Suppose the electrons and protons in 1g of hydrogen could be separated and placed on the earth and the moon, respectively. Compare the electrostatic attraction with the gravitational force between the earth and the moon. ( the number of atoms in 1g of hydrogen is Avogadro's number Na. There is one electron and one proton in a hydrogen atom. ) Please explain step by step

Answers

Answer 1

Answer:

The gravitational force is 3.509*10^17 times larger than the electrostatic force.

Explanation:

The Newton's law of universal gravitation and Coulombs law are:

[tex]F_{N}=G m_{1}m_{2}/r^{2}\\F_{C}=k q_{1}q_{2}/r^{2}[/tex]

Where:

G= 6.674×10^−11 N · (m/kg)2

k =  8.987×10^9 N·m2/C2

We can obtain the ratio of these forces dividing them:

[tex]\frac{F_{N}}{F_{C}}=\frac{Gm_{1}m_{2}}{kq_{1}q_{2}}=0.742\times10^{-20}\frac{C^{2}}{kg^{2}}\frac{m_{1}m_{2}}{q_{1}q_{2}}[/tex]   --- (1)

The mass of the moon is 7.347 × 10^22 kilograms

The mass of the earth is  5.972 × 10^24 kg

And q1=q2=Na*e=(6.022*10^23)*(1.6*10^-19)C=9.635*10^4 C

Replacing these values in eq1:

[tex]\frac{F_{N}}{F_{C}}}}=0.742\times10^{-20}\frac{C^{2}}{kg^{2}}\frac{7.347\times5.972\times10^{46}kg^{2}}{(9.635\times10^{4})^{2}}[/tex]

Therefore

[tex]\frac{F_{N}}{F_{C}}}}=3.509\times10^{17}[/tex]

This means that the gravitational force is 3.509*10^17 times larger than the electrostatic force, when comparing the earth-moon gravitational field vs 1mol electrons - 1mol protons electrostatic field


Related Questions

A tortoise and a hare are competing in a 1200-meter race. The arrogant hare decides to let the tortoise have a 580-meter head start. When the start gun is fired the hare begins running at a constant speed of 9 meters per second and the tortoise begins crawling at a constant speed of 5 meters per second. Let t t represent the number of seconds that have elapsed since the start gun was fired. Write an expression in terms of t t that represents the hare's distance from the starting line (in meters).

Answers

Answer:

Distance traveled by the hare = d = 9 [tex]t_{t}[/tex]

Explanation:

Tortoise travels an additional distance 580 m .

Since there is no acceleration, the distance traveled by any object is d = v t , where v is the total distance and t is the total time taken.

Speed of hare = [tex]v_{h}[/tex] = 9 m/s

Speed of tortoise = [tex]v_{t}[/tex] =5 m/s

Distance traveled by the hare = d = 9 [tex]t_{t}[/tex]

Distance traveled by tortoise = d +580 m = 5 [tex]t_{t}[/tex]

Final answer:

The distance that the hare travels from the starting line after time t is represented by the expression 9t meters.

Explanation:

To write an expression that represents the hare's distance from the starting line in meters as a function of time, we use the formula for distance traveled at constant speed d = vt, where d is distance, v is speed, and t is time. Since the hare starts running at 9 meters per second, the distance the hare travels from the starting line after t seconds can be represented by the expression 9t meters. Note that we do not include the 580-meter head start given to the tortoise in the hare's expression since we are only considering the hare's distance from the starting line and not its position relative to the tortoise.

Your 64-cm-diameter car tire is rotating at 3.3 rev/swhen suddenly you press down hard on the accelerator. After traveling 250 m, the tire's rotation has increased to 6.4 rev/s. What was the tire's angular acceleration? Give your answer in rad/s^2.

Answers

Answer:

0.76 rad/s^2

Explanation:

First, we convert the original and final velocity from rev/s to rad/s:

[tex]v_o = 3.3\frac{rev}{s} * \frac{2\pi rad}{1rev} =20.73 rad/s[/tex]

[tex]v_f = 6.4\frac{rev}{s} * \frac{2\pi rad}{1rev}=40.21 rad/s[/tex]

Now, we need to find the number of rads that the tire rotates in the 250m path. We use the arc length formula:

[tex]D = x*r \\x = \frac{D}{r} = \frac{250m}{0.64m/2} = 781.25 rads[/tex]

Now, we just use the formula:

[tex]w_f^2-w_o^2=2\alpha*x[/tex]

[tex]\alpha =\frac{w_f^2-w_o^2}{2x} = \frac{(40.21rad/s)^2-(20.73rad/s)^2}{2*781.25rad} = 0.76 rad/s^2[/tex]

Explanation:

The given data is as follows.

   Initial velocity, u = [tex]3.3 rev/s \times 2 \pi rad/rev[/tex]

                           = 20.724 rad/sec

   Final velocity, v = [tex]6.4 rev/s \times 2 \times pi rad/rev[/tex]    

                           = 40.192 rad/sec

Now, we will calculate the value of angular rotation (d) as follows.

          d = No. of revolutions × [tex]2 \pi rad/rev[/tex]

         d = [tex](\frac{250 m}{2 \pi r}) \times 2 \pi[/tex]

            = [tex]\frac{250}{0.32}[/tex]

            = 781.25 rad

Also, we know that,

                [tex]v^{2} = u^{2} + 2ad[/tex]

or,              a = [tex]\frac{(v^{2} - u^{2})}{2d}[/tex]

                      = [tex]\frac{(40.192)^{2} - (20.724)^{2})}{2 \times 781.25}[/tex]

                      = [tex]\frac{1615.39 - 429.48}{1562.5}[/tex]

                     = 0.7589 [tex]rad/s^{2}[/tex]

Thus, we can conclude that the tire's angular acceleration is 0.7589 [tex]rad/s^{2}[/tex].

