Suppose that an airplane flying 70 m/s at a height of 300 m drops a crate. What horizontal distance will the crate have traveled when it hits the ground? Assume negligible air resistance. O 21000 m O 548 m O 242 m O 61 m

Answers

Answer 1

Answer:

option B

Explanation:

given,

seed of airplane = 70 m/s

height = 300 m

we know,

[tex]s = ut + \dfrac{1}{2}at^2[/tex]

[tex]300 = 0 + \dfrac{1}{2} \times 9.81\times t^2[/tex]

t = 7.82 s                                  

now, the range of the crate

 R = V × t

     = 70 × 7.82                      

     = 547.44 ≅ 548 m                          

hence, the correct answer is option B


Related Questions

The car is traveling at a constant speed v0 = 80 km/hr on the level portion of the road. When the 4-percent (tan q = 4/100) incline is encountered, the driver does not change the throttle setting and consequently the car decelerates at the constant rate g sin q. Determine the speed of the car: (a) 28 seconds after passing point A ,and (b) when s = 620 m.

Answers

Answer:

11.27 m /s

2.98 m / s.

Explanation:

80 km / h = 22.22 m /s

Tanq = 4 / 100

Sinq = .0399

Deceleration acting on inclined plane = g sinq

= 9.8 x .0399

= .3910

Initial speed u = 22.22 m/s

acceleration = - .3910 ms⁻²

v = u - a t

= 22.22 - .3910 x 28

= 22.22 - 10.95

= 11.27 m /s

b ) v² = u² - 2 a s

v² = ( 22.22) ² - 2 x .3910 x 620

= 493.7284 - 484.84

= 8.8884

v = 2.98 m / s.

A charge Q is to be divided into two parts, labeled 'q' and 'Q-q? What is the relationship of q to Q if, at any given distance, the Coulomb force between the two is to be maximized?

Answers

Answer:

Explanation:

The two charges are q and Q - q. Let the distance between them is r

Use the formula for coulomb's law for the force between the two charges

[tex]F = \frac{Kq_{1}q_{2}}{r^{2}}[/tex]

So, the force between the charges q and Q - q is given by

[tex]F = \frac{K\left ( Q-q \right )q}}{r^{2}}[/tex]

For maxima and minima, differentiate the force with respect to q.

[tex]\frac{dF}{dq} = \frac{k}{r^{2}}\times \left ( Q - 2q \right )[/tex]

For maxima and minima, the value of dF/dq = 0

So, we get

q = Q /2

Now [tex]\frac{d^{2}F}{dq^{2}} = \frac{-2k}{r^{2}}[/tex]

the double derivate is negative, so the force is maxima when q = Q / 2 .

Consider the following statements about Newton's 2nd law in general. Select all of the statements that are true. Note, there may be more than one. Pay attention to synonyms: velocity and change in position are the same thing.
1. A net force causes velocity to change
2. If an object has a velocity, then we can conclude that there is a net force on the object
3. Accelerations are caused by the presence of a net force

Answers

Answer:

1. True

2. False

3. True

Explanation:

Newton's 2nd law states that the net force exerted on an object is equal to the product between the mass of the object and its acceleration:

[tex]\sum F = ma[/tex] (1)

where

[tex]\sum F[/tex] is the net force on the object

m is its mass

a is the acceleration

Furthermore, we know that acceleration is defined as the rate of change of velocity:

[tex]a = \frac{dv}{dt}[/tex]

So let's now analyize the three statements:

1. A net force causes velocity to change: TRUE. Net force (means non-zero) causes a non-zero acceleration, which means that the velocity of the object must change.

2. If an object has a velocity, then we can conclude that there is a net force on the object: FALSE. The fact that the object has a velocity does not imply anything about its acceleration: in fact, if its velocity is constant, then its acceleration is zero, which would mean that the net force on the object is zero. So this statement is not necessarly true.

3. Accelerations are caused by the presence of a net force: TRUE. This is directly implied by eq.(1): the presence of the net force results in the object having a non-zero acceleration.

The de Broglie wavelength of a 0.064-kg golf ball is 3.09 x 10^−34m. What is its speed? (h = 6.63 x 10^−34 J⋅s)

Answers

Answer:

The speed is 33.5 m/s.

Explanation:

Given that,

Mass = 0.064 kg

Wavelength [tex]\lambda= 3.09\times10^{-34}\ m[/tex]

We need to calculate the speed

Using formula of he de Broglie wavelength

[tex]\lambda=\dfrac{h}{mv}[/tex]

[tex]v=\dfrac{h}{m\lambda}[/tex]

Where, h = Planck constant

m = mass

[tex]\lambda[/tex] = wavelength

Put the value into the formula

[tex]v = \dfrac{6.63\times10^{-34}}{0.064\times 3.09\times10^{-34}}[/tex]

[tex]v=33.5\ m/s[/tex]

Hence, The speed is 33.5 m/s.

Specific heat depends on several factors. Pick the factor below that you suspect will not affect specific heat. composition
state of matter
mass

Answers

Answer:

COMPOSITION

Explanation:

the correct answer is COMPOSITION.

specific heat of the body can be defined as the heat required to raise the temperature of a unit mass of a body by 1 °C.                                  

so, A composition of the material is not affected by the specific heat.

The unit of specific heat is Joule per kelvin (J / K ).

There are two vectors à and b, with an angle between them. Then the dot product of them is A. a. b = ab cos B. a b = (a + b) cos C. a. b = ab sino D.. b = (a + b) sino

Answers

Answer:

[tex]a.b=|a||b|\ cos\theta[/tex]                                                                    

Explanation:

Let a and b are two vectors such that [tex]\theta[/tex] is the angle between them. Dot product is also known as scalar product.  It is used to find the angle between two vectors such that,

[tex]a.b=|a||b|\ cos\theta[/tex]

[tex]\theta[/tex] is the angle between a and b. It can be calculated as :

[tex]\theta=cos^{-1}(\dfrac{a.b}{|a||b|})[/tex]

[tex]|a|\ and\ |b|[/tex] are the magnitude of vectors a and b such that :

[tex]|a|=\sqrt{x^2+y^2+z^2}[/tex] if a = xi +yj +zk

and

[tex]|b|=\sqrt{p^2+q^2+r^2}[/tex] if a = pi +qj +rk            

So, the correct option is (a). Hence, this is the required solution.                                        

The current density inside a long, solid, cylindrical wire of radius a = 5.0 mm is in the direction of the central axis and its magnitude varies linearly with radial distance r from the axis according to J = J0r/a, where J0 = 420 A/m2. Find the magnitude of the magnetic field at a distance (a) r=0, (b) r = 2.9 mm and (c) r=5.0 mm from the center.

