Suppose a simple random sample of size nequals=6464 is obtained from a population with mu equals 84μ=84 and sigma equals 16σ=16. ​(a) Describe the sampling distribution of x overbarx. ​(b) What is Upper P (x overbar greater than 87.6 )P x>87.6​? ​(c) What is Upper P (x overbar less than or equals 79.2 )P x≤79.2​? ​(d) What is Upper P (81.3 less than x overbar less than 87.6 )P 81.3

Answers

Answer 1

Answer:

a. [tex]\bar X[/tex] is distributed [tex]N(84;4)[/tex]

b. [tex]P(\bar X \geq 87.6) = 0.03593[/tex]

c. [tex]P(\bar X \leq 79.2) = 0.00820[/tex]

d. [tex]P(\79.2 \leq \bar X \leq 87.6) = 0.95587[/tex]

Step-by-step explanation:

a.

The central limit theorem states that, for large n, the sampling distribution of the sample mean is approximately normal with mean [tex]\µ[/tex] and variance [tex]\frac{\sigma^2}{n}[/tex], then, the sample mean is distributed as a normal random variable with means [tex]\mu_{\bar X}=\mu=84[/tex] and variance [tex]\sigma^2_{\bar X}=\frac{\sigma^2}{n}=\frac{16^2}{64}=4[/tex].

b.

[tex]P(\bar X \geq 87.6) = 0.03593[/tex]

c.

[tex]P(\bar X \leq 79.2) = 0.00820[/tex]

d.

[tex]P(\79.2 \leq \bar X \leq 87.6) = 0.95587[/tex]


Related Questions

Two sections of statistics are​ offered, the first at 8 a.m. and the second at 10 a.m. The 8 a.m. section has 25​ women, and the 10 a.m. section has 15 women. A student claims this is evidence that women prefer earlier statistics classes than men do. What information is missing that might contradict this​ claim?

Answers

Answer: The conclusion cannot be confirmed unless we have the statistic of the men.

Step-by-step explanation: Only looking at the number of women in both times 8 am and 10 am, will not determine if the men prefer of do no prefer earlier classes. We would need the men's statistics as well for both time slots. There may be more men among the 8 am slot e.g 25 women and 30 men. There is incomplete information to come up with a sound conclusion.

The concentration of DDT (C14H9Cl5), in milligrams per liter, is:
(1) a nominal variable
(2) an ordinal variable
(3) an interval variable
(4) a ratio variable.

Answers

Answer:

The correct option is 4) a ratio variable.

Step-by-step explanation:

Consider the provided information.

Nominal variables are pertaining to names or It merely name differences, it is a qualitative variables.

Ordinal variable: It is a rank-order observations in which order matters but difference between the value doesn't matters. It is a qualitative variables.

Interval variable: It is useful if the difference between two values is meaningful. It is a quantitative variables.

Ratio variable: this variable has all the properties of an interval variable, also it has a clear definition of 0.0. It is a quantitative variables.

Now consider the provided information.

The concentration is in milligrams per liter which is a quantitative variable.

Among the provided options only ratio variable and interval variable is quantitative variable. So option A and B are incorrect.

Since the milligrams per liter can be zero point which is not the characteristic of interval scale. Thus, the option C is incorrect.

The zero point is characteristic of ratio variable. Thus, the concentration of DDT (C14H9Cl5), in milligrams per liter, is ratio variable.

Hence, the correct option is 4) a ratio variable.

Final answer:

The concentration of DDT in milligrams per liter is best described as a ratio variable, as it is measured on a numeric scale that includes a true zero, allowing for meaningful comparisons and arithmetic operations.

Explanation:

The concentration of DDT, which is a chemical compound with the formula C14H9Cl5, in a given volume of solution is a measure that can be categorized using levels of measurement in statistics. In this context, concentration is measured in milligrams per liter (mg/L), which is a unit that indicates the mass of the substance (DDT) in a specific volume of the liquid (water).

Among the four types of variables listed (nominal, ordinal, interval, and ratio), the concentration of DDT in mg/L is best described as a ratio variable. This is because it has a true zero point (0 mg/L indicates the absence of DDT), and the difference between any two concentrations has a meaningful interpretation. Additionally, you can perform a full range of arithmetic operations on ratio variables.

Nominal variables are categorical and do not have a numeric order. Ordinal variables are categorical with a clear order, whereas interval variables have a numeric scale without a true zero. However, for measurements like concentration of DDT, that have a true zero and are continuous, the appropriate level of measurement is the ratio level.

The Cutty Sark is a famous clipper ship (look it up)! A Cutty Sark model kit advertises a scale ratio of 1: 78, a length of 45 inches, and a height of 26 inches.
A. How long was the Cutty Sark, according to this model kit?
B. How tall was the Cutty Sark, according to this model kit?

Answers

Answer: If the ratio is 1:78, a) the Cutty Sark is 3510 inches long or 292.5 ft; b) the Cutty Sark is 2028 inches tall or 169 ft according to this model

Step-by-step explanation: The ratio indicates that for every inch of the model, it corresponds to 78 inches of the actual size. If the length is 45 inches for the model, it would be an equivalent of 45*78 of the actual size = 3510 inches. The same can be applied to the height. Multiplying 26 x 78, the actual size should have a height of 2028 inches.

Hey guys, I was having a hard time with the following question and was wondering if someone can clear it up for me.


Solve sinθ+1 = cos2θ on the interval 0 ≤ θ < 2π

Answers

I think this is the answer...

A certain corner of a room is selected as the origin of a rectangular coordinate system. If a fly is crawling on an adjacent wall at a point having coordinates (2.1, 1.9), where the units are meters, what is the distance of the fly from the corner of the room?