A square coil with 100 turns of wire has sides of length 5 cm. The resistance of the coil is 12.0 Ω. The coil is placed in a uniform magnetic field that is perpendicular to the face of the coil and whose magnitude is decreasing at a rate of 0.081 T/s. What is the magnitude of the current circulating through the coil?

Answers

Answer:

The magnitude of the current circulating through the coil is 1.68 mA.

Explanation:

Given that,

Number of turns = 100

Length = 5 cm

Resistance = 12.0 Ω

Rate of magnetic field = 0.081 T/s

We need to calculate the magnitude of the current circulating through the coil

Using formula of current

[tex]I=\dfrac{e}{R}[/tex]

[tex]I=\dfrac{-NA\dfrac{dB}{dt}}{R}[/tex]

Where, A = area

N = number of turns

R = resistance

Put the value into the formula

[tex]I=\dfrac{100\times(0.05)^2\times0.081}{12.0}[/tex]

[tex]I=0.0016875\ A[/tex]

[tex]I=1.68\times10^{-3}\ A[/tex]

[tex]I=1.68\ mA[/tex]

Hence, The magnitude of the current circulating through the coil is 1.68 mA.

Final answer:

The question involves Faraday's law, which relates changing magnetic fields to induced currents. Given the rate of change of the magnetic field and the resistance of the coil, the magnitude of the induced current is calculated to be 1.67 mA.

Explanation:

This question involves the concept of electromagnetic induction in physics. According to Faraday's law, a changing magnetic field will induce an electromotive force (EMF) in a circuit. In this case, we're given that the magnetic field is decreasing at a rate of 0.081 T/s. This rate of change can be used to calculate the induced EMF, which is equal to the rate of change of the magnetic flux.

The magnetic flux (Φ) through the coil is given by Φ = NBA, where N is the number of turns in the coil, B is the magnetic field, and A is the area of the coil. So, the rate of change of magnetic flux (dΦ/dt) is N*d(BA)/dt. Because the area of the coil is constant, this simplifies to NAdB/dt. A is 0.0025 m^2, N is 100, and dB/dt is -0.081T/s, so dΦ/dt is -0.02 Wb/s.

Faraday's law tells us that the induced EMF (ε) is equal to -dΦ/dt, so ε has magnitude 0.02 V. If we define positive current as current that would generate a magnetic field opposing the decrease in the existing field (Lenz's Law), the induced EMF 'pushes' positive current in this direction. The current (I) can then be calculated using Ohm's Law (V = IR), giving I = ε/R = 0.02V / 12 Ω = 0.00167 A, or 1.67 mA.

Learn more about Electromagnetic Induction here:

https://brainly.com/question/31384468

#SPJ3

A rocket is fired at a speed of 75.0 m/s from ground level, at an angle of 60.0° above the horizontal. The rocket is fired toward an 11-0m-high wall, which is located 27.0 m away. The rocket attains its launch speed in a negligibly short period of time, after which its engines shut down and the rocket coasts. By how much does the rocket clear the top of the wall?

Answers

Answer:

ΔH = 33.17m

Explanation:

By knowing the amount of time it takes the rocket to travel the horizontal 27m, we will be able to calculate the height when x=27m. So:

[tex]X = V_{o}*cos(60)*t[/tex]   where [tex]X=27m; V_{o}=75m/s[/tex]

Solving for t:

t=0.72s

Now we calculate the height of the rocket:

[tex]Y_{f}=V_{o}*sin(60)*t-\frac{g*t^{2}}{2} = 44.17m[/tex]

If the wall was 11m-high, the difference is:

ΔH = 33.17m

Using the equation of projectile motion, the rocket cleared the top of the wall by 38.305m.

The equation of projectile motion is given by:

y= xtanθ  +(1/2)gx²/(u²cos²θ )

Given information:

Initial velocity, u=75m/s

The angle of projection, θ = 60°

The horizontal distance, x=27m

Vertical distance will be calculated as:

y= xtanθ  +(1/2)gx²/(u²cos²θ )

y=27 tan 60° + 0.5×9.8×27²/(75²cos²60°)

y=49.305m

So, the rocket cleared the top of the wall by

49.305-11 =38.305m

Therefore, using the equation of projectile motion the rocket cleared the top of the wall by 38.305m.

To know more about projectile motion, click here:

https://brainly.com/question/12860905

#SPJ6

The radius of Mercury (from the centerto just above the atmosphere)
is 2440km (2440103
m),and its mass is 0.31024
kg.An object is launched straight up from just above the atmosphere
ofMercury.
(a) What initial speed is needed so that when the object is farfrom
Mercury its final speed is2000 m/s?

Answers

Answer:

u = 12962.11 m/s

Explanation:

Given that,

The radius of mercury, [tex]r=2440\ km=2440\times 10^3\ m[/tex]

Mass of Mercury, [tex]M=3\times 10^{24}\ kg[/tex]

Final speed of the object, v = 2000 m/s

Let u is its initial speed when the object is far from  Mercury. It can be calculated by applying the conservation of energy as :

Initial kinetic energy + gravitational potential energy = final kinetic energy

[tex]\dfrac{1}{2}mu^2+(-\dfrac{GmM}{r})=\dfrac{1}{2}mv^2[/tex]

[tex]\dfrac{1}{2}u^2+(-\dfrac{GM}{r})=\dfrac{1}{2}v^2[/tex]

[tex]\dfrac{1}{2}u^2=\dfrac{1}{2}v^2+\dfrac{GM}{r}[/tex]

[tex]u^2=2\times (\dfrac{1}{2}v^2+\dfrac{GM}{r})[/tex]

[tex]u^2=2\times (\dfrac{1}{2}(2000)^2+\dfrac{6.67\times 10^{-11}\times 3\times 10^{24}}{2440\times 10^3})[/tex]

u = 12962.11 m/s

So, the initial speed of the object is 12962.11 kg. Hence, this is the required solution.