Answers

Explanation:

Given that,

Radius a= 5.0 mm

Radial distance r= 0, 2.9 mm, 5.0 mm

Current density at the center of the wire is given by

[tex]J_{0}=420\ A/m^2[/tex]

Given relation between current density and radial distance

[tex]J=\dfrac{J_{0}r}{a}[/tex]

We know that,

When the current passing through the wire changes with radial distance,

then the magnetic field is induced in the wire.

The induced magnetic field is

[tex]B=\dfrac{\mu_{0}i_{ind}}{2\pi r}[/tex]...(I)

We need to calculate the induced current

Using formula of induced current

[tex]i_{ind}=\int_{0}^{r}{J(r)dA}[/tex]

[tex]i_{ind}= \int_{0}^{r}{\dfrac{J_{0}r}{a}2\pi r}[/tex]

[tex]i_{ind}={\dfrac{2\pi J_{0}}{a}}\int_{0}^{r}{r^2}[/tex]

[tex]i_{ind}={\dfrac{2\pi J_{0}}{a}}{\dfrac{r^3}{3}}[/tex]

We need to calculate the magnetic field

Put the value of induced current in equation (I)

[tex]B=\dfrac{\mu_{0}{\dfrac{2\pi J_{0}}{a}}{\dfrac{r^3}{3}}}{2\pi r}[/tex]

[tex]B=\dfrac{\mu_{0}J_{0}r^2}{3a}[/tex]

(a). The  magnetic field at a distance r = 0

Put the value into the formula

[tex]B=\dfrac{4\pi\times10^{-7}\times420\times0}{3\times5.0\times10^{-3}}[/tex]

[tex]B = 0[/tex]

The  magnetic field at a distance 0 is zero.

(b). The  magnetic field at a distance r = 2.9 mm

[tex]B=\dfrac{4\pi\times10^{-7}\times420\times(2.9\times10^{-3})^2}{3\times5.0\times10^{-3}}[/tex]

[tex]B = 2.95\times10^{-7}\ T[/tex]

The  magnetic field at a distance 2.9 mm is [tex]2.95\times10^{-7}\ T[/tex]

(c). The  magnetic field at a distance r = 5.0 mm

[tex]B=\dfrac{4\pi\times10^{-7}\times420\times(5.0\times10^{-3})^2}{3\times5.0\times10^{-3}}[/tex]

[tex]B = 8.79\times10^{-7}\ T[/tex]

The  magnetic field at a distance 5.0 mm is [tex]8.79\times10^{-7}\ T[/tex]

Hence, This is the required solution.

A person starts to run around a square track with sides of 50 m starting in the bottom right corner and running counter-clockwise. Running at an average speed of 5 m/s, the jogger runs for 53.80 seconds. What is the difference between the magnitude of the person's average velocity and average speed in m/s? (please provide detailed explanation)

Answers

Answer:3.71 m/s

Explanation:

Given

square track with sides 50 m

average speed is 5 m/s

Total running time=53.8 s

Total distance traveled  in this time[tex]=53.8\times 5=269 m[/tex]

i.e. Person has completed square track one time and another 69 m in second round

So displacement is 269-200=69 m

average velocity[tex]=\frac{Displacement}{time}[/tex]

[tex]=\frac{69}{53.8}=1.28 m/s[/tex]

Difference between average velocity and average speed is

5-1.28=3.71 m/s

Answer:

The difference in average speed and average velocity in terms of magnitude is 3.993 m/s

Solution:

As per the question:

The side of a square track, l = 50 m

Average speed of the runner, [tex]v_{avg} = 5 m/s[/tex]

Time taken, t = 53.80 s

Now,

The distance covered by the runner in this time:

s = [tex]v_{avg}t[/tex]

s = [tex]5\times 53.80[/tex]

s = 269 m

After covering a distance of 269 m, the person is at point A:

[tex]AQ^{2} = AR^{2} + QR^{2}[/tex]

where

AR = 19 m

QR = 50 m

Refer to fig 1.

As the runner starts from the bottom right, i.e., at Q and traveled 269 m.

After completion of 250 m , he will be at point R after one complete round and thus travels 19 m more to point A to cover 269 m.

Thus

[tex]AQ = \sqrt{19^{2} + 50^{2}} = 53.48 m[/tex]

where

AQ is the displacement

Hence,

Average velocity, v' = [tex]\frac{AQ}{t}[/tex]

v' = [tex]\frac{53.48}{53.80} = 1.007 m/s[/tex]

The difference in average speed and average velocity is:

[tex]v_{avg} - v' = 5 - 1.007 = 3.993 m/s[/tex]

A solid steel ball is thrown directly downward, with an initial speed of 7.95 m/s, from the top of a building at a height of 29.8 m. How much time (in s) does it take before striking the ground?

Answers

Answer:

1.78 s

Explanation:

Initial speed of the ball = u = 7.95 m/s and is vertically downwards.

Acceleration due to gravity = g = 9.8 m/s/s , vertically downwards.

Height of the building  h = 29.8 m (traversed downwards by the steel ball).

h = u t + 1/2 g t²

29.8 = 7.95 t + 0.5 (9.8) t²

⇒ 4.9 t² +7.95 t - 29.8 = 0

Using the quadratic formula , solve for t.

t= [tex]= \frac{-b\pm \sqrt{b^2-4\times a \times c}}{2\times a}[/tex]

t = [tex]\frac{-7.95 \pm \sqrt{7.95^2-4\times 4.9 \times (-29.8)}}{2\times 9.8}[/tex] = 1.78 s, -3.4 s

Since time does not have a negative value, time taken by the stone to reach the ground = t = 1.78 s

Final answer:

To calculate the time taken for a solid steel ball to strike the ground when thrown downward from a building, use the equation of motion and plug in the given values to find the time, which is about 1.7 seconds.

Explanation:

The time taken for the ball to strike the ground can be calculated using the equation of motion:

h = (1/2) * g * t2

Where h is the initial height of the ball, g is the acceleration due to gravity, and t is the time taken. Substituting the given values, we find that it takes approximately 1.7 seconds for the ball to strike the ground.

