meters to the left of the pivot to keep the seesaw balanced.

Learn more about seesaw balance here:

https://brainly.com/question/33817733

#SPJ3

Calculate the absolute pressure at the bottom of a freshwater lake at a point whose depth is 27.8 m. assume the density of the water is 1.00 103 kg/m3 and the air above is at a pressure of 101.3 kpa.

Answers

The relative pressure at the bottom of the lake is given by
[tex]p_r = \rho g h[/tex]
where
[tex]\rho[/tex] is the water density
g is the gravitational acceleration
h is the depth at which the pressure is measured

At the bottom of the lake, h=27.8 m, so the relative pressure is
[tex]p_r = (1\cdot 10^3 kg/m^3)(9.81 m/s^2)(27.8 m)=2.72 \cdot 10^5 Pa[/tex]

To find the absolute pressure, we must add the atmospheric pressure, [tex]p_a[/tex], to this value:
[tex]p=p_r + p_a =2.72 \cdot 10^5 Pa + 1.013 \cdot 10^5 Pa =3.74 \cdot 10^5 Pa[/tex]

Acceleration is best defined as the rate of change of ________ of an object.

Answers

Acceleration is best defined as the rate of change of ________ of an object.            ANSWER: velocity!

Answer:

Velocity

Explanation:

Remember that acceleration is given by the next formula:

Acceleration: Vf-Vo/Time

Where Vf final velocity and Vo is initial velocity, so acceleration of an object is best defined as the change in velocity the an object experiences in a certain period of time, it is often described in M/s^2 and those are the units in the international system.

A boat is moving at 3 m/s and increases its speed at 2 m/s2. How fast is it moving after it travels 10 m from the point it begins to speed up?

Answers

The boat is moving by uniformly accelerated motion, with initial speed 
[tex]v_i = 3 m/s[/tex]
constant acceleration of
[tex]a=2 m/s^2[/tex]
and it covers a distance of
[tex]S=10 m[/tex]

So we can use the following relationship to find the final speed, [tex]v_f[/tex]:
[tex]v_f^2 - v_i^2 = 2aS[/tex]
[tex]v_f = \sqrt{v_i^2 + 2aS}= \sqrt{(3 m/s)^2 +2(2 m/s^2)(10 m)} = 7m/s [/tex]

What method of forecasting uses the effects of past weather conditions as part of its forecasting method

Answers

Analog method is the answer :)

the method is analog forecasting method

analog forecasting method uses the past weather data and compares it with the existing one to forecast. it is a complex method since it involves remembering previous data for whether that can be triggered by a specific event.

What is the wavelength of a photon whose energy is twice that of a photon with a 622 nm wavelength?

Answers

The frequency of the [tex]\lambda_2 = 622 nm = 622 \cdot 10^{-9} m[/tex] wavelength photon is given by
[tex]f_2 = \frac{c}{\lambda_2}= \frac{3 \cdot 10^8 m/s}{622 \cdot 10^{-9} m}=4.82 \cdot 10^{14} Hz [/tex]
where c is the speed of light.

The energy of this photon is
[tex]E_2=hf_2 = (6.6 \cdot 10^{-34}Js)(4.82 \cdot 10^{14}Hz)=3.18 \cdot 10^{-19} J[/tex]
where h is the Planck constant.

The energy of the first photon is twice that of the second photon, so
[tex]E_1 = 2 E_2 = 2 \cdot 3.18 \cdot 10^{-19}J =6.36 \cdot 10^{-19} J[/tex]

And so now by using again the relationship betwen energy and frequency, we can find the frequency of the first photon:
[tex]f_1 = \frac{E_1}{h}= \frac{6.36 \cdot 10^{-19} J}{6.6 \cdot 10^{-34}Js}=9.64 \cdot 10^{14}Hz [/tex]

and its wavelength is
[tex]\lambda_1 = \frac{c}{f_1}= \frac{3 \cdot 10^8 m/s}{9.64 \cdot 10^{14}Hz} =3.11 \cdot 10^{-7}m = 311 nm [/tex]
So, we see that the wavelength of the first photon is exactly half of the wavelength of the second photon (622 nm).

Which of these statements would best explain the problem encountered with nuclear waste disposal?

Answers

A) The isotopes have a long half-life and only remain radioactive for a long time period. 