Answers

Answer: 2.83 units

Step-by-step explanation:

The distance between the two points (a,b) and (c,d) on the coordinate system is given by :-

[tex]D=\sqrt{(d-b)^2+(c-a)^2}[/tex]

Given : A certain corner of a room is selected as the origin (0,0) of a rectangular coordinate system.

If  a fly is crawling on an adjacent wall at a point having coordinates (2.1, 1.9), then the distance of the fly from the corner (0,0) of the room will be :-

[tex]D=\sqrt{(2.1-0)^2+(1.9-0)^2}\\\\\Rightarrow\ D=\sqrt{4.41+3.61}\\\\\Rightarrow\ D=\sqrt{8.02}\\\\\Rightarrow\ D=2.8319604517\approx2.83\text{ units}[/tex]

Hence, the distance of the fly from the corner of the room = 2.83 units.

Final answer:

The distance of the fly from the corner of the room, given its coordinates on an adjacent wall are (2.1, 1.9), is approximately 2.83 meters. This distance is calculated using the Pythagorean theorem.

Explanation:

To find the distance of the fly from the corner of the room, given it is crawling on an adjacent wall at coordinates (2.1, 1.9) meters in a rectangular coordinate system, we use the Pythagorean theorem. The theorem states that in a right-angled triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides. In this scenario, the two sides of the right-angled triangle are represented by the x-coordinate (2.1 meters) and the y-coordinate (1.9 meters) of the fly’s position.

To calculate the distance (d), we use the formula:

Plug the coordinates into the Pythagorean theorem equation: d^2 = 2.1^2 + 1.9^2.

Calculate the squares: 4.41 (2.1^2) + 3.61 (1.9^2).

Sum the results: 4.41 + 3.61 = 8.02.

Take the square root of the sum to find the distance: √8.02 ≈ 2.83 meters.

Therefore, the distance of the fly from the corner of the room is approximately 2.83 meters.

The Call First cell phone company charges 535 per month and an additional 50.16 for each text message sent during the month. Another cell phone company, Cellular Plus, charges $45 per month and an additional $0.08 for each text message sent during the month a. How many text messages would have to be sent in a month to make both plans cost the same?

Answers

Answer:

125 text messages.

Step-by-step explanation:

Let x represent number of text messages.

We have been given that the Call First cell phone company charges $35 per month and an additional $0.16 for each text message sent during the month.

The cost of sending x text messages using call first would be [tex]0.16x[/tex].

The total cost of sending x text messages using call first would be [tex]0.16x+35[/tex].

Cellular Plus, charges $45 per month and an additional $0.08 for each text message sent during the month.

The cost of sending x text messages using cellular plus would be [tex]0.08x[/tex].

The total cost of sending x text messages using cellular plus would be [tex]0.08x+45[/tex].

Now, we will equate both expressions to solve for x as:

[tex]0.16x+35=0.08x+45[/tex]

[tex]0.16x-0.08x+35=0.08x-0.08x+45[/tex]

[tex]0.08x+35=45[/tex]

[tex]0.08x+35-35=45-35[/tex]

[tex]0.08x=10[/tex]

[tex]\frac{0.08x}{0.08}=\frac{10}{0.08}[/tex]

[tex]x=125[/tex]

Therefore, 125 text messages would have to be sent in a month to make both plans cost the same.

Determine the angles made by the vector V= (-35)i + (-41)j with the positive x-and y-axes. Write the unit vector n in the direction of V. Answers: ex= 9,0y i n =

Answers

Answer:

angle made by the vector with positive x axis,

[tex]\theta\ =\ 49.51^o[/tex]

the angle by the positive direction of y axis,

[tex]\alpha\ =\ 40.48^o[/tex]

unit vector in the direction of the given vector,

[tex]\hat{n}\ =\ \dfrac{(-35)i+(-41)j}{53.9}[/tex]

Step-by-step explanation:

Given vector is

[tex]\vec{V}=\ (-35)i\ +\ (-41)j[/tex]

we have to calculate the angle made by the vector with positive x and y axis,

The angle made by the vector with positive x axis can be given by,

[tex]tan\theta\ =\ \dfrac{-41}{-35}[/tex]

[tex]=>\ \theta\ =\ tan^{-1}\dfrac{-41}{-35}[/tex]

[tex]=>\ \theta\ =\ 49.51^o[/tex]

And the angle by the positive direction of y axis can be given by

[tex]\alpha\ =\ 90^o-\theta[/tex]

           [tex]=\ 90^o-49.51^o[/tex]

            [tex]=\ 40.48^o[/tex]

Now, we will calculate the unit vector in the direction of the given vector.

So,

[tex]\hat{n}\ =\ \dfrac{\vec{A}}{|\vec{A}|}[/tex]

            [tex]=\ \dfrac{(-35i)+(-41)j}{\sqrt{(-35)^2+(-41)^2}}[/tex]

            [tex]=\ \dfrac{(-35)i+(-41)j}{53.9}[/tex]

If BC = CD and AB = 23, what is BD?

Answers

BD = 46

Explanation:
BC = CD and AC is used for both triangles so AD MUST = AB.
If AB = 23, then AD = 23.
BD = AB + AB
BD = 23 + 23
BD = 46

Jacob made a circle-shaped poster for his geometry class.

If the radius of circle-shaped poster is 10 inches, what is the
circumference?
Use 3.14 for .

Answers

Answer: [tex]62.8\text{ inches}[/tex]

Step-by-step explanation:

The circumference of a circle is given by :-

[tex]C=2\pi r[/tex], where r is the radius of the circle.