A runner of mass 51.8 kg starts from rest and accelerates with a constant acceleration of 1.31 m/s^2 until she reaches a velocity of 5.47 m/s. She then continues running at this constant velocity. How long does the runner take to travel 165 m?

Answers

Answer:32.24 s

Explanation:

Given

mass of runner (m)=51.8 kg

Constant acceleration(a)=[tex]1.31 m/s^2[/tex]

Final velocity (v)=5.47 m/s

Time taken taken to reach 5.47 m/s

v=u+at

[tex]5.47=0+1.31\times t[/tex]

[tex]t=\frac{5.47}{1.31}=4.17 s[/tex]

Distance traveled during this time is

[tex]s=ut+\frac{1}{2}at^2[/tex]

[tex]s=\frac{1}{2}\times 1.31\times 4.17^2=11.42 m[/tex]

So remaining distance left to travel with constant velocity=153.57 m

thus time [tex]=\frac{distance}{speed}[/tex]

[tex]t_2=\frac{153.57}{5.47}=28.07 s[/tex]

Total time=28.07+4.17=32.24 s

A rock is dropped from the top of a tall building. How high is the building if it takes 3.25seconds for the rock to strike the ground? Ignore the effects of air resistance. A) 169m B)15.9m C)51.8m D) 32.2m

Answers

Answer:

C)51.8m

Explanation:

Kinematics equation:

[tex]y=v_{oy}*t+1/2*g*t^2[/tex]

in this case:

[tex]v_{oy}=0[/tex]

[tex]y=1/2*9.81*3.25^2=51.8m[/tex]

Aaron finds a pirate’s treasure map. The treasure map says to start at an oak tree and walks 111 feet East and 234 feet South from the tree. How far did the pirate walk? What is the displacement vector for the Pirate? What is the distance and direction relative to East?

Answers

Answer:

pirate walk 259 feet

displacement vector = 111 i - 234 j

direction is along south of east at angle 64.62° ,  anticlockwise

total travel 345 feet

Explanation:

given data

walk east = 111 feet

walk south = 234 feet

to find out

How far did the pirate walk and displacement vector and distance and direction relative to east

solution

we consider here distance AB is 111 feet and than he turn right i.e south distance BC is 234 feet so

so angle BAC will be

tan θ = [tex]\frac{234}{111}[/tex]

θ = 64.62

and AC distance will be

AC = [tex]\sqrt{234^{2} + 111^{2}}[/tex]

AC = 259 feet

so pirate walk 259 feet

and

displacement vector is express as

displacement vector = AC ( cosθ i + sinθ j )

displacement vector = 259 ( cos64.62 i + sin64.62 j )

displacement vector = 111 i - 234 j

and

so direction is along south of east at angle 64.62° ,  anticlockwise

Describe the difference between the velocity graph made walking at a steady rate and the velocity graph made at an increasing rate.

Answers

Answer:

The difference between the velocity graph made walking at a steady rate means that its the same value in time, that means there's no slope on the graph, so its acceleration is 0

On the other hand, if the velocity is increasing with time, the slope of the graph becomes positive, which means that the acceleration of the particle is positive.

An object object travels 24 meters in the +x direction for 3.5 seconds, and then immediately travels some distance in the -x direction. After a total time of 9.3 seconds, the object's average velocity is 0 m/s. What distance did the object travel in the -x direction?

Answers

Answer:

The distance in -x axis is 39.77 m

Explanation:

Given that,

Distance in +x axis = 24 m

Time = 3.5 sec

Total time = 9.3 sec

Average velocity = 0

We need to calculate the velocity in +x axis

[tex]v=\dfrac{d}{t}[/tex]

Put the value into the formula

[tex]v=\dfrac{24}{3.5}[/tex]

We need to calculate the velocity in -x axis

[tex]v=\dfrac{x}{9.3-3.5}[/tex]

We need to calculate the distance

Using formula of average velocity

[tex]\dfrac{\dfrac{24}{3.5}-\dfrac{x}{9.3-3.5}}{2}=0[/tex]

[tex]x=\dfrac{24}{3.5}\times5.8[/tex]

[tex]x=39.77\ m[/tex]

Hence, The distance in -x axis is 39.77 m.

A car starts from rest and accelerates at 4 m/s^2 for 8 s, after which it continues at constant speed for 19 s. How far would it have traveled from its starting point by that time.

Answers

Answer:

The total distance traveled is 736 m

Solution:

According to the question:

Initial velocity, v = 0

(since, the car is starting from rest)

[tex]acceleration, a = 4 m/s^{2}[/tex]

Time taken, t = 8 s

Now, the distance covered by it in 8 s is given by the second eqn of motion:

[tex]d = vt + \farc{1}{2}at^{2}[/tex]

[tex]d = 0.t + \farc{1}{2}4\times 8^{2} = 128 m[/tex]

Now, to calculate the velocity, we use eqn 1 of motion:

v' = v + at

v' = 0 + 4(8) = 32 m/s

Now, the distance traveled by the car with uniform velocity of 32 m/s for t' = 19 s:

distance, d' = v't'

[tex]d' = 32\times 19 = 608 m[/tex]

Total distance traveled = d + d' = 128 + 608 = 736 m

Two 2.0 kg masses are 1.1 m apart (center to center) on a frictionless table. Each has + 9.6 μC of charge. PART A
What is the magnitude of the electric force on one of the masses?
Express your answer to two significant figures and include the appropriate units.