Answer: A

Explanation:

Allison wants to calculate the speed of a sound wave. Which formula should she use?
distance traveled / amplitude
number of wavelengths / amplitude
number of wavelengths / time
distance traveled / time

Answers

the true answer is distance traveled / time
because the speed of propagation of sound wave formula is the quotient of the distance traveled by a sound shaking by the time required on arrival. on edguinuity 

Answer:

Option 4th is correct

distance traveled / time

Explanation:

Allison wants to calculate the speed of a sound wave.

The speed of the sound wave is the distance traveled divided by the time.

[tex]v = \dfrac{d}{t}[/tex]

Where, v = speed of sound

d = distance

t= time

Therefore, The formula should she use is, distance traveled / time

Which property of light remains unchanged when it enters a different medium?

Answers

The FREQUENCY of light remains unchanged once it leaves the source.

frequency  d is the anwsewr



Jupiter _____.

may have prevented asteroids from forming a planet
has a large gravitational field which can capture small comets
is responsible for creating most known meteors and meteoroids
releases radiation which warms comets and creates a comet tail

Answers

It's a because i chose this and got it right

Answer:

Jupiter may have prevented asteroids from forming a planet

Explanation:

a 10.0 kg ball falling at 10.0 m/s hits a mattress and comes to a complete stop in 1 s. what force does the mattress exert to stop the ball

Answers

Using Newton's second law;

F = ma, where m = mass, a = acceleration or deceleration

a = Δv/t = (v-u)/t, but v= 0, u = 10 m/s, t = 1.
Then,
a = (0-10)1 = -10 m/s^2

Substituting;
F = ma = 10*-10 = -100 N

The  mattress exerts 100 N to stop the ball.

I need help finding the answer:
When a guitar string plays the note "A", the string vibrates at 440 Hz. What is the period of the vibration?

Answers

The formula applicable:

Period, T = 1/f --- Where T = period (s), and f = frequency (Hz).

Substituting by use of the values of frequency given in the current scenario,

T = 1/440 = 2.27*10^-3 seconds
Final answer:

The period of the guitar string's vibration when it plays the note 'A' is approximately 0.00227 seconds.

Explanation:

In physics, the period of vibration refers to the time it takes for a single complete cycle of vibration to occur. It is usually represented by the symbol T and is measured in seconds. To find the period of the guitar string's vibration, you can use the formula T = 1/f, where f is the frequency of the vibration.

In this case, the frequency of the guitar string playing the note 'A' is given as 440 Hz. So, the period can be calculated as T = 1/440 = 0.00227 seconds.

Therefore, the period of the guitar string's vibration when it plays the note 'A' is approximately 0.00227 seconds.

Learn more about Period of vibration here:

https://brainly.com/question/31830004

#SPJ3

What waves shown on the electromagnetic spectrum disturb the medium it passes through at answer?

Answers

Electromagnetic waves do not require material medium for propagation. Radiowaves have the longest wavelength but the least frequency. 
Gamma ray has the shortest wavelength but the highest frequency. 

The gamma rays and x-rays due to their high frequency, they can disturb the medium they pass through. They have high energy that can cause damage to the matter the come across.  

To what potential should you charge a 3.0 μf capacitor to store 1.0 j of energy?

Answers

The energy stored in a capacitor is given by:
[tex]U= \frac{1}{2}CV^2 [/tex]
where
U is the energy
C is the capacitance
V is the potential difference

The capacitor in this problem has capacitance
[tex]C=3.0 \mu F = 3.0 \cdot 10^{-6} F[/tex]
So if we re-arrange the previous equation, we can calculate the potential V that should be applied to the capacitor to store U=1.0 J of energy on it:
[tex]V= \sqrt{ \frac{2U}{C} }= \sqrt{ \frac{2 \cdot 1.0 J}{3.0 \cdot 10^{-6}F} }=816 V [/tex]

To store 1.0 J of energy in a 3.0 μF capacitor, you should charge it to approximately 816.5 V.

To determine the potential (V) needed to charge a 3.0 μF capacitor to store 1.0 J of energy, we can use the formula for the energy stored in a capacitor:

Energy (E) = 0.5 × C × V²

Where:

E is the energy stored (1.0 J in this case)C is the capacitance (3.0 μF or 3.0 × 10⁻⁶F)V is the potential difference we need to find

Rearranging the formula to solve for V:

V² = (2E)/C

Substituting the given values:

V² = (2 × 1.0 J) / (3.0 × 10⁻⁶ F)

V² = 2.0 J / 3.0 × 10⁻⁶ F

V² = 666666.67 V²

Taking the square root of both sides:

V ≈ 816.5 V

Therefore, you should charge the 3.0 μF capacitor to approximately 816.5 V to store 1.0 J of energy.