1.48 Assume that the air volume in a small automobile tire is constant and equal to the volume between two concentric cylinders 13 cm high with diameters of 33 cm and 52 cm. The air in the tire is initially at 25 °C and 202 kPa. Immediately after air is pumped into the tire, the temperature is 30 °C and the pressure is 303 kPa. What mass of air was added to the tire? What would be the air pressure after the air has cooled to a temperature of 0 °C?

Answers

Answer:

a) 0.018 kg

b) 262 kPa

Explanation:

The volume of the concentric cylinders would be:

V = π/4 * h * (D^2 - d^2)

V = π/4 * 13 * (52^2 - 33^2) = 16500 cm^3 = 0.0165 m^3

The state equation of gases:

p * V = m * R * T

Rearranging:

m = (p * V) / (R * T)

R is 287 J/(kg * K) for air

25 C = 298 K

m0 = 202000 * 0.0165 / (287 * 298) = 0.039 kg

After pumping more air the volume remains about the same, but temperature and pressure change.

30 C = 303 K

m1 = 303000 * 0.0165 / (287 * 303) = 0.057 kg

The mass that was added is

m1 - m0 = 0.057 - 0.039 = 0.018 kg

If that air is cooled to 0 C

0 C  is 273 K

p = m * R * T / V

p = 0.057 * 278 * 273 / 0.0165 = 262000 Pa = 262 kPa

Keisha looks out the window from a tall building at her friend Monique standing on the ground, 8.3 m away from the side of the building, as shown. If Keisha's line of sight makes a 30° angle with the side of the building, what is Keisha's height above the ground? Assume Monique is 1.5 m tall. A. 14 m B. 15 m C. 16 m D. 17 m

Answers

Answer:

Explanation:

GIVEN DATA:

Distance between keisha and her friend 8.3 m

angle made by keisha toside building 30 degree

height of her friend monique is 1.5 m

from the figure

[tex]\Delta ACB[/tex]

[tex]tan 30 = \frac{8.3}{h}[/tex]

[tex]h= \frac{8.3}{tan 30} = 14.376 m[/tex]

therefore

height of keisha is [tex]= h  + 1.5 m[/tex]

                               = 14.376 + 1.5

[tex]= 15.876 \simeq 16 m[/tex]

therefore option c is correct

A secret agent skis off a slope inclined at θ = 30.2 degrees below horizontal at a speed of v0 = 20.4 m/s. He must clear a gorge, and the slope on the other side of the gorge is h = 11.7 m below the edge of the upper slope. Does he make it?

Answers

Answer:

He will make it if the gorge is no wider than 14.4 m

Explanation:

The secret agent follows a parabolic motion. We have the following data:

[tex]v_0 = 20.4 m/s[/tex] is the initial speed

[tex]\theta=30.2^{\circ}[/tex] below the horizontal is the initial angle

h = 11.7 m is the vertical distance covered by the agent before landing on the other side

Let's start by analyzing the vertical motion. The initial vertical velocity is

[tex]u_y = v_0 sin \theta = (20.4) (sin 30.2^{\circ})=10.3 m/s[/tex]

Where we have chosen downward as positive direction. Now we use the following equation:

[tex]h=u_y t + \frac{1}{2}gt^2[/tex]

where [tex]g=9.8 m/s^2[/tex] (acceleration of gravity) to find the time t at which the agent lands. Substituting the numbers:

[tex]11.7 = 10.3 t + 4.9 t^2\\4.9t^2 + 10.3t -11.7 = 0[/tex]

Which has two solutions: t = -2.92 s and t = 0.82 s. Since the negative solution is meaningless, we discard it, so the agent reaches the other side of the gorge after 0.82 s.

Now we want to find what is the maximum width of the gorge that allows the agent to safely land on the other side. For that, we need to calculate the horizontal velocity of the agent, which is constant during the motion:

[tex]u_x = u_0 cos \theta = (20.4)(cos 30.2^{\circ})=17.6 m/s[/tex]

So, the horizontal distance covered by the agent is

[tex]d = u_x t = (17.6)(0.82)=14.4 m[/tex]

So, the agent will land safely if the gorge is at most 14.4 m wide.

The secret agent will make it if the width of the gorge is less than 14.4 m.

The given parameters;

inclination of the slope, θ = 30.2⁰initial velocity, v = 20.4 m/sheight of the gorge, h = 11.7 m

The time to travel the vertical distance is calculated as follows;

[tex]h = v_0_yt + \frac{1}{2} gt^2\\\\11.7 = (20.4\times sin(30.4))t + (0.5\times 9.8)t^2\\\\11.7 = 10.32t + 4.9t^2\\\\4.9t^2 + 10.32t - 11.7 = 0\\\\solve \ the \ quadratic \ equation, \ using \ formula \ method;\\\\a = 4.9, \ b = 10.32, \ c = - 11.7\\\\t = \frac{-b \ \ + /- \ \ \sqrt{b^2 - 4ac} }{2a} \\\\t = 0.82 \ s[/tex]

The horizontal distance traveled by the secret agent is calculated as;

[tex]X = V_0_x t\\\\X = (20.4 \times cos (30.4) \times 0.82\\\\X = 14.4 \ m[/tex]

Thus, we can conclude that the secret agent will make it if the width of the gorge is less than 14.4 m.

Learn more here:https://brainly.com/question/2411455

Light travels faster in warmer air. On a sunny day, the sun can heat a road and create a layer of hot air above it. Let's model this layer as a uniform one with a sharp boundary separating it from the cooler air above. Use this model to explain the formation of a mirage appearing like the shiny surface of a pool of water.

Answers

Answer:

Explanation:

If we assume there is a sharp boundary between the two masses of air, there will be a refraction. The refractive index of each medium will depend on the relative speeds of light.

n = c / v

If light travels faster in warmer air, it will have a lower refractive index

nh < nc

Snell's law of refraction relates angles of incidence and refracted with the indexes of refraction:

n1 * sin(θ1) = n2 * sin(θ2)

sin(θ2) = sin(θ1) * n1/n2

If blue light from the sky passing through the hot air will cross to the cold air, then

n1 = nh

n2 = nc

Then:

n1 < n2

So:

n1/n2 < 1

The refracted light will come into the cold air at angle θ2 wich will be smaller than θ1, so the light is bent upwards, creating the appearance of water in the distance, which is actually a mirror image of the sky.