PART B
What is the initial acceleration of the mass if it is released and allowed to move?
Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

A) Force = 0.69 N

B) Acceleration = 0.34 m/s^2

Explanation:

The electric force is given by the expression:

[tex]F_e= K *\frac{q_1*q_2}{r^2}[/tex]

K is the Coulomb constant equal to 9*10^9 N*m^2/C^2, q1 and 12 is the charge of the particles, and r is the distance:

[tex]F_e = 9*10^9 Nm^2/C^2 * \frac{(9.6*10^{-6}C)^2}{(1.1m)^2} = 0.69 N[/tex]

Part B.

For the acceleration, you need Newton's second Law:

F = m*a

Then,

[tex]a = \frac{F}{m} = \frac{0.69 N}{2 kg} = 0.34 m/s^2[/tex]

Final answer:

The magnitude of the electric force on one of the masses is 102.71 N. The initial acceleration of the mass is 51.36 m/s^2.

Explanation:

PART A:

To find the magnitude of the electric force on one of the masses, we can use Coulomb's Law.

The formula for the magnitude of the electric force is:

F = k * (|q1| * |q2|) / r^2

where F is the force, k is the Coulomb's constant (9 x 10^9 Nm^2/C^2), |q1| and |q2| are the magnitudes of the charges (9.6 μC), and r is the distance between the charges (1.1 m).

Plugging in the values:

F = (9 x 10^9 Nm^2/C^2) * (9.6 μC * 9.6 μC) / (1.1 m)^2

F = 102.71 N

The magnitude of the electric force on one of the masses is 102.71 N.

PART B:

To find the initial acceleration of the mass when it is released and allowed to move, we can use Newton's second law.

The formula for the acceleration is:

a = F / m

where a is the acceleration, F is the force (102.71 N), and m is the mass (2.0 kg).

Plugging in the values:

a = 102.71 N / 2.0 kg

a = 51.36 m/s^2

(a) what wavelength photon would you need to ionize a hydrogen atom (ionization energy = 13.6 eV)? (b) Compute the temperature of the blackbody whose spectrum peaks at wavelength you found in (a).

Answers

Answer:

(a). The wavelength of photon is 914 A.

(b). The temperature of the black body whose spectrum peaks at wavelength is 31706.78 K.

Explanation:

Given that,

Ionization energy = 13.6 eV

(a). We need to calculate the wavelength

Using formula of wavelength

[tex]E=\dfrac{hc}{\lambda}[/tex]

[tex]\lambda=\dfrac{hc}{E}[/tex]

Where, h = Planck constant

c = speed of light

E = energy

Put the value into the formula

[tex]\lambda=\dfrac{6.63\times10^{-34}\times3\times10^{8}}{13.6\times1.6\times10^{-19}}[/tex]

[tex]\lambda=9.14\times10^{-8}\ m[/tex]

[tex]\lambda=914\ \AA[/tex]

The wavelength of photon is 914 A.

(b). We need to calculate the temperature of the black body whose spectrum peaks at wavelength

Using Wien's displacement law

[tex]\lambda_{max} T=2.898\times10^{-3}[/tex]

[tex]T=\dfrac{2.898\times10^{-3}}{\lambda}[/tex]

Put the value of wavelength

[tex]T=\dfrac{2.898\times10^{-3}}{914\times10^{-10}}[/tex]

[tex]T=31706.78\ K[/tex]

The temperature of the black body whose spectrum peaks at wavelength is 31706.78 K.

Hence, This is the required solution.

An object is thrown upward with an initial speed of 18.5 m/s from a location 12.2 m above the ground. After reaching its maximum height it falls to the ground. What will its speed be in the last instant prior to its striking the ground?

Answers

Answer:

The speed of the object in the last instant prior to hitting the ground is -24.1 m/s

Explanation:

The equation for the position and velocity of the object will be:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height of the object at time t

v0 = initial velocity

y0 = initial height

g = acceleration due to gravity

t = time

v = velocity at time t

We know that at its maximum height, the velocity of the object is 0. We can obtain the time it takes the object to reach the maximum height and with that time we can calculate the maximum height:

v = v0 + g · t

0 = 18.5 m/s - 9.8 m/s² · t

-18.5 m/s / -9.8 m/s² = t

t = 1.89 s

Now,let´s find the max-height:

y = y0 + v0 · t + 1/2 · g · t²

y = 12.2 m + 18.5 m/s · 1.89 s + 1/2 ·(-9.8 m/s²) · (1.89 s)²

y = 29.7 m

Now, let´s see how much it takes the object to hit the ground:

In that instant, y = 0.

y = y0 + v0 · t + 1/2 · g · t²

0 = 29.7 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²   (notice that v0 = 0 because the object starts from its maximum height, where v = 0)

-29.7 m = -4.9 m/s² · t²

t² = -29.7 m / -4.9 m/s²

t = 2.46 s

Now, we can calculate the speed at t= 2.46 s, the instant prior to hitting the ground.

v = v0 + g · t

v = g · t

v = -9.8 m/s² · 2.46 s

v = -24.1 m/s

One mol of a perfect, monatomic gas expands reversibly and isothermally at 300 K from a pressure of 10 atm to a pressure of 2 atm. Determine the value of q, w.

(b) Now assume the gas expands by the same amount again isothermally but now irre-

versibly against 1 atm pressure (instead of reversible expansion) and calculate again q, w, delta U and delta H.