Given : Radius of a circle = 10 inches

Then, the circumference of circle will be :_

[tex]C=2(3.14) (10)\\\\\Rightarrow\ C=62.8\text{ inches}[/tex]

Hence, the circumference of the circle will be [tex]62.8\text{ inches}[/tex]

A sample of iron ore has a density of 7.87 what is its mass? Show all of your work. If it measures 7.5 cm x 2.53 em x 7.15 cm,

Answers

Answer:

Mass=1068gr

Step-by-step explanation:

Volume= 7.5 cm x 2.53 cm x 7.15 cm=135.7cm^3

Density=7.87gr/cm^3

Mass=Density*Volume=135.7*7.87=1068gr

Pierre Hugo is handling the estate of a prominent businesswoman. The will states that the surviving spouse is to receive one half of the estate and the remaining one half

of the estate will be divided equally among four surviving children. What fraction of the estate does each child​ receive?

Answers

Answer:

Each child will receive 0.125 (or 12.5%) of the estate.

Step-by-step explanation:

If the surviving spouse gets one half of the estate, the other half have to be divided among the four surviving children.

So its 0,5 divided among the 4 surviving children. That is 0.125 or 12.5% of the estate.

Each child will receive 0.125 of the estate.

Answer:

receive 0.125 (or 12.5%) of the estate.

Step-by-step explanation:

A client who weights 176 pounds is receiving an IV infusion with esmolol hydrochloride (Brevibloc) at 48 ml/hour. The IV solution is labeled with the concentration of Brevibloc 10 mg/ml. How many mcg/kg/minute is the client receiving? (Enter numeric value only. Round to nearest whole number.) Submit

Answers

Answer:

[tex]0.1\frac{mg}{kg*min}=100  \frac{\mu g}{kg*min}[/tex]

Step-by-step explanation:

First write the weight of the client in kg, considering that 1 pound is 0.45 kg:

[tex]w=176lb* \frac{0.45kg}{1lb}=79.83kg[/tex]

Then, transform the infusion flow to ml/min, considering that 1 hour is 60 minutes:

[tex]48ml/h*\frac{1h}{60min}=0.8ml/min[/tex]

Now it is possible to calculate the to total mass flow injected to the client per minute:

[tex]0.8\frac{ml}{min}*10\frac{mg}{ml}  =8mg/min[/tex]

To find the mass flow of Brevibloc injected by unit of weight of the pacient, just divide the total mass flow by the weight of the client:

[tex]8\frac{mg}{min}*\frac{1}{79.83kg}=0.1\frac{mg}{kg*min}[/tex]

In the question is not clear, but if you need the answer in micrograms/kg/minute just multiply by 1000:

[tex]0.1\frac{mg}{kg*min}*\frac{1000\mu g}{1mg}=100  \frac{\mu g}{kg*min}[/tex]

Trucks that travel on highways have to stop at various locations to be weighed and inspected for safe brakes and light systems. Of these​ trucks, 76​% are on interstate commerce while 24​% are intrastate. Of the intrastate​ trucks, 3.4​% are flagged for safety defects compared to 0.7​% of those that are on interstate business. Complete parts a through c below. a. Calculate the probability that a randomly chosen truck is an interstate truck and is not flagged for a safety violation. The probability is nothing. ​(Round to three decimal places as​ needed.)

Answers

Answer:

The reuired probability is 0.756

Step-by-step explanation:

Let the number of trucks be 'N'

1) Trucks on interstate highway N'= 76% of N =0.76N

2) Truck on intra-state highway N''= 24% of N = 0.24N

i) Number of trucks flagged on intrastate highway  = 3.4% of N'' = [tex]\frac{3.4}{100}\times 0.24N=0.00816N[/tex]

ii)  Number of trucks flagged on interstate highway  = 0.7% of N' = [tex]\frac{0.7}{100}\times 0.76N=0.00532N[/tex]

Part a)

The probability that the truck is an interstate truck and is not flagged for safety is [tex]P(E)=P_{1}\times (1-P_{2})[/tex]

where

[tex]P_{1}[/tex] is the probability that the truck chosen is on interstate

[tex]P_{2}[/tex] is the probability that the truck chosen on interstate is flagged

[tex]\therefore P(E)=0.76\times (1-0.00532)=0.756[/tex]

Prove that if a and b are integers, then a^2-4b egal or non-egal 2

Answers

Answer:

tex]a^2 - 4b \neq 2[/tex]

Step-by-step explanation:

We are given that a and b are integers, then we need to show that [tex]a^2 - 4b \neq 2[/tex]

Let  [tex]a^2 - 4b = 2[/tex]

If a is an even integer, then it can be written as [tex]a = 2c[/tex], then,

[tex]a^2 - 4b = 2\\(2c)^2 - 4b =2\\4(c^2 -b) = 2\\(c^2 -b) =\frac{1}{2}[/tex]

RHS is a fraction but LHS can never be a fraction, thus it is impossible.

If a is an odd integer, then it can be written as [tex]a = 2c+1[/tex], then,

[tex]a^2 - 4b = 2\\(2c+1)^2 - 4b =2\\4(c^2+c-b) = 2\\(c^2+c-b) =\frac{1}{4}[/tex]

RHS is a fraction but LHS can never be a fraction, thus it is impossible.

Thus, our assumption was wrong and [tex]a^2 - 4b \neq 2[/tex].

To demonstrate that a2 - 4b cannot equal 2 for integers a and b, we can argue based on the discriminant of a quadratic equation, which should be non-positive for the equation to have one or no real roots.

In mathematics, particularly algebra, understanding the properties of polynomial equations is fundamental. When we consider the quadratic equation X^2 + aX + b = 0, it can have either one or no real roots, which is determined by its discriminant, denoted as Det = a^2 - 4b. Now, the condition for a quadratic equation to have a single (degenerate) real root or no real roots at all is that the discriminant must be non-positive.