Three negative point charges q1 =-5 nC, q2 = -2 nC and q3 = -5 nC lie along a vertical line. The charge q2 lies exactly between charge q1 and q3 which are 16 cm apart. Find the magnitude and direction of the electric field this combination of charges produces at a point P at a distance of 6 cm from the q2

Answers

Answer:

Ep= 5450N/C in direction (-x)

Explanation:

Conceptual analysis

The electric field at a point P due to a point charge is calculated as follows:

E = k*q/d²

E: Electric field in N/C

q: charge in Newtons (N)

k: electric constant in N*m²/C²

d: distance from charge q to point P in meters (m)

Equivalence  

1nC= 10⁻⁹C

1cm=  10⁻²m

Graphic attached

The attached graph shows the field due to the charges q₁, q₂ y q₃ in the  P  (x=6, y=0):

As the charge q₁ ,q₂ , and q₃ are negative the field enter the charges.

E₁: Electric Field due to charge q₁.  

E₂: Electric Field due to charge q₂.  

E₃: Electric Field due to charge q₃.

Field calculation due to q₁ and q₃

Because q₁ = q₃ and d₁ = d₃, then, the magnitude of E₁ is equal to the magnitude of E₃

d₁=d₃=d

[tex]d=\sqrt{6^{2}+8^{2}  } =10cm=0.1m[/tex]

q₁=q₃= -5nC= 5*10⁻⁹C

E₁ = E₃= k*q/d² = 9*10⁹*5*10⁻⁹/0.1² = 4500 N/C

E₁x = E₃x= - 4500*(6/10)= -2700 N/C

E₁y =  -4500*(8/10)= -3600 N/C

E₃y=  +4500*(8/10)=+3600N/C

Field calculation due to q₂

E₂x= k*q₂/d₂²=  -9*10⁹*2*10⁻⁹/0.6²= -50 N/C

Magnitude and direction of the electric field in the point P (Ep)

Epx= E₁x+ E₂x+E₃x = -2700 N/C-50 N/C-2700 N/C= -5450N/C

Epy= E₁y+ E₃y= -3600 N/C+3600N  = 0

Ep= 5450N/C in direction (-x)

A mass attached to a horizontal spring is stretched by 10 cm and released. It takes 0.2 sec for the mass to reach the equilibrium position. The mass is then stretched to 30 cm and released. How long does it take the mass to reach the equilibrium position?

Answers

Answer:

No change

Explanation:

The time period of an oscillating body depends on the mass of the body attached and the spring constant of the spring.

The time taken by the oscillating body to complete one vibration is called the time period of teh body.

As the time period does not depend on the amplitude of the oscillations so the time period does not change as the amplitude changes.

Thus, the time taken by the mass to reach to the equilibrium position remains  same.

A long, nonconducting cylinder (radius = 6.0 mm) has a nonuniform volume charge density given by αr2, where α = 6.2 mC/m5 and r is the distance from the axis of the cylinder. What is the magnitude of the electric field at a point 2.0 mm from the axis?

Answers

Answer: 2.80 N/C

Explanation: In order to calculate the electric firld inside the solid cylinder

non conductor we have to use the Gaussian law,

∫E.ds=Q inside/ε0

E*2πrL=ρ Volume of the Gaussian surface/ε0

E*2πrL= a*r^2 π* r^2* L/ε0

E=a*r^3/(2*ε0)

E=6.2 * (0.002)^3/ (2*8.85*10^-12)= 2.80 N/C

Three point charges are arranged along the x-axis. Charge q1 = +3.00 μC is at the origin, and charge q2 = -5.00 μC is at x = 0.200 m. Charge q3 = -8.00 μC. Where is q3 located if the net force on q1 is 7.00 N in the -x-direction?

Answers

Answer:

q₃ is located at X= - 0.144m

Explanation:

Coulomb law:

Two point charges (q1, q2) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:

F=K*q₁*q₂/d² Formula (1)  

F: Electric force in Newtons (N)

K : Coulomb constant in N*m²/C²

q₁, q₂: Charges in Coulombs (C)  

d: distance between the charges in meters(m)

Equivalence  

1uC= 10⁻⁶C

Data

F=0.66 N

K=8.99x10⁹N*m²/C²

q₁ =  +3.00 μC = +3.00  *10⁻⁶C

q₂=  -5.00  μC =  -5.00  *10⁻⁶C

q₃= -8.00 μC= -8.00 *10⁻⁶C

d₁₂= 0.2m: distance between q₁ and q₂

Fn=7 N: Net force on q₁

Calculation of the magnitude of the forces exerted on q₁

F₂₁ = K*q₁*q₂/d₁₂² = (8.99 * 10⁹ * 3.00 * 10⁻⁶ * 5.00 * 10⁻⁶)/(0.2)² = 3.37 N

F₃₁ = K*q₁*q₃/d₁₃² = (8.99 * 10⁹ * 3.00 * 10⁻⁶ * 8.00 * 10⁻⁶)/(d₁₃)² = 0.21576/(d₁₃)² N

Calculation of the distance d₁₃ between q₁ and q

In order for the net force to be negative on the x axis, the charge q₃ must be located on the x axis to the left of the charge q₁

F₂₁: It is a force of attraction and goes to the right(+)

F₃₁: It is a force of attraction and goes to the left(-)

-Fn₁ = F₂₁ - F₃₁

-7 = 3.37 - 0.21576/(d₁₃)²

3.37 + 7 = 0.21576/(d₁₃)²

10.37*(d₁₃)²=0.21576

(d₁₃)² = (0.215769 )/ (10.37)

(d₁₃)² =  20.8 * 10⁻³

[tex]d_{13} = \sqrt{20.8 * 10^{-3}} = 0.144 m[/tex]

d₁₃=0.144m

q₃ is located at X= - 0.144m

Consider the resistances of short and open circuits. Fill in the blanks: The voltage across a short circuit will always be ______________ The voltage across an open circuit will always be ______________

Answers

Answer:

a) Zero

b) power source

Explanation:

According to Ohm's law, the voltage dropped in a resistance is proportional to the current flow and the resistor opposing to it.

[tex]V=I*R[/tex]

For the case of a short circuit, the resistance tends to zero, so the voltage will tend to zero too.

In the case of the open circuit, the resitance will tend to infinity, because we cannot obtain an infite voltage, it will be limited by the power source.

Final answer:

The voltage across a short circuit is always zero, due to the negligible resistance allowing easy current flow, whereas in an open circuit, which has infinite resistance preventing current flow, the voltage will be equal to the supply voltage.