Answers

Answer:

Explanation:

Given

1 mole of perfect, monoatomic gas

initial Temperature[tex](T_i)=300 K[/tex]

[tex]P_i=10 atm[/tex]

[tex]P_f=2 atm[/tex]

Work done in iso-thermal process[tex]=P_iV_iln\frac{P_i}{P_f}[/tex]

[tex]P_i[/tex]=initial pressure

[tex]P_f[/tex]=Final Pressure

[tex]W=10\times 2.463\times ln\frac{10}{2}=39.64 J [/tex]

Since it is a iso-thermal process therefore q=w

Therefore q=39.64 J

(b)if the gas expands by the same amount again isotherm-ally and irreversibly

work done is[tex]=P\Delta V[/tex]

[tex]V_1=\frac{RT_1}{P_1}=\frac{1\times 0.0821\times 300}{10}=2.463 L[/tex]

[tex]V_2=\frac{RT_2}{P_2}=\frac{1\times 0.0821\times 300}{2}=12.315 L[/tex]

[tex]\Delta W=1\times (12.315-2.463)=9.852 J[/tex]

[tex]\Delta q=\Delta W=9.852 J[/tex]

[tex]\Delta U=0[/tex]

Express the following angles in radians: (a) 16.8°, (b) 53.7°, (c) 94.2°. Convert the following angles to degrees: (d) 0.258 rad, (e) 1.01 rad, (f) 7.51 rad.

Answers

Explanation:

(a) We need to convert following angles in radians. The conversion formula from degrees to radian is given by :

[tex]Radians=(\dfrac{\pi}{180})\times degrees[/tex]

1. If angle is 16.8°

[tex]Radians=(\dfrac{\pi}{180})\times 16.8[/tex]

16.8 degrees = 0.29 radians

2. If angle is 53.7°

[tex]Radians=(\dfrac{\pi}{180})\times 53.7[/tex]

53.7 degrees = 0.937 radians

3. If angle is 94.2°

[tex]Radians=(\dfrac{\pi}{180})\times 94.2[/tex]

53.7 degrees = 1.64 radians

(b) We need to convert following angles to degrees. The conversion formula from radian degrees to is given by :

[tex]Degrees=(\dfrac{180}{\pi})\times radians[/tex]

1. If angle is 0.258 radian

[tex]Degrees=(\dfrac{180}{\pi})\times 0.258[/tex]

0.258 radian = 14.78 degrees

2.  If angle is 1.01 radian

[tex]Degrees=(\dfrac{180}{\pi})\times 1.01[/tex]

0.258 radian = 57.86 degrees

3.  If angle is 7.51 radian

[tex]Degrees=(\dfrac{180}{\pi})\times 7.51[/tex]

0.258 radian = 430.29 degrees

Hence, this is the required solution.

If the fundamental frequency of a piece of conduit is 707 Hz, and the speed of sound is 343 m/s, determine the length of the piece of conduit (in m) for each of the following cases. (a) the piece of conduit is closed at one end (b) the piece of conduit is open at both ends

Answers

Answer:

i)0.1213m

ii)0.2426 m

Explanation:

The formula to apply here are;

For a closed conduit at one end the fundamental frequency produced by a pipe of length L is ;

f=v/4L where v is speed of sound and L is length of conduit

707=343/4L

707*4L=343

2828L=343

L=343/2828

L=0.1213m

For an open conduit, the fundamental frequency produced by pipe of length L is given by;

f=v/2L where v is speed of sound and L is length of conduit

707=343/2L

707*2L=343

1414L=343

L=343/1414

L=0.2426 m

Which of the following is always true about the magnitude of a displacement? A. It is less than the distance traveled. B. It is equal to the distance traveled. C. It is less than or equal to the distance traveled. D. It is greater than the distance traveled. E. It is greater than or equal to the distance traveled.

Answers

Final answer:

The magnitude of displacement is always less than or equal to the distance traveled. Displacement is the straight line distance between the starting and ending points, while distance is the total path length traveled.  So the correct option is C

Explanation:

The magnitude of displacement is always less than or equal to the distance traveled. This is because displacement is the straight-line measurement from the initial point to the final point, regardless of the path taken, and it's a vector quantity with both magnitude and direction. On the other hand, distance is a scalar quantity that represents the total path length traveled without regard to direction. Therefore, if a path is straight and in one direction, the distance and the magnitude of displacement are equal. However, if the path involves changes in direction, the distance will be greater than the magnitude of displacement.

The correct answer to the question 'Which of the following is always true about the magnitude of a displacement?' is C. It is less than or equal to the distance traveled.

What is the minimum magnitude of an electric field that balances the weight of a plastic sphere of mass 14.2 g that has been charged to 7.7 nC. Give your answer to the nearest 0.1 MN/C (mega Newton per Coulomb)

Answers

Answer:

18.1 MN/C

Explanation:

The gravitational force of the plastic sphere is in equilibrium with the electric force.

Mass of the plastic sphere = m = 14.2 g = 0.0142 kg

Force of gravity = F = mg = (0.0142)(9.81) = 0.139 N

This force is balanced by the electric force due to the charge 7.7 nC

Charge = q = 7.7 x 10⁻⁹ C

Electric field = E = F / q = (0.139) /(7.7 x 10⁻⁹) = 18.1 MN/C

A hot-air balloon has just lifted off and is rising at the constant rate of 2.0m/s. Suddenly one of the passengers realizes she has left her camera on the ground. A friend picks it up and tosses it straight upward with an initial speed of 12m/s. If the passenger is 2.5m above her friend when the camera is tossed, how high is she when the camera reaches her?