To prove that a22 - 4b

qq 2 for all integers a and b, we can reason that if a2 - 4b were equal to 2, the quadratic equation would have two distinct real roots, which contradicts the earlier statement that the discriminant must be non-positive for it to have one or no real roots. Therefore, this proves that a2 - 4b cannot be equal to 2; hence a2 - 4b

nn2 for all integers a and b.

The radius of the Earth is 6370km, the atmospheric pressure at sea level is 1 bar and the density at sea level is 1.2 kg/m^3.

Estimate the mass of the atmosphere assuming the height of the atmosphere is 11km.

Answers

Answer:

The mass of atmosphere equals [tex]6742.368\times 10^{15}kg[/tex]

Step-by-step explanation:

Since the earth can be assumed to be as sphere ,to calculate the mass of the atmosphere we need to calculate the volume of the atmosphere.

The volume of atmosphere can be found by subtracting the volume of earth from the volume of the sphere formed by envelop of atmosphere around the earth as indicated in the attached figure

Mathematically we have

[tex]V_{atmosphere}=V_{shell}-V_{earth}\\\\V_{atmosphere}=\frac{4\pi (R_{e}+h)^{3}}{3}-\frac{4\pi R_{e}^{3}}{3}\\\\V_{atmosphere}=\frac{4\pi }{3}((6370+11)^{3}-(6370)^{3})\\\\V_{atmosphere}=5618.64\times 10^{6}km^{3}\\\\\\V_{atmosphere}=5618.64\times 10^{15}m^{3}[/tex]\

Now since it is given that 1 cubic meter of atmosphere weighs 1.2 kilogram thus the mass of the whole atmosphere equals

[tex]Mass_{atmosphere}=1.2\times 5618.64\times 10^{15}kg\\\\Mass_{atmosphere}=6742.368\times 10^{15}kg[/tex]

Final answer:

To estimate the mass of the atmosphere, we use the formula Mass = Density × Volume. First, calculate the volume of the atmosphere using the formula for the volume of a cylinder. Then, substitute the given values into the formula and calculate the mass using the formula Mass = Density × Volume.

Explanation:

To estimate the mass of the atmosphere, we can use the formula:

Mass = Density × Volume

First, we need to find the volume of the atmosphere. The height of the atmosphere is given as 11 km, so we can calculate the volume using the formula for the volume of a cylinder:

Volume = π × (radius2) × height

Next, we substitute the given values into the formula:

Volume = π × (6370 km)2 × 11 km

Finally, we calculate the mass using the formula:

Mass = Density × Volume

Learn more about Mass of the atmosphere here:

https://brainly.com/question/31820900

#SPJ12

If ​P(A)equals one half ​, ​P(B)equals three fifths ​, and P(B/A) equals one sixth ​, find P( A/B)

Answers

Answer:

[tex]\frac{5}{36}[/tex]

Step-by-step explanation:

Given,

P(A) = [tex]\frac{1}{2}[/tex],

P(B) = [tex]\frac{3}{5}[/tex]

[tex]P(\frac{B}{A})=\frac{1}{6}[/tex]

[tex]\because P(\frac{B}{A})= \frac{P(A\cap B)}{P(A)}[/tex]

[tex]\implies \frac{P(A\cap B)}{P(A)} = \frac{1}{6}[/tex]

[tex]\frac{P(A\cap B)}{\frac{1}{2}}=\frac{1}{6}[/tex]

[tex]2P(A\cap B) = \frac{1}{6}[/tex]

[tex]\implies P(A\cap B) = \frac{1}{12}[/tex]

Now,

[tex]P(\frac{A}{B})=\frac{P(A\cap B) }{P(B)}= \frac{1/12}{3/5}=\frac{5}{36}[/tex]

Let S = {1, 3, 5, 7}. Define the set J = {2j^2 − 11 | j ∈ S}. List the elements of J.

Answers

Answer: Elements of J = {-9,7,39,87}

Step-by-step explanation:

Since we have given that

S={1,3,5,7}

Define of set J is given by

[tex]J=\{2j^2-11:j\epsilon S\}[/tex]

Put j = 1

[tex]2j^2-11\\\\=2-11\\\\=-9[/tex]

Put j = 3

[tex]2(3)^2-11\\\\=2\times 9-11\\\\=18-11\\\\=7[/tex]

Put j = 5

[tex]2(5)^2-11\\\\=2\times 25-11\\\\=50-11\\\\=39[/tex]

Put j = 7

[tex]2(7)^2-11\\\\=2\times 49-11\\\\=98-11\\\\=87[/tex]

Hence, elements of J = {-9,7,39,87}

A solution consisting of 208 mg of dopamine in 32 mL of solution is administered at a rate of 12 mlht. Complete parts (a) and (b) below! a What is the flow rate in mg of dopamine per hour? mg/hr (Type an integer or decimal rounded to the nearest thousandth as needed) Enter your answer in the answer box and then click Check Answer

Answers

Answer:

78 mg/hr

Step-by-step explanation:

Data provided in the question;

Amount of dopamine contained in solution = 208 mg

Volume of solution = 32 mL

Dosage = 12 mL/h

Concentration of dopamine in solution = [tex]\frac{\textup{Amount of dopamine}}{\textup{Volume of solution}}[/tex]

or

Concentration of dopamine in solution = [tex]\frac{\textup{208 mg}}{\textup{32 mL}}[/tex]

or

Concentration of dopamine in solution = 6.5 mg/mL

Now,

The flow rate = Concentration × Dose

or

The flow rate = ( 6.5 mg/mL ) × ( 12 mL/hr )

or

The flow rate = 78 mg/hr

Answer:

Rate of flow of dopamine = 78 mght

Step-by-step explanation:

Given,

total amount of solution = 32 ml

total amount of dopamine in 32 ml solution = 208 mg

[tex]=>\textrm{total amount of dopamine in 1 ml solution }= \dfrac{208}{32}[/tex]

                                                                      [tex]=\ \dfrac{13}{2}\ mg[/tex]

[tex]=>\ \textrm{ amount of dopamine in 12 ml solution }=\ \dfrac{208}{32}\times 12[/tex]

                                                                               [tex]=\ \dfrac{13}{2}\times 12\ mg[/tex]

                                                                               = 78 mg

Since, the rate of flow of solution = 12 mlht

That means 12 ml of solution is flowing in 1 unit time and 12 ml of solution contains 78 mg of dopamine, so the rate of flow of dopamine will be 78 mght.

For the following function
f(x) = 5x^2 - 55x + 151
find
​(a)​ f(4), ​
(b) f(-1)​, ​
(c)​ f(a), ​
(d) f(2/m) ​
(e) any values of x such that ​f(x)=1.

Answers

Answer:

  (a)  f(4) = 11

  (b)  f(-1) = 211

  (c)  f(a) = 5a² -55a +151

  (d)  f(2/m) = (151m² -110m +20)/m²

  (e)  x = 5 or x = 6

Step-by-step explanation:

A graphing calculator can help with function evaluation. Sometimes numerical evaluation is easier if the function is written in Horner Form:

  f(x) = (5x -55)x +151

(a) f(4) = (5·4 -55)4 +151 = -35·4 +151 = -140 +151 = 11

__

(b) f(-1) = (5(-1)-55)(-1) +151 = 60 +151 = 211

__

(c)  Replace x with a:

  f(a) = 5a² -55a +151

__

(d) Replace x with 2/m; simplify.

  f(2/m) = 5(2/m)² -55(2/m) +151 = 20/m² -110m +151

Factoring out 1/m², we have ...

  f(2/m) = (151m² -110m +20)/m²

__

(e) Solving for x when f(x) = 1, we have ...

  5x² -55x +151 = 1

  5x² -55x +150 = 0 . . . . subtract 1

  x² -11x +30 = 0 . . . . . . . divide by 5

  (x -5)(x -6) = 0 . . . . . . . . factor

Values of x that make the factors (and their product) zero are ...

  x = 5, x = 6 . . . . values of x such that f(x) = 1


Solve the system by graphing. (Enter your answers as a comma-separated list. If the system is inconsistent, enter INCONSISTENT. If the system is dependent, enter DEPENDENT.)

x + y = 7
−x − y = −7
(x, y)

=
Solve the system by the elimination method. (Enter your answers as a comma-separated list. If the system is inconsistent, enter INCONSISTENT. If the system is dependent, enter DEPENDENT.)

leftbrace2.gif
x + y = 12
2x + 3y = 31

Solve the system by the elimination method. (Enter your answers as a comma-separated list. If the system is inconsistent, enter INCONSISTENT. If the system is dependent, enter DEPENDENT.)

leftbrace2.gif
3x + y = 15
x + 2y = 10

Formulate the situation as a system of two linear equations in two variables. Be sure to state clearly the meaning of your x- and y-variables. Solve the system by the elimination method. Be sure to state your final answer in terms of the original question.

A lawyer has found 60 investors for a limited partnership to purchase an inner-city apartment building, with each contributing either $4,000 or $8,000. If the partnership raised $348,000, then how many investors contributed $4,000 and how many contributed $8,000?

x = $4,000 investors
y = $8,000 investors

Answers

Answer:

Part 1) The system has infinite solutions. Is a DEPENDENT system

Part 2) The solution of the system is the point (5,7)

Part 3) The solution of the system is the point (4,3)

Part 4) The number of investor that contributed with $4,000 was 33 and the number of investor that contributed with $8,000 was 27

Step-by-step explanation:

Part 1) we have

[tex]x+y=7[/tex] ------> equation A

[tex]-x-y=-7[/tex] ------> equation B

Solve the system by graphing

Remember that the solution is the intersection point both graphs

using a graphing tool

The system has infinity solutions (both lines are identical)

see the attached figure  

Is a DEPENDENT system

Part 2) we have

[tex]x+y=12[/tex] ------> equation A

[tex]2x+3y=31[/tex] ------> equation B

Solve the system by the elimination method

Multiply equation A by -2 both sides

[tex]-2(x+y)=12(-2)[/tex]

[tex]-2x-2y=-24[/tex] ------> equation C

Adds equation B and C and solve for y

[tex]2x+3y=31\\-2x-2y=-24\\---------\\3y-2y=31-24\\y=7[/tex]

Find the value of x

substitute the value of y in the equation A (or B or C) and solve for x

[tex]x+(7)=12[/tex]

[tex]x=5[/tex]

The solution is the point (5,7)

Part 3) we have

[tex]3x+y=15[/tex] ------> equation A

[tex]x+2y=10[/tex] ------> equation B

Solve the system by the elimination method

Multiply equation A by -2 both sides

[tex]-2(3x+y)=15(-2)[/tex]

[tex]-6x-2y=-30[/tex] -----> equation C

Adds equation B and equation C

[tex]x+2y=10\\-6x-2y=-30\\---------\\x-6x=10-30\\-5x=-20\\x=4[/tex]

Find the value of y

substitute the value of x in the equation A (or B or C) and solve for y

[tex]3(4)+y=15[/tex]

[tex]12+y=15[/tex]