Explanation:

The question concerns the behaviors of electrical circuits specifically relating to short and open circuits. When considering the resistances and the resulting voltages across these types of circuits, it's crucial to understand two fundamentals:

The voltage across a short circuit will always be zero.The voltage across an open circuit will always be equal to the supply voltage.

In a short circuit, a pathway exists with negligible resistance, allowing current to flow easily and resulting in virtually no voltage drop across the circuit. In contrast, an open circuit has infinite resistance because the path is broken, preventing any current from flowing; thus, the whole supply voltage appears across the open circuit.

Assume that an oil slick consists of a single layer of molecules and that each molecule occupies a cube 1.4 nm on a side. Determine the area of an oil slick formed by 1.1 m^3 of oil. Answer in units of m^2.

Answers

Answer:

The area of oil slick is calculate as [tex]785.7 m^{2}[/tex]

Solution:

Volume of oil slick, [tex]V_{o} = 1.1 m^{3}[/tex]

The thickness of one molecule on a side, w = 1.4 mm = [tex]1.4\times 10^{- 3}[/tex]

Now, in order to determine the area of oil slick, [tex]A_{o}[/tex]:

Volume, V = [tex]Area\times thickness[/tex]

Thus

[tex]Area,\ A_{o} = \frac{V_{o}}{w}[/tex]

[tex]Area,\ A_{o} = \frac{1.1}{1.4\times 10^{- 3}} = 785.7 m^{2}[/tex]

A meteoroid is first observed approaching the earth when it is 402,000 km from the center of the earth with a true anomaly of 150. If the speed of the meteoroid at that time is 2.23 km/s, calculate
(a) the eccentricity of the trajectory;
(b) the altitude at closest approach; and
(c) the speed at the closest approach.

Answers

Explanation:

Given that,

Distance = 402000 km

Speed = 2.23 m/s

Angle = 150

(a). We need to calculate the eccentricity of the trajectory

Using formula of eccentricity

[tex]\epsilon=\dfrac{v^2}{2}-\dfrac{\mu}{r}[/tex]

Put the value into the formula

[tex]\epsilon=\dfrac{2.23^2}{2}-\dfrac{398600}{402000}[/tex]

[tex]\epsilon=1.4949\ km^2/s^2[/tex]

We need to calculate the angular momentum

Using formula of  the angular momentum

[tex]h^2=-\dfrac{1}{2}\dfrac{\mu^2}{\epsilon}(1-e^2)[/tex]

[tex]h^2=-\dfrac{1}{2}\dfrac{(398600)^2}{1.4949}(1-e^2)[/tex]

[tex]h^2=-5.3141\times10^{10}(1-e^2)[/tex]...(I)

The orbit equation is

[tex]h^2=\mu r(1+e\cos\theta)[/tex]

[tex]h^2=398600\times402000(1-+\cos150)[/tex]

[tex]h^2=16.02372\times10^{10}(1-e0.8660)[/tex]

[tex]h^2=16.02372\times10^{10}-e13.877\times10^{10}[/tex]....(II)

Equating the value of h²

[tex]-5.3141\times10^{10}(1-e^2)=16.02372\times10^{10}-e13.877\times10^{10}[/tex]

[tex]-5.3141+5.3141e^2=13.877e+16.02372[/tex]

[tex]5.3141e^2+13.877e-21.33782=0[/tex]

[tex]e = 0, 1.086[/tex]

(b). We need to calculate the altitude at closest approach

Put the value of e in equation (I)

[tex]h^2=16.02372\times10^{10}-1.086\times13.877\times10^{10}[/tex]

[tex]h^2=9.53298\times10^{9}\ km^4/s^2[/tex]

Now, using the formula of the altitude at closest

[tex]r_{perigee}=\dfrac{h^2}{\mu}\dfrac{1}{1+e}[/tex]

[tex]r_{perigee}=\dfrac{9.53298\times10^{9}}{398600}\dfrac{1}{1+1.086}[/tex]

[tex]r_{perigee}=11465\ km[/tex]

So, The altitude is

[tex]z_{perigee}=r_{perigee}-r_{earth}[/tex]

[tex]z_{perigee}=11465-6378[/tex]

[tex]z_{perigee}=5087\ km[/tex]

(c). We need to calculate the  speed at the closest approach.

Using formula of speed

[tex]v_{perigee}=\dfrac{h}{r_{perigee}}[/tex]

[tex]v_{perigee}=\dfrac{\sqrt{9.53298\times10^{9}}}{11465}[/tex]

[tex]v_{perigee}=8.516\ km/s[/tex]

Hence, This is the required solution.

(a) The eccentricity of the meteoroid's trajectory is approximately -0.226. This value indicates the deviation of the orbit from a perfect circle, with negative eccentricity suggesting an elliptical orbit.

(b) At its closest approach, or perigee, the meteoroid is at an altitude of about 595,261 kilometers from the Earth's center. This is the point in its trajectory where it is closest to Earth.

(c) The speed of the meteoroid at its closest approach is approximately 3.69 kilometers per second. This velocity is characteristic of its orbital motion when it is nearest to Earth and is determined by the specific orbital energy and gravitational influences.

To calculate the eccentricity (e), altitude at closest approach (perigee), and speed at the closest approach, we can use the vis-viva equation and orbital mechanics. The vis-viva equation relates the specific orbital energy (ε) to the semi-major axis (a), eccentricity (e), and velocity (v) of an object in orbit:

ε = v²/2 - μ/a

Where:

ε = specific orbital energy

v = velocity of the object

μ = standard gravitational parameter of Earth (approximately 3.986 x 10^5 km³/s²)

a = semi-major axis of the trajectory

We are given the speed of the meteoroid at a distance of 402,000 km from the Earth's center, which we'll use as v. We'll also use μ for Earth's gravitational parameter.

First, let's find the semi-major axis (a):

ε = v²/2 - μ/a

Rearrange to solve for a:

a = μ / (2μ/v² - 1/v²)

a = (3.986 x 10^5 km³/s²) / (2 * (3.986 x 10^5 km³/s²) / (2.23 km/s)² - (1 / (2.23 km/s)²))

a ≈ 491,453 km

(a) The semi-major axis (a) is approximately 491,453 km.

Next, let's calculate the eccentricity (e) using the true anomaly (ν) and the semi-major axis:

e = cos(ν) - r/a

e = cos(150°) - (402,000 km) / (491,453 km)

e ≈ -0.226

(b) The eccentricity (e) is approximately -0.226.