Answers

Final answer:

To find out how high the passenger is when the camera reaches her, we use kinematic equations, taking into account the initial speed of the camera, the constant rise speed of the passenger, and gravity's acceleration. The solution requires equating the displacements of both camera and passenger to solve for time and therefore the height.

Explanation:

A hot-air balloon is rising at a constant rate of 2.0m/s when a passenger's camera is tossed straight upward with an initial speed of 12m/s from a position 2.5m below her. To determine how high the passenger is when the camera reaches her, we can apply kinematic equations of motion, incorporating the constant acceleration due to gravity (approximately 9.81m/s² downwards).

For the camera: Its initial upward velocity is 12 m/s, and it is subject to gravity's acceleration. For the passenger: Rising at a constant 2.0 m/s, not accelerating since the rate is constant. Since the initial distance between them is 2.5 m, we need to calculate when the camera, starting from a lower point but moving faster, reaches the vertically moving passenger.

Using the formula s = ut + 0.5at² for both camera and passenger, where s is the displacement, u is initial velocity, a is acceleration, and t is time, we can set the equations equal to solve for t, then determine the height by applying it to the passenger's motion equation.

Due to the mathematical complexity and potential for variability in solving these equations, the exact numerical solution isn't presented here. However, the approach involves determining the time it takes for the camera to reach the same height as the passenger and using that to find her height at that moment.

At the instant the traffic light turns green, a car that has been waiting at an intersection starts ahead (from rest) with a constant acceleration of 2.9 m/s². At the same instant, a truck traveling with a constant speed of 36.3 mph passes the car. How much time in seconds does it take the car to catch up with the truck. Keep 2 decimal places.

Answers

Answer:

It take the car to catch up with the truck 111.91 s.

Explanation:

To solve this problem we have to use the formula for uniformly accelerated motion (for the car) and the formula for uniform rectilinear movement (for the truck).

We apply the corresponding formula for each vehicle, so we will have two equations. As the question is how much time, time is the unknown variable that we will call t from now on.

Equation for the car is:

[tex]x_{c}=\frac{1}{2}*a*t^{2}[/tex]

Equation for the truck is

[tex]x_{t} =v*t[/tex]

We know that t will be the same for the two vehicle on the instant the car catch up the truck.

On the time t the distance x traveled for both cars are the same, so we can equate the two formulas ans isolate t.

[tex]v*t=\frac{1}{2} *a*t^{2} \\t=(2*v)/a\\t=111,91s[/tex]

Note: all unit of measurement must be the same, for speed, we need to convert 36,3mph to m/s.

36,3mph=162.27m/s we use 162.27m/s in the formulas.

Final answer:

It will take the car approximately 11.17 seconds to catch up with the truck that passes it traveling at a constant speed when the car starts from rest and accelerates at 2.9 m/s².

Explanation:

The question asks how long it takes for a car that starts from rest with a constant acceleration to catch up with a truck traveling at a constant speed. The car accelerates from rest at 2.9 m/s², while the truck travels at a constant speed of 36.3 mph, which is approximately 16.2 m/s (1 mph equals approximately 0.44704 m/s).

To solve this problem, we need to consider that the car and truck will have traveled the same distance when the car catches up to the truck. The equations for distance for the car (with acceleration) and the truck (traveling at constant speed) are:

Distancecar = ½ * acceleration * time²Distancetruck = speed * time

We set the distances equal to each other:

½ * 2.9 m/s² * time² = 16.2 m/s * time

This gives us a quadratic equation:

½ * 2.9 * time² - 16.2 * time = 0

Factoring out the common term 'time', we get:

time(½ * 2.9 * time - 16.2) = 0

Ignoring the solution where time equals zero (since we want to know how long it takes after they have started moving), we get:

½ * 2.9 * time = 16.2

time = (16.2 / (0.5 * 2.9)) seconds

Solving this, time ≈ 11.17 seconds

Therefore, it will take the car approximately 11.17 seconds to catch up with the truck.

A common parameter that can be used to predict turbulence in fluid flow is called the Reynolds number. The Reynolds number for fluid flow in a pipe is a dimensionless quantity defined as Re = rhovd μ where rho is the density of the fluid, v is its speed, d is the inner diameter of the pipe, and μ is the viscosity of the fluid. Viscosity is a measure of the internal resistance of a liquid to flow and has units of Pa · s. The criteria for the type of flow are as follows. • If Re < 2,300, the flow is laminar. • If 2,300 < Re < 4,000, the flow is in a transition region between laminar and turbulent. • If Re > 4,000, the flow is turbulent. (a) Let's model blood of density 1.06 103 kg/m3 and viscosity 3.00 10-3 Pa · s as a pure liquid, that is, ignore the fact that it contains red blood cells. Suppose it is flowing in a large artery of radius 1.25 cm with a speed of 0.0650 m/s. Show that the flow is laminar. (State the Reynolds number of the flow, which will be less than 2,300, indicating laminar flow.) (b) Imagine that the artery ends in a single capillary so that the radius of the artery reduces to a much smaller value. What is the radius of the capillary that would cause the flow to become turbulent? (Use the minimum Reynolds number for which flow is fully turbulent.)