[tex]y=3[/tex]

therefore

The solution is the point (4,3)

Part 4) Formulate the situation as a system of two linear equations in two variables

Let

x ----> the number of investor that contributed with $4,000

y ----> the number of investor that contributed with $8,000

we have that

The system of equations is

[tex]x+y=60[/tex] ------> equation A

[tex]4,000x+8,000y=348,000[/tex] -----> equation B

Solve the system by elimination method

Multiply by -4,000 both sides equation A

[tex]-4,000(x+y)=60(-4,000)[/tex]

[tex]-4,000x-4,000y=-240,000[/tex] -----> equation C

Adds equation B and equation C and solve for y

[tex]4,000x+8,000y=348,000\\-4,000x-4,000y=-240,000\\-----------\\8,000y-4,000y=348,000-240,000\\4,000y=108,000\\y=27[/tex]

Find the value of x

Substitute the value of x in the equation A ( or equation B or equation C) and solve for x

[tex]x+27=60[/tex]

[tex]x=33[/tex]

so

The solution of the system is the point (33,27)

therefore

The number of investor that contributed with $4,000 was 33 and the number of investor that contributed with $8,000 was 27

what’s the answer to k and m ? please explain how you found the answer .

Answers

Answer:

Step-by-step explanation:

So what multiplied by what is equal to 0.64? Well you know that 8*8 is equal to positive 64, and since 0.64 is just 64 moved down two decimal spaces, you do the same with 8. So For k, it's 0.8

For m, you do the same. So what multiplied by what is equal to 0.25? Well you know that 5*5 is equal to positive 25, and since 0.25 is just 25 moved down two decimal spaces, you do the same with 5. So For m, it's 0.5.

A loan of $19,221 was repaid at the end of 17 months. What size repayment check (principal and interest) was written, if a 9.7% annual rate of interest was charged? The amount of the repayment check was $ 45447.53). (Round to two decimal places.)

Answers

Answer:

The amount of the repayment check was $21862.29.

Step-by-step explanation:

Principal P = $19221

Rate r = 9.7% = 0.097

Time t = 17 months = [tex]17/12= 1.41667[/tex] years

[tex]I= p\times r\times t[/tex]

[tex]I= 19221\times0.097\times1.41667[/tex] = $2641.29

The loan repayment is the original principal plus the interest.

= [tex]19221+2641.29=21862.29[/tex] dollars

The amount of the repayment check was $21862.29.

Find each of the following for ​f(x) = 3x^2 - 5x + 7. ​

(A) f(x + h) ​
(B) f(x + h) - f(x) ​
(C) [f(x + h) - f(x)]/h

Answers

Answer:  The evaluations are done below.

Step-by-step explanation:  We are given the following function :

[tex]f(x)=3x^2-5x+7.[/tex]

We are to find the value of the following expressions :

[tex](A)~f(x+h)\\\\(B)~f(x+h)-f(x)\\\\(C)~\dfrac{f(x+h)-f(x)}{h}[/tex]

To find the above expressions, we must use the given value of f(x) as follows :

[tex](A)~\textup{We have}\\\\f(x+h)\\\\=3(x+h)^2-5(x+h)+7\\\\=3(x^2+2xh+h^2)-5x-5h+7\\\\=3x^2+6xh+3h^2-5x-5h+7.[/tex]

[tex](B)~\textup{We have}\\\\f(x+h)-f(x)\\\\=(3x^2+6xh+3h^2-5x-5h+7)-(3x^2-5x+7)\\\\=6xh+3h^2-5h.[/tex]

[tex](C)~\textup{We have}\\\\\dfrac{f(x+h)-f(x)}{h}\\\\\\=\dfrac{6xh+3h^2-5h}{h}\\\\\\=\dfrac{h(6x+3h-5)}{h}\\\\=6x+3h-5.[/tex]

Thus, all the expressions are evaluated.

The formulas below are the cost and revenue functions for a company that manufactures and sells small radios. a. Use the formulas shown to write the company's profit function, P, from producing and selling x radios. b. Find the company's profit if 21,000 radios are produced and sold C(x) 224,000+32x and R(x) 46x a. The company's profit function is P(x)-(Simplify your answer.)

Answers

Answer:

(a) The profit function is P(x)=14x-224,000.

(b) The company's profit at x=21000 is 70,000.

Step-by-step explanation:

Cost function is

[tex]C(x)=224,000+32x[/tex]

Revenue function is

[tex]R(x)=46x[/tex]

where, x is number of radios.

(a)

Formula for profit:

Profit = Revenue - Cost

The profit function is

[tex]P(x)=R(x)-C(x)[/tex]

[tex]P(x)=46x-(224,000+32x)[/tex]

[tex]P(x)=46x-224,000-32x[/tex]

[tex]P(x)=14x-224,000[/tex]

The profit function is P(x)=14x-224,000.

(b)

Substitute x=21000 in the above equation to find the company's profit if 21,000 radios are produced and sold.

[tex]P(21000)=14(21000)-224,000[/tex]

[tex]P(21000)=294000-224,000[/tex]

[tex]P(21000)=70,000[/tex]

Therefore the company's profit at x=21000 is 70,000.

Final answer:

The profit function for a company is found by subtracting the cost function from the revenue function. Given the cost and revenue functions, the profit function simplifies to P(x) = 14x - 224,000. If 21,000 radios are sold, the company will take a loss of $56,000.

Explanation:

Profit function in a company can be obtained by subtracting total cost from total revenue, it can be represented as P(x) = R(x) - C(x). Here, R(x) is the revenue function and C(x) is the cost function.