Now, to find the altitude at closest approach (perigee), we need to calculate the perigee distance (rp) using the semi-major axis and eccentricity:

rp = a(1 - e)

rp = (491,453 km) * (1 - (-0.226))

rp ≈ 595,261 km

(c) The perigee distance is approximately 595,261 km.

To find the speed at closest approach (closest approach velocity), we can use the vis-viva equation again:

v = sqrt(μ * (2/r - 1/a))

Where r is the distance from the center of the Earth (rp at perigee).

v = sqrt((3.986 x 10^5 km³/s²) * (2 / (595,261 km) - 1 / (491,453 km)))

v ≈ 3.69 km/s

(c) The speed at closest approach is approximately 3.69 km/s.

Learn more about meteoroid's here:

https://brainly.com/question/30123423

#SPJ6

In this first example of constant accelerated motion, we will simply consider a car that is initially traveling along a straight stretch of highway at 15 m/s. At t=0 the car begins to accelerate at 2.0 m/s2 in order to pass a truck. What is the velocity of the car after 5.0 s have elapsed?

Answers

Answer:

[tex]v_{f} =25m/s[/tex]

Explanation:

Kinematics equation for constant acceleration:

[tex]v_{f}  =v_{o} + at=15+2*5=25m/s[/tex]

Two infinite planes of charge lie parallel to each other and to the yz plane. One is at x = -5 m and has a surface charge density of σ = -2.6 µC/m^2. The other is at x = 3 m and has a surface charge density of σ = 5.8 µC/m^2. Find the electric field for the following locations. (a) x < -5 m
(b) -5 m < x < 3 m
(c) x > 3 m

Answers

Answer:

a) -180.7 kN/C

b) -474.3 kN/C

c) 180.7 kN/C

Explanation:

For infinite planes the electric field is constant on each side, and has a value of:

E  = σ / (2 * e0) (on each side of the plate the field points in a different direction, the fields point towards positive charges and away from negative charges)

The plate at -5 m produces a field of:

E1 = 2.6*10^-6 / (2 * 8.85*10^-12) = 146.8 kN/C into the plate

The plate at 3 m:

E2 = 5.8*10^-6 / (2 * 8.85*10^-12) = 327.5 kN/C away from the plate

At x < -5 m the point is at the left of both fields

The field would be E = 146.8 - 327.5 = -180.7 kN/C

At -5 m < x < 3 m, the point is between the plates

E = -146.8 - 327.5 = -474.3 kN/C

At x > 3 m, the point is at the right of both plates

E = -146.8 + 327.5 = 180.7 kN/C

Final answer:

The electric fields at the given locations are calculated by using the formula E=σ/2ε₀, and considering that the fields always point toward negative charges. Hence, they vary depending on the position of the point relative to the planes of charge.

Explanation:

The field contribution due to each individual infinite plane is E=σ/2ε₀, where ε₀ is the permittivity of the free space (8.85 x10⁻ⁱ² C²/Nm²). Now, we'll calculate the electric field for each given location:

(a) For x < -5 m: Here, the point sits to the left of both the planes. Both fields point to the right (towards negative charge), so they add up.(b) -5 m < x < 3 m: The point is between the planes. The field from the negative plane points to the right, and that of the positive plane also points to the right, hence they subtract. E = -2.6 / 2ε₀ - 5.8 / 2ε₀ .(c) x > 3 m: Here, the point is to the right of both planes. The fields from both planes point left (towards the negative charge), add up. E = -2.6 / 2ε₀ + 5.8 / 2ε₀ .

Learn more about Electric Field here:

https://brainly.com/question/8971780

#SPJ3

A baseball is hit with a speed of 47.24 m/s from a height of 0.42 meters. If the ball is in the air 5.73 seconds and lands 130 meters from the batters feet, (a) at what angle did the ball leave the bat? (b) with what velocity will the baseball hit the ground?

Answers

Answer:

a)the ball will leave the bat at an angle of  61.3°  .

b) the velocity at which it will hit the ground will be v = 27.1 m/s

Explanation:

Given,

v = 47.24 m

h = 0.42 m

t = 5.73 s

R = 130 m

a)We know that

R = v cosθ × t

cosθ = [tex]\dfrac{R}{v t } = \dfrac{130}{47.24\times 5.73 } =0.4803[/tex]

θ = 61.3°  

the ball will leave the bat at an angle of  61.3°  .

b)Vx = v cos(θ) = 47.24 x cos 61.3 = 22.7 m/s

v = u + at

Vy = 47.24 x sin 61.3 - 9.81 x 5.73

    = -14.8 m/s

v = [tex]\sqrt{v_x^2 + v_y^2)}[/tex]

v = [tex]\sqrt{22.7^2 + -14.8^2}[/tex]

v = 27.1 m/s

the velocity at which it will hit the ground will be v = 27.1 m/s

The horizontal bar rises at a constant rate of three hundred mm/s causing peg P to ride in the quarter circular slot. When coordinate y reaches 150mm, find the v and a vectors for P. Hint: for a circle with origin shown x2+y2=r2. The radius of the slot is 300 mm.

Answers

Answer:

Explanation:

Given

Horizontal bar rises with 300 mm/s

Let us take the horizontal component of P be

[tex]P_x=rcos\theta [/tex]

[tex]P_y=rsin\theta [/tex]

where [tex]\theta [/tex]is angle made by horizontal bar with x axis

Velocity at y=150 mm

[tex]150=300sin\theta [/tex]

thus [tex]\theta =30^{\circ}[/tex]

position of[tex]P_x=rcos\theta =300\cdot cos30=300\times \frac{\sqrt{3}}{2}[/tex]

[tex]P_x=259.80 mm[/tex]

[tex]P=259.80\hat{i}+150\hat{j}[/tex]

Velocity at this instant

[tex]u_x=-rsin\theta =300\times sin30=-150 mm/s[/tex]

[tex]u_y=rcos\theta =300\times cos30=259.80 mm/s[/tex]

A ball thrown straight up climbs for 3.0 sec before falling. Neglecting air resistance, with what velocity was the ball thrown?

Answers

Answer:

Speed, u = 29.4 m/s

Explanation:

Given that, A ball thrown straight up climbs for 3.0 sec before falling, t = 3 s

Let u is speed with which the ball is thrown up. When the ball falls, v = 0

Using first equation of motion as :

v = u + at

Here, a = -g

So, u = g × t

[tex]u=9.8\times 3[/tex]

u = 29.4 m/s

So, the speed with which the ball was thrown is 29.4 m/s. Hence, this is the required solution.