A certain part of the electromagnetic spectrum ranges from 200 nm to 400 nm. what is the lowest frequency associated with this portion of the spectrum? (c 3.00 108 m/s)

Answers

The lowest and highest wavelengths of this part of the electromagnetic spectrum are:
[tex]\lambda_1 = 200 nm=200 \cdot 10^{-9} m[/tex]
[tex]\lambda_2 = 400 nm = 400 \cdot 10^{-9} m[/tex]

We can calculate the corresponding frequencies by using:
[tex]f= \frac{c}{\lambda} [/tex]
where c is the speed of light. If we use this equation, we find:
[tex]f_1 = \frac{c}{\lambda_1}= \frac{3 \cdot 10^8 m/s}{200 \cdot 10^9 m} =1.5 \cdot 10^{15}Hz[/tex]
[tex]f_2 = \frac{c}{\lambda_2}= \frac{3 \cdot 10^8 m/s}{400 \cdot 10^9 m} =7.5 \cdot 10^{14}Hz[/tex]
Therefore, the lowest frequency associated with this portion of the spectrum is 
[tex]f_2 = 7.5 \cdot 10^{14} Hz[/tex]

When light propagates from a material with a given index of refraction into a material with a smaller index of refraction, the speed of the light vie?

Answers

When light moves from a material with a higher index of refraction to one with a lower value, the speed of light increases, potentially causing the light to refract. The index of refraction ratio determines the extent of this change in speed.

When light travels from a material with a higher index of refraction to one with a lower index of refraction, the speed of light in the material increases. The index of refraction, denoted as n, is defined by the ratio n = c/v, where c is the speed of light in a vacuum (approximately 3.0 * 10⁻⁸ m/s), and v is the observed speed of light in the material.

Since the index of refraction for a vacuum is exactly 1 (because the speed of light in a vacuum is c), and since n is always greater than or equal to 1, when light enters a material with a smaller n, it means that v must increase."

For example, when light moves from water (where it travels slower due to a higher n) into air (with a smaller n), the light speeds up. This change in speed can cause the light to bend or refract. The extent to which this bending occurs depends on the difference in the indices of refraction between the two materials.

How many significant digits are in the measurement 50.003010 nm?

Answers

Answer:

Significant digits = 8

Explanation:

Significant digits in a number which is more than 1 and if the number if having decimal in it then as per the rule all the digits present in the number must be significant digit

for an example we will say

1.00 = 3 significant figures

so in this way for all such kind of numbers we have to count all digits in it

so here given number is more than 1 and it contains the decimal in it

so we will say

50.003010 nm = 8 significant figures

Answer:

There are 15 significant digits

Explanation:

50.00301 nm = 0.0000000500301

Counting the figures makes it 15

A calorie is the measurement of ____ required to raise a 1 gram of water 1 degree celsius.

Answers

Calorie is a unit of energy, it is used above all in the area of health to measure the energy content of food.
 
Therefore the statement must be completed in the following way:


A calorie is the measure of heat required to raise 1 gram of water 1 centigrade.

The potential energy due to the strong interaction, between two quarks or a quarkantiquark pair, goes something like v (r) = −α/r + βr, where α and β are positive constants. is there any point rv where the potential energy goes to zero? is there any point

Answers

Given that 
V= x/r + Br.
If V=0 Then -x/r + Br = 0
→ -x + br²/r = 0
→Br² - x = 0
r² = x/B
r² = +₋ √x/B
Force = dv/dr = d/dr [ -x/r +Br]
F = -[ -x/-r² + B]
= [B +x/r²]
a,B are positive.
r² is constant and it can never be negative.
∴ [ B + x/r²] is a positive value.
V = 0 at r = ⁺₋√x/B for the value of r.

with a bar magnet where are the lines of force closest together

Answers

At the tip of either of the magnets poles

Answer: at the tips of the magnet

Explanation: charges are more at the tip of a substance so likewise for a magnet

Why are conductors and insulators both required to construct the electrical wiring in our home

Answers

Conductors are materials with many free electrons, so they allow electrical current to flow through them. Therefore, conductors are required in order to bring electricity to every room of the house.