Given, the cost function of the company C(x) is 224,000 + 32x and the revenue function R(x) is 46x. Substituting these values into our profit function we get, P(x) = 46x - (224,000 + 32x), simplifying it leads to P(x) = 46x - 224,000 - 32x, which can be further simplified to P(x) = 14x - 224,000.

For part b of the question, if 21,000 radios are produced and sold, we substitute x=21,000 into the profit function. Hence, P(21000) = 14*21000 - 224,000 = -56,000. This indicates that the company will experience a loss when 21,000 radios are produced and sold.

Learn more about Profit Function here:

https://brainly.com/question/33000837

#SPJ11

Let f be continuous on [0, a] and differentiable on (0, a), Prove that if f(a)=0 then there is at least one value of x in (0, a), such that f(x)= -xf'(x).(5marks) (%4h) 4

Answers

Answer:

See picture attached

Step-by-step explanation:

How do you find the rational zeros of "p(x)"

Answers

Answer:

  Use the Rational Root Theorem.

Step-by-step explanation:

Any rational roots will be factors of the ratio of the constant (=p(0)) to the leading coefficient of the polynomial p(x). In the general case, that ratio is a rational number and the roots have numerator that is a factor of its numerator, and a denominator that is a factor of its denominator.

__

To see how this works, consider the polynomial with rational roots b/a and d/c. Factors of it will be ...

  p(x) = (ax -b)(cx -d)( other factors if p(x) is of higher degree )

The leading coefficient here is ac; the constant term is bd. The rational root theorem says any rational roots are factors of (bd)/(ac), which b/a and d/c are.

Find all solutions of the given system of equations and check your answer graphically. HINT [First eliminate all fractions and decimals; see Example 3.] (If there is no solution, enter NO SOLUTION. If the system is dependent, express your answer in terms of x, where y = y(x).)
x/5 − y/4 = 1
x/6 + y = −4
(x, y) =

Answers

Answer:

(x,y)=(0,-4)

Step-by-step explanation:

Given : [tex]\frac{x}{5}- \frac{y}{4} = 1\\\\\frac{x}{6}+ y = -4[/tex]

To Find : (x,y)

Solution :

Equation 1 ) [tex]\frac{x}{5}- \frac{y}{4} = 1[/tex]

[tex]\frac{4x-5y}{20}= 1[/tex]

[tex]4x-5y= 20[/tex]  ---A

Equation 2)  [tex]\frac{x}{6}+ y = -4[/tex]

[tex]\frac{x+6y}{6} = -4[/tex]

[tex]x+6y = -24[/tex]  ---B

Solve A  and B by substitution

Substitute the value of x from B in A

[tex]4(-24-6y)-5y= 20[/tex]

[tex]-96-24y-5y= 20[/tex]

[tex]-96-29y= 20[/tex]

[tex]-96-20= 29y[/tex]

[tex]-116= 29y[/tex]

[tex]\frac{-116}{29}= y[/tex]

[tex]-4= y[/tex]

Substitute the value of y in B to get value of x

[tex]x+6(-4) = -24[/tex]  

[tex]x-24= -24[/tex]  

[tex]x=0[/tex]  

So,(x,y)=(0,-4)

Check graphically

Plot the lines A and B on graph

[tex]x+6y = -24[/tex] -- Black line

[tex]4x-5y= 20[/tex] -- Purple line

Intersection point gives the solution

So, by graph intersection point is (0,-4)

Hence verified

So, (x,y)=(0,-4)

Final answer:

The solutions to the system of equations are (x, y) = (-16, -4). The equations are multiplied by factors to eliminate fractions and then solved using the method of substitution. The solution is checked graphically by plotting the lines and finding the intersection point.

Explanation:

The subject of this question is a system of equations. We're asked to find all solutions to a given system of equations, and then to check our answer graphically. The equations given are x/5 - y/4 = 1 and x/6 + y = -4.

The first step is to eliminate fractions by multiplying each equation by a factor that will eliminate the fraction. For the first equation, this factor is 20, and for the second equation, it's 6, hence: 4x - 5y = 20 and x + 6y = -24.

Next, we can solve the system of equations using a method of our choice, for example, substitution or addition/subtraction. In this case, let's use substitution. We rearrange the first equation for x: x = (5y + 20) / 4. Substituting this into the second equation gives ((5y + 20) / 4) + 6y = -24. Solving for y, we find y = -4.

Then we substitute y = -4 into the first equation and find x. Hence, we get the solutions (x, y) = (-16, -4). In order to graphically check our solution, plot the system of lines representing the equations and find the point where they intersect. This intersection point corresponds to the solution of the system and should match our algebraic solution.

Learn more about the system of equations here:

https://brainly.com/question/21620502

#SPJ3

Suppose U is a nonempty subset of the vector space V over eld F. Prove that U is a

subspace if and only if cv + w 2 U for any c 2 F and any v;w 2 U

Answers

Answer:

The additive identity of [tex]V[/tex], denoted here by [tex]0_{V}[/tex], must be an element of [tex]U[/tex]. With this in mind and the provided properties you can prove it as follows.

Step-by-step explanation:

In order to a set be a vector space it is required that the set has two operations, the sum and scalar multiplication,  and the following properties are also required:

Conmutativity. AssociativityAdditive IdentityInverse additiveMultiplicative identityDistributive properties.

Now, if you have that [tex]V[/tex] is a vector space over a field [tex]\mathbb{K}[/tex]  and [tex]U\subset V[/tex] is a subset that contains the additive identity [tex]e=0_{V}[/tex] then [tex]U[/tex] and [tex]cv+w \in U[/tex] provided that [tex]u,v\in U, c\in \mathbb{K}[/tex], then [tex]U[/tex] is a closed set under the operations of sum and scalar multiplicattion, then it is a vector space since the properties listed above are inherited from V since the elements of [tex]U[/tex] are elements of V. Then [tex]U[/tex] is a subspace of [tex]V[/tex].