The velocity at which the ball was thrown is 29.4 m/s.

To calculate the velocity at which the ball was thrown, we use the formula below.

Formula:

v = u+gt.............. Equation 1

Where:

v = Final  velocity of the ballu = Initial velocity of the ballg = acceleration due to gravity of the ballt = time.

From the question,

Given:

v = 0 m/s (At maximum height)g = -9.8 m/st = 3.0 s

Substitute these values into equation 1

0 = u+3(-9.8)0 = u-29.4u = 29.4 m/s

Hence, The velocity at which the ball was thrown is 29.4 m/s.

Learn more bout velocity here: https://brainly.com/question/25749514

Consider an equilateral triangle with sides measuring 1.0 m in length. At each point of the triangle is a +2.0 μC charge. Calculate the Coulomb force on each charge. Recall that forces are vectors and thus your answer will require a magnitude and direction for each of the three forces.

Answers

Answer:

Th magnitude of each Force will be [tex]=62.35\times10^{-3}\ \rm N[/tex]

Explanation:

Given:

Length of each side of the equilateral triangle, L=1 mMagnitude of each point charge [tex]Q=2\ \rm \mu C[/tex]

Since all the charges are identical and distance between them is same so magnitude of the force between each charge is equal.

Let F be the force between the particles. According to Coulombs Law we have

[tex]F=\dfrac{kQ^2}{L^2}\\=\dfrac{9\times10^9\times (2\times10^{-6})^2}{1^2}\\F=36\times10^{-3}\ \rm N[/tex]

Now the the force on any charge by other two charges will be F and the angle between the two force is [tex]60^\circ[/tex]

Let [tex]F_{resultant}[/tex] be the force on nay charge by other two

By using vector Law of addition we have

[tex]F_{resultant}=\sqrt{(F^2+F^2+2F\times F \times cos60^\circ)}\\=\sqrt{3}F\\=\sqrt{3}\times36\times10^{-3}\ \rm N\\=62.35\times10^{-3}\ \rm N[/tex]

The angle made by the resultant vector will be

[tex]\tan\beta=\dfrac{F\sin60^\circ}{F+F\cos60^\circ}\\\beta=30^\circ[/tex]

A car and a motorcycle start from rest at the same time on a straight track, but the motorcycle is 25.0 m behind the car. The car accelerates at a uniform rate of 3.70 m/s^2 and the motorcycle at a uniform rate of 4.40 m/s^2. How much time elapses before the MC overtakes the car? How far will each have traveled during that time?

Answers

Answer:

t = 8.45 sec

car distance d = 132.09  m

bike distance d = 157.08 m

Explanation:

GIVEN :

motorcycle is 25 m behind the car , therefore distance need to covered by bike to overtake car is 25+ d, when car reache distance d at time t

for car

by equation of motion

[tex]d  = ut + \frac{1}{2}at^2[/tex]

u = 0 starting from rest

[tex]d = \frac{1}{2}at^2[/tex]

[tex]t^2 = \frac{2d}{a}[/tex]

for bike

[tex]d+25 = 0 + \frac{1}{2}*4.40t^2[/tex]

[tex]t^2= \frac{d+25}{2.20}[/tex]

equating time of both

[tex]\frac{2d}{a} = \frac{d+25}{2.20}[/tex]

solving for d we get

d = 132 m

therefore t is[tex] = \sqrt{\frac{2d}{a}}[/tex]

[tex]t =  \sqrt{\frac{2*132}{3.70}}[/tex]

t = 8.45 sec

each travelled in time 8.45 sec as

for car

[tex]d = \frac{1}{2}*3.70 *8.45^2[/tex]

d = 132.09  m

fro bike

[tex]d = \frac{1}{2}*4.40 *8.45^2[/tex]

d = 157.08 m

Final answer:

To find the time when the motorcycle overtakes the car, equate the distances they have traveled given their individual accelerations and solve for time. Once the time is known, calculate the distance each has traveled using the equations of motion for uniform acceleration.

Explanation:

To determine when the motorcycle (MC) overtakes the car, we need to calculate the time at which both have traveled the same distance, considering the initial 25.0 m advantage of the car. We can use the equation of motion d = ut + (1/2)at2 where d is the distance traveled, u is the initial velocity, a is the acceleration, and t is the time.

The car starts from rest, so its initial velocity is 0, and it accelerates at 3.70 m/s2. The motorcycle also starts from rest, with an acceleration of 4.40 m/s2, but it needs to cover an additional 25.0 m to catch up with the car.

We can set the equations equal to each other to find the time t when the distances are equal:

Distance covered by the car: Car_d = (1/2)(3.70 m/s2)t2Distance covered by the MC: MC_d = 25.0 m + (1/2)(4.40 m/s2)t2

To find the time when MC overtakes the car, we equate Car_d to MC_d and solve for t:

(1/2)(3.70)t2 = 25.0 + (1/2)(4.40)t2

After solving for t, we can calculate the distance each has traveled using the original equations of motion for uniform acceleration.

A moving van travels 10km North, then 4 km east, drops off some furniture and then drives 8 km south. (a) Sketch the path of the moving van. (2) How far is the van from its starting point? (Hint: it is the magnitude of the displacement vector).

Answers

Answer:

4.47 km

Explanation:

If we draw the path of the van then we get a shape with two exposed points A and D. If we draw a line from point D perpendicular to BA we get point E. This gives us a right angled triangle ADE.

From Pythagoras theorem

AD² = AE² + ED²

[tex]AD=\sqrt{AE^2+ED^2}\\\Rightarrow AD=\sqrt{2^2+4^2}\\\Rightarrow AD=\sqrt{20}\\\Rightarrow AD=4.47\ km[/tex]

Hence, the van is 4.47 km from its initial point

If the gravitational force between objects of equal mass is 2.30 x 10^‐8 N when the objects are 10.0 m apart, what is the mass of each object?

Answers

Answer:

Mass of each objects, m = 185.69 kg

Explanation:

The gravitational force between two equal masses is, [tex]F=2.3\times 10^{-8}\ N[/tex]

Separation between the masses, d = 10 m

Let m is the mass of each object. The gravitational force is given by :

[tex]F=G\dfrac{m^2}{d^2}[/tex]

[tex]m=\sqrt{\dfrac{F.d^2}{G}}[/tex]

[tex]m=\sqrt{\dfrac{2.3\times 10^{-8}\times (10)^2}{6.67\times 10^{-11}}}[/tex]

m = 185.69 kg

So, the mass of each objects is 185.69 kg. Hence, this is the required solution.