Answers

Answer:

a) Re= 574.17

b) r= 8.71 cm

Explanation:

In order to solve this problem, we will need to use the formula for the Reynolds number:

Re=ρ*v*d/μ

All of the required data is already given in the problem, but before we use the above-mentioned formula, we need to convert the data to SI units, as follows:

The density already has SI units ( 1.06 *10³ kg/m³)The radius is 1.25 cm, which converts to 0.0125 m. Thus, the inner diameter is 0.025 mThe viscosity already has SI units (3.00 * 10⁻³ Pa · s)The speed already has SI units (0.0650 m/s)

a) Now we proceed to calculate Reynolds number:

Re=1.06 *10³ kg/m³ * 0.0650 m/s * 0.025 m / (3.00 * 10⁻³ Pa · s)

Re=574.17

Re<2,300 ; thus the flow is laminar.

b) To answer this question we use the same equation, and give the Reynolds number a value of 4,000 in order to find out d₂:

4,000= 1.06 *10³ kg/m³ * 0.0650 m/s * d₂ / (3.00 * 10⁻³ Pa · s)

We solve for d₂:

d₂=0.174 m

Thus the radius of the capillary that would cause the flow to become turbulent is 0.174 m / 2= 0.0871 m or 8.71 cm, given that neither the speed nor the viscosity change.

However, in your question you wrote that the artery ends in a capillary so that the radius reduces its value. But the lower the radius, the lower the Reynolds number. And as such, it would not be possible for the flow to turn from laminar to turbulent, if the other factors (such as speed, or density) do not change.

If a 10kg block is at rest on a table and a 1200N force is applied in the eastward direction for 10 seconds, what is the acceleration on the block?

Answers

Answer:

a = 120 m/s²

Explanation:

We apply Newton's second law in the x direction:

∑Fₓ = m*a Formula (1)

Known data

Where:

∑Fₓ: Algebraic sum of forces in the x direction

F: Force in Newtons (N)

m: mass (kg)

a: acceleration of the block (m/s²)

F = 1200N

m = 10 kg

Problem development

We replace the known data in formula (1)

1200 = 10*a

a = 1200/10

a = 120 m/s²

By evaluating their dot product, find the values of the scalar s for which the two vectors ~b = ˆx + syˆ and ~c = ˆx−syˆ are orthogonal. (Remember that two vectors are orthogonal if and only if their dot product is zero.) Explain your answers with a sketch.

Answers

Answer:

[tex]s=\pm 1[/tex]

Explanation:

The dot product of two vectors [tex]\vec{a}=a_1\vec{x}+b_1\vec{y}[/tex] and [tex]\vec{b}=a_2\vec{x}+b_2\vec{y}[/tex] is given by

[tex]\vec{a}\cdot\vec{b}=a_1\cdot a_2+b_1\cdot b_2[/tex]

The dot product of two orthogonal vector is always zero thus if [tex]\vec{a}=\vec{x}+s\vec{y}[/tex] and [tex]\vec{b}=\vec{x}-s\vec{y}[/tex], their dot product would be

[tex]\vec{a}\cdot\vec{b}=1\times1+s\times-(s)=1-s^2=0[/tex]

[tex]\implies 1-s^2=0[/tex]

[tex]\implies s^2=1[/tex]

[tex]\implies s=\pm 1[/tex]

(5%) Problem 17: A solid aluminum sphere of radius r1 = 0.105 m is charged with q1 = +4.4 μC of electric charge. It is surrounded concentrically by a spherical copper shell of inner radius r2 = 0.15 m and outer radius r3 = 0.242 m. An electric charge of q2 = -1.1 μC is placed on the copper shell. The situation is static.

(a) Find the magnitude of the electric field, in newtons per coulomb, inside the aluminum ball.
(b) What is the magnitude of the electric field, in newtons per coulomb, inside the copper of the shell, i.e., at a radius r from the center such that r2 < r < r3?

Answers

Answer:

Electric field at radius r inside the solid sphere is

[tex]E=\dfrac{q_{1}r}{4\pi \epsilon_{o} r_{1}^3}\ N/C\\[/tex]

Electric field at radius r between inner radius and outer radius of the shell is

E=0 N/C

Explanation:

Given

The radius of the solid sphere is [tex]r_{i}=0.105 \ m\\[/tex]

The charge on the solid sphere is [tex]q_{1}=+4.4\ \mu C[/tex]

The inner radius of the shell is [tex]r_{3}=0.15\ m[/tex]

The outer radius of the shell is [tex]r_{3}=0.242\ m[/tex]

The total charge on the shell is [tex]q_{2}=-1.1\ \mu C[/tex]

PART(A)

The magnitude of electric field at radius r where [tex] r<r_{1}[/tex] \\The volumetric charge density of the solid sphere will be

[tex]\rho=\dfrac{q_{1}}{V}\\ \rho=\dfrac{q_{1}}{\dfrac{4}{3}\pi r_{1}^3}\\[/tex]

The charge enclosed by the radius r inside the solid sphere is

rho=[tex]q_{enc}=\rho\times \dfrac{4}{3}\pi r^3\\q_{enc}=\dfrac{q_{1}}{\dfrac{4}{3}\pi r_{1}^3}\times \dfrac{4}{3}\pi r^3\\q_{enc}=\dfrac{q_{1}r^3}{r_{1}^3}\\[/tex]

According to gauss law

[tex]EA=\dfrac{q_{enc}}{\epsilon_{o}}\\E=\dfrac{\dfrac{q_{1}r^3}{r_{1}^3}}{\epsilon_{o}\times 4\pi r^2}\\E=\dfrac{q_{1}r}{4\pi \epsilon_{o} r_{1}^3}\ N/C\\[/tex]

PART(B)

The electric field at radius r where [tex]r_{2}<r<r_{3}[/tex]

The shell is conducting so due to induction of charge

The charge induced on the inner surface of the shell is equal in magnitude of the total charge on the solid sphere but polarity will be changed because a conducting shell has no net electric field inside the shell