Insulators, instead, are materials with few or no free electrons, so electrical currents do not flow through them. In the electrical wiring of the houses, they are used in order to isolate the conductive elements of the wire from other conductive materials (in fact, if the conductive elements touch other conductive elements of the house, part of the current would be dissipated)

The polar ice caps of mars is believed to consist mostly of

Answers

Solid Carbon Dioxide

What is the wavelength λ of light in glass, if its wavelength in air is λ0, its speed in air is c, and its speed in the glass is v? express your answer in terms of λ0, c, and v?

Answers

When an electromagnetic wave moves from a medium to another medium, its frequency remains constant. In this problem, we have light (which is an electromagnetic wave) moving from air to glass (or vice-versa), so we can write
[tex]f_0 = f[/tex] (1)
where [tex]f_0[/tex] is the frequency of the light in air, while f is the frequency in glass.

Using the relationship between frequency, wavelenght and speed of a wave, we have
[tex]f= \frac{v}{\lambda} [/tex]
where v is the speed of light in glass and [tex]\lambda[/tex] the wavelength in glass, and
[tex]f_0 = \frac{c}{\lambda_0} [/tex]
where c is the speed of light in air and [tex]\lambda_0[/tex] the wavelength in air. Using these two relationships, we can rewrite eq.(1) as
[tex] \frac{c}{\lambda_0}= \frac{v}{\lambda} [/tex]
and by re-arranging it, we find
[tex]\lambda= \frac{v}{c} \lambda_0 [/tex]

The wavelength λ of light in glass, if its wavelength in air is λ0, its speed in air is c, and its speed in the glass is v will be

[tex]\lambda=\dfrac{v}{c}\lambda_o[/tex]

What is wavelength?

The wavelength of any wave is defined as the distance between two max adjacent amplitudes, or the distance between two successive troughs or crest.

When an electromagnetic wave moves from a medium to another medium, its frequency remains constant. In this problem, we have light (which is an electromagnetic wave) moving from air to glass (or vice-versa), so we can write

[tex]f_o=f(1)[/tex] (1)

where  is the frequency of the light in air, while f is the frequency in glass.

Using the relationship between frequency, wavelenght and speed of a wave, we have

[tex]f=\dfrac{v}{\lambda}[/tex]

where v is the speed of light in glass and  the wavelength in glass, and

[tex]f_o=\dfrac{c}{\lambda_o}[/tex]

where c is the speed of light in air and  the wavelength in air. Using these two relationships, we can rewrite eq.(1) as

[tex]\dfrac{c}{\lambda_o}=\dfrac{v}{\lambda}[/tex]

and by re-arranging it, we find

[tex]\lambda=\dfrac{v}{c} \lambda_o[/tex]

Hence the wavelength λ of light in glass, if its wavelength in air is λ0, its speed in air is c, and its speed in the glass is v will be

[tex]\lambda=\dfrac{v}{c}\lambda_o[/tex]

To know more about Wavelength follow

https://brainly.com/question/10728818

A magnetic field of 0.55 g is directed straight down, perpendicular to the plane of a circular coil of wire that is made up of 550 turns and has a radius of 20 cm. 1) if the coil is stretched, in a time of 35 ms, to a radius of 50 cm, calculate the emf induced in the coil during the process.

Answers

The emf induced in the coil is given by Faraday-Neumann-Lenz law:
[tex]\epsilon = - \frac{\Delta \Phi}{\Delta t} [/tex]
where 
[tex]\Delta \Phi[/tex] is the variation of magnetic flux through the coil
[tex]\Delta t[/tex] is the time interval

The magnetic field intensity is
[tex]B=0.55 G \cdot (1 \cdot 10^{-4} T/G) = 0.55 \cdot 10^{-4} T[/tex]

Since the magnetic field strength is constant, the variation of flux through the coil is given by
[tex]\Delta \Phi = N B \Delta A[/tex] (1)
where N=550 is the number of turns, while [tex]\Delta A[/tex] is the variation of area of the coil. We can re-write (1) as 
[tex]\Delta \Phi = NB (\pi r_1^2 - \pi r_2^2)=(550)(0.55 \cdot 10^{-4} T)(\pi (0.20m)^2-\pi (0.50m)^2) =[/tex]
[tex]=-0.020 Wb[/tex]

The time interval is [tex]\Delta t=35 ms=0.035 s[/tex], therefore the induced emf is
[tex]\epsilon = - \frac{\delta \Phi}{\Delta t}=- \frac{-0.020 Wb}{0.035 s}=0.57 V [/tex]

A relatively long lived excited state of an atom has a lifetime of 2.05 ms. what is the minimum uncertainty (in ev) in its energy?