Final answer:

To find the mass of each object, we can use Newton's law of gravitation and solve an equation.

Explanation:

To find the mass of each object, we can use Newton's law of gravitation, which states that the gravitational force between two objects is given by the equation: F = G * M₁ * M₂ / R². Rearranging the equation to solve for the mass, we have: M = F * R² / (G * M₂), where M is the mass of one object.

Using the given values, the gravitational force is 2.30 x 10^‐8 N and the distance between the objects is 10.0 m. Plugging these values into the equation, we have: M = (2.30 x 10^‐8 N) * (10.0 m)² / (6.67 × 10-¹¹ Nm²/kg² * M₂).

Since the masses of the two objects are equal, we can assume M₁ = M₂. Therefore, the mass of each object would be the same and can be calculated by solving the equation.

Learn more about mass of objects here:

https://brainly.com/question/6240825

#SPJ11

Students in an introductory physics lab are performing an experiment with a parallel-plate capacitor made of two circular aluminum plates, each 21 cm in diameter, separated by 1.0 cm . Part A How much charge can be added to each of the plates before a spark jumps between the two plates? For such flat electrodes, assume that value of 3× 10 6 N/C of the field causes a spark. Express your answer with the appropriate units. q max q m a x = nothing nothing SubmitRequest Answer Provide Feedback Next

Answers

Answer:

0.92 μC

Explanation:

In a parallel-plate capacitor, the electric field formed is equal to the charge density divited by the vacuum permisivity e0, as there are no dielectric between the plates. e0 is equal to 8.85*10^-12 C^2/Nm^2. The charge density is the total charge of each individual plate divided by its area. Then, the maximum charge allowed will be equal to:

[tex]E = \frac{o}{e_0} = \frac{Q}{Ae_0} \\ Q = E*A*e_0 = 3*10^6 N/C * (0.25*\pi *(0.21m)^2)*8.85*10^{-12}C^2/Nm^2 = 9.196 *10^{-7} C[/tex]

or 0.92 μC

Other Questions
If the measurement of one of the corners of an isosceles triangle base twice measuring the angle of his head, what measure the angle of the head? A 21-foot rope is cut into 2 pieces. Seven less than three times the length of the longer rope piece x is five times the length of the shorter piece, which is (21 x) ft. Find the length of the longer rope piece x In ft Madison has a goal of saving more than $1,000 she has $300 saved now and each month she adds $40 to that amount the inequality 40m + 300 > 1,000 can be solved to find the number of months, m, it will take Madison to reach her goal which statement about the number of months it will take Madison to reach her goal is true Two identical small insulating balls are suspended by separate 0.26-m threads that are attached to a common point on the ceiling. Each ball has a mass of 7.75 10^-4 kg. Initially the balls are uncharged and hang straight down. They are then given identical positive charges and, as a result, spread apart with an angle of 35 between the threads. (a) Determine the charge on each ball. (answer in C) The state of Florida has 7% sales tax. Ifyou spent $75.29 on new schoolclothes, how much tax will you pay? Why did the british want to expand control into the Ohio Valley in the mid 1700's hugo made 100 ounces of lemonade.How many 8 ounce glasses can he fill completely with this amount of lemonade In this type of password attack, the attacker has some information about the password. For example, the attacker knows the password contains a two- or three-digit number.hybridnontechnicalrule-basedprecomputed hashes What is the equation of the line that is parallel to the line 5x + 2y = 12 and passes through the point (2, 4)? y = Five-halvesx 1 y = Five-halvesx + 5 y = Two-fifthsx 1 y = Two-fifthsx + 5 What numbers can you times to make24 What is the inverse of the function below?F(x)=3^xA. B. C. D. In a given corporation 1/6 of the hourly workers invest theretirement plan and 1/2 of the salaried workers invest in the sameplan.1/5 of the hourly workers invest the maximum allowed and 1/3 of thesalaried workers invest the maximum allowed.If there are three times as many hourly workers as salariedworkers, what fraction of all the workers, who have invested in theplan, invest the maximum allowable to the retirement plan. If you are really stressed out about an upcoming math test on Tuesday what type of stress is this? A: avoidance B:acute C:chronic D:conflict An atom has 18 protons, 18 electrons, and 20 neutrons.This atom has ? a negative chargean atomic number of 20a mass number of 38a positive charge PLEASE HELP 3 QUESTIONS 35 POINTS1) Which of the following would most influence hiring in a merit-based civil service system? Select the two correct answers.A. family relationshipsB. personal friendshipsC. prior job experienceD. political supportE. relevant skills2) What was an unexpected consequence of mechanized farming practices?A. As mechanization increased crop yields, farmers reduced how much they planted, leading to crop shortages.B. As mechanization increased crop yields, overproduction caused crop values to decline.C. Mechanization cost far more than animal labor, but it only slightly increased crop yields.D. Mechanization caused farmers to plant more than they could harvest, leading to crop shortages.3) Which challenge faced by farmers in the late 1800s were state Granger Laws intended to address?A. high farm debtB. high tariff ratesC. high railroad feesD. high crop prices A restaurant chef ordered product to make a stew. He ordered 4 pounds of beef at 9.25 per pound, 6 pounds of potatoes at $6.75 a pound, and 5 pounds of carrots at $9.80 per pound. If the stew serves 30 people and he charges $12.50 per serving, how much profit will he make? You are examining a network problem that many users are experiencing, and you decide to begin your investigation at the network layer of the OSI model. Which of the following troubleshooting approaches are you using?a. Top down approachb. Bottom up approachc. Random layer approachd. Divide and conquer approach Methane is burned to complete combustion with 30% excess air.The air enters at 25oC and 1 atm (absolute) at 50%relative humidity.a) Calculate the flow of O2 per mole of methaneentering the process.b) Calculate the flow of N2 per mole of methaneentering the process.c) Calculate the mole fraction of H2O in the humidair stream entering the process.d) Calculate the flow of H2O per mole of methaneentering the process. Please help! Solving polynomial equations with factoring *algebra* If you're currently using text, display, and video ads but also want to more specifically control spending on ads that appear when someone searches on Google, which additional campaign type would you choose? a. Search Network b. Search Network with Display opt-in c. Universal App d. Display Network