Now if we know that [tex]U[/tex] is a subspace of [tex]V[/tex] then [tex]U[/tex] is a vector space, and clearly it satisfies the properties [tex]cv+w\in U[/tex] whenever [tex]v,w\in U, c\in \mathbb{K}[/tex] and [tex]0_{V}\in U[/tex].

This is an useful criteria to determine whether a given set is subspace of a vector space.

Two sides of a triangle are 4 m and 5 m in length. Express the area A of the triangle in terms of the angle Q between these two sides.

Answers

Answer:

The area of the triangle, as a function of the angle between the two given sides, is: [tex]A(Q) = 10sin(Q)\ m^{2}[/tex]

Step-by-step explanation:

We know that the area of a triangle is given by the formula A = b*h/2, where b stands for the base and h for the height.

In our problem, we can choose anyone of them as the base. Let us choose, for example, b = 5 m. Now that we know the value of the base, we can use the value of the other side (4 m) and the angle between these two sides (Q) to calculate the height:

[tex]h = (4 m)sin(Q)[/tex]

Therefore, the are of the triangle, as a function of the angle between these two sides is:

[tex]A(Q) = b*h/2 =5*4*sin(Q)/2\ m^{2} = 10sin(Q)\ m^{2}[/tex]

Let a graph have vertices {L, M, N, O, P, Q, R, S} and edge set {{L,R}, {M,P}, {M,Q}, {N,Q}, {P,R}, {Q,S}, {R,S}} .

a. What is the degree of vertex P?

b.What is the degree of vertex O?

c.How many components does the graph have?

Answers

Answer:

a) The degree of vertex P is 2.

b) The degree of vertex O is 0.

c) The graph has 2 components.

Step-by-step explanation:

a) The edges that have P as a vertice are {M,P} and {P,R}.

b) There is no edge with extreme point O.

c) One of the components is the one with the only vertex as O and has no edges. The other component is the one with the rest of the vertices and all the edges described.

The file has a realization of the graph.

Other Questions
A monopoly is the control of a market by ____________________________Question 4 options:a few dominant firms.a single producer.the government.a foreign trust. A trial balance also provides a:Question 3 options:Summary of the next profits made during the periodSummary of all transactions made since the end of the previous periodSummary of the debits and credits made in the previous periodSummary of the sales made during the current period dy/dt = y^2y(t) = ? Minerals have played an important role in the history of human civilization. How have minerals played an important role in the human civilization? What do you think is the role of minerals in the economic development of any country? 2 what is the value of the digit 3 in 20320 Hank Itzek manufactures and sells homemade wine, and he wants to develop a standard cost per gallon. The following are required for production of a 210-gallon batch. 3,300 ounces of grape concentrate at $0.03 per ounce 357 pounds of granulated sugar at $0.36 per pound 294 lemons at $0.63 each 840 yeast tablets at $0.28 each 1,050 nutrient tablets at $0.11 each 3,100 ounces of water at $0.001 per ounce Hank estimates that 1% of the grape concentrate is wasted, 15% of the sugar is lost, and 30% of the lemons cannot be used. Compute the standard cost of the ingredients for one gallon of wine. (Round intermediate calculations and final answer to 2 decimal places, e.g. 1.25.) Standard Cost Per Gallon $ Simplify. Write the answer in scientific notation. HELP ASAP!! If the system of linear equations below has no solution, and a is a constant, what is the value of a?"A. -2 B. - C. 2 D. and 2 equations in system are absolute value 1/2 x - 2/3 y = 7 and absolute value of ax-8y= -1 Use the Babylonian method of false position to solve the followingproblem,taken from a clay tablet found in Susa: Let the width of arectangle measure aquarter less than the length. Let 40 be the length of the diagonal.What arethe length and width? Begin with the assumption that 1 (or 60) isthe lengthof the rectangle. Write a program that inputs a series of 10 non-negative numbers and determines and prints the largest of those numbers. Your program should use three variables: Counter - a counter to count to 10 (i.e. to keep track of how many numbers have been input and to determine when all 10 number have been processed) Number - the current number input to the program Largest - the largest number found so far What is the result when the number 25 is increased by 20%? Pressure drop in packed column ..... a tray column a) More than b) Less than c) Equal to d) No relation to A literary analysis relies on research findings and a research essay introduces a thesis and supports the thesis throughout the essay with evidence and outside resources. True or False Look at the picture below.What function does this structure have?OA. To protect the organismOB. To help the organism reproduceOC. To see the outside worldOD. To hear the outside world Object Jews are words that describe limit for point out nouns true or false 9. Which number is rational?(1) Square root of (2) pi (symbol)(3) 5 square root 9(4) 6 square root 2 Which property justifies this statement? If x=3, then x3=0. Subtraction Property of Equality Division Property of Equality Reflexive Property of Equality Multiplication Property of Equality If Camillo goes with the better buy, how much will he pay for the 25 loaves of bread that he needs for the gourmet peanut butter and jelly sandwiches? Enter your answer to the nearest cent. What is an isochoric process? (1 mark) b) Can heat be exchanged in an isochoric process? (1 mark) c) A 100L container holding an ideal gas at an initial pressure of 10MPa is raised to a pressure of 15MPa. How much work is done? Consider light of wavelengths 400 nm (UV), 550 nm (green, visible), and 900 nm (infrared). What is the energy associated with a 400 nm (UV) photon, a 550 nm (green, visible) photon, and a 900 nm (infrared) photon?