Answers

We can solve the exercise by using Heisenberg's principle. In its energy-time version, Heisenberg principle states that the product between the uncertainty on the energy and on the time is larger than:
[tex]\Delta E \Delta t \ \textgreater \ \frac{h}{4 \pi} [/tex] (1)
where [tex]\Delta E, \Delta t[/tex] are the uncertainties on the energy and on the time, and h is the Planck constant.

The lifetime of the particle is 2.05 ms, so we can assume the maximum uncertainty on the time corresponds to the lifetime itself:
[tex]\Delta t = 2.05 ms = 2.05 \cdot 10^{-3} s[/tex]
And so the minimum uncertainty on the energy can be found by using (1):
[tex]\Delta E \ \textgreater \ \frac{h}{4 \pi \Delta t}= \frac{6.6 \cdot 10^{-34} Js}{4 \pi (2.05 \cdot 10^{-3} s)}= 2.56 \cdot 10^{-32} J[/tex]

Keeping in mind that [tex]1 eV = 1.6 \cdot 10^{-19}J[/tex], we can convert the energy uncertainty into electronvolts:
[tex]\Delta E = 2.56 \cdot 10^{-32} J : 1,6 \cdot 10^{-19} J/eV = 1,6 \cdot 10^{-13} eV[/tex]


Other Questions
How long should a resume be Compare hookworms and ascaris worms, include both similarities and differences What are the three main parts of a typical cell? (select all that apply.)? Which describes a metaphase plate? sister chromatids lining up in the center of the cell parent cells dividing into two daughter cells spindle fibers pinching the cell membrane in half centromeres joining sister chromatids together? A 10.00L sample of gas has a mass of 11.92g at stp. What is the molar mass of the gas? The __________ is the encryption algorithm run in reverse. (-8,7),(-9,-5) write in Ax+By=C I am struggling with Parts B and D of this calculus question. I think that Parts A and C are OK. I wonder if Parts B and D require the graph that I drew for Part A? NEED HELP ASAP!!! Which graph represents the given inequality? 3x -7y < -21 Which of the following statements best describes Theodore Roosevelt political style when dealing with controversial situations? A.He tried to get the upper hand. B.He tried to find a middle ground. C.He tried to avoid sudden compromise. D.He beat around the bush until he got the answer he wanted. Naomi has been assigned to write a short story for her English class, and she has chosen to write a mystery. Which opening sentence would be best if she wants to create a mood of suspense?A.The lone streetlight barely lit the sidewalk in front of her as Tess hurried along in the dark, praying the footsteps she heard were just echoes of her own on the pavement.B.The cherry trees were in full bloom, and their blossoms fell like snow as Tess headed for home after work, enjoying the city street blanketed with a light coat of pinkish white.C.Tess knew the road well, as it was the one she walked every day to and from her summer job at the grocery store, though being out at night made it a little harder to get her bearings.D.As she made her way down the sidewalk that night, Tess could hear a dog barking, which reminded her of her own mutt, Jake, who'd be waiting at home to welcome her. You play darts with a friend. The board is a circle with a 6-inch radius. The Bulls Eye is a smaller circle in the center of the board with an 0.25-inch radius. You throw darts (small metal arrows) at the board. At the end of six weeks, she has thrown 500 darts. She hit the board every time and hit the Bulls Eye 1 time If you throw 500 darts, how many times should you expect to hit the Bulls Eye by random chance? Compare this result to your friends result. Is she a skilled player for hitting the bulls eye or is the result of hers expected? In the definition "'stage' means a platform on which actors perform in a theater" the species term is: Federal court decisions can create new laws and influence subsequent rulings, though these must be based in federal authority granted by the Constitution. This United States legal lineage can be traced to English common law through which of the systems of law listed below?a-military lawb-case lawc-criminal lawd-civil law What is the most effective way to reduce body fat? Why isn't a scale the best judge of body fat versus lean mass? HELP ME PLZ I REALLY NEED YOUR HELP ANY one 20 points the distance between bay town and oak glen is 175 miles. if the equation y=-x+175 represents the distance left to travel to oak glen, what does the domain represent? what is the domain?a) time left to reach oak glen; x>0b) distance left to reach oak glen; x>0c) time it takes to travel oak glen; x>0d) distance traveled since leaving bay town; x>0 Why should i care about saving an animal in adoption? true or false?a young healthy Child well Nursed is at a year Old, a most delicious, nourishing, and wholesome FoodThe statement is literal language? Who recognizes romeo and how does he recognize him act 1 sene 5?