So,

The charge on the inner surface of the shell is

[tex]q_{i}=-q_{1}\\q_{i}=-4.4\ \mu C\\[/tex]

Due to conservation of the charge on the shell

The charge accumulated on the outer surface of the shell is

[tex]q_{o}=q_{2}-q_{i}\\q_{o}=-1.1\ \mu C-(-4.4\ \mu C)\\q_{o}=-1.1\ \mu C+4.4\ \mu C\\q_{o}=3.3\ \mu C\\[/tex]

The charge enclosed by the radius r where [tex]r_{1}<r<r_{2}[/tex]

[tex]q_{enc}=q_{1}+q_{i}\\q_{enc}=4.4\times 10^{-6}-4.4\times 10^{-6}\\ q_{enc}=0\\[/tex]

According to gauss law

[tex]EA=\dfrac{q_{enc}}{\epsilon_{o}}\\ E=0\ N/C\\[/tex]

(a) Inside the aluminum sphere, the electric field is 0 N/C due to electrostatic equilibrium.

(b) Inside the copper shell, for any radius between r2 and r3, the electric field is given by (3.95 x 10⁴) / r² N/C.

To solve this problem, we need to understand the behavior of the electric field in different regions around charged spherical conductors.

(a) Electric Field Inside the Aluminum Sphere

Inside a conductor in electrostatic equilibrium, the electric field is zero. Since the aluminum sphere is a conductor, the electric field inside it (for any radius r < r1) is zero.

Result: The magnitude of the electric field inside the aluminum sphere is 0 N/C.

(b) Electric Field Inside the Copper Shell

For the region inside the copper shell but outside the aluminum sphere (r2 < r < r3), we can apply Gauss's Law. According to Gauss's Law, the electric field at a distance r from the center due to a symmetric charge distribution can be calculated as follows:

Define the Gaussian surface: Here, it will be a spherical surface of radius r where r2 < r < r3.

Calculate the enclosed charge: The total charge enclosed within the Gaussian surface is only the charge of the aluminum sphere, q1 = +4.4 μC, because the copper shell's net charge is enclosed separately.

Apply Gauss's Law: Gauss's law states that the electric flux through a surface is proportional to the enclosed charge:

Equation: E * 4πr² = q1/ε₀

Solve for E:

E = q1 / (4πε₀ r²)

Substitute the values: q1 = 4.4 x 10⁻⁶ C, ε₀ = 8.854 x 10⁻¹² C²/(N·m²), and r is the distance within the copper shell.

[tex]E = \frac{4.4 \times 10^{-6} \, \text{C}}{4\pi \cdot (8.854 \times 10^{-12} \, \text{C}^2/\text{N}\cdot\text{m}^2) \cdot r^2}[/tex]

Simplifying gives:

E = (4.4 x 10⁻⁶) / (1.112 x 10⁻¹⁰ * r²)

E = (3.95 x 10⁴) / r² N/C

Hence, the magnitude of the electric field inside the copper shell, at any point where r2 < r < r3, is (3.95 x 10⁴) / r²  N/C.

A car that weighs 1.5 × 10^4 N is initially moving at a speed of 36 km/h when the brakes are applied and the car is brought to a stop in 17 m. Assuming that the force that stops the car is constant, find (a) the magnitude of that force and (b) the time required for the change in speed. If the initial speed is doubled, and the car experiences the same force during the braking, by what factors are (c) the stopping distance and (d) the stopping time multiplied? (There could be a lesson here about the danger of driving at high speeds.)

Answers

Answer:

Explanation:

Initial velocity u = 36 km/h = 10 m /s

v = 0 , accn = a , Time taken to stop = t , distance covered to stop = s

v² = u² - 2as

u² = 2as

a = u² / 2s

= 10 x 10 / 2 x 17

= 2.94 ms⁻²

Force applied = mass x acceleration

= 15000 / 9.8 x 2.94

= 4500 N

b )

v = u + at

0 = 10 - 2.94 t

t = 10 / 2.94

= 3.4 s

c )

from the relation

u² = 2as

it is clear that stopping distance is proportional to u², if acceleration a is constant .

If initial speed u is doubled , stopping distance d will become 4 times or 17 x 4 = 68 m .

d )

u = at

if a is constant time taken to stop will be proportional to initial velocity.

If initial velocity is doubled , time too will be doubled. Or time will become

3.4 x 2 = 6.8 s .

Water leaks out of a 3,200-gallon storage tank (initially full) at the rate V '(t) = 80 -t, where t is measured in hours and V in gallons. a. How much water leaked out between 10 and 20 hours? b. How long will it take the tank to drain completely?

Answers

Answer:

water leak is 650 gallons

time required to full drain is 80 hrs

Explanation:

given data

volume V = 3200 gallon

rate = V(t) = 80 - t

to find out

how much water leak between 10 and 20 hour and  drain complete

solution

we know here rate is 80 - t

so here rate will be

[tex]\frac{dV(t)}{dt}[/tex] = 80 - t

and for time 10 and 20 hour

take integrate between 10 and 20

so water leak = [tex]\int\limits^ {20}_ {10} {(80-t)} \, dt[/tex]   .....................1

water leak = ( 80t - [tex]\frac{t^{2} }{2} )^{20}_{10}[/tex]

water leak = 650

so water leak is 650 gallons

and

we know here for full tank drain condition

water leak full = 80 t - [tex]\frac{t^{2} }{2} [/tex]

3200  = 80 t - [tex]\frac{t^{2} }{2} [/tex]

6400 = t² - 160 t

t = 80

so time required to full drain is 80 hrs

A 9.0 μF capacitor, a 13 μF capacitor, and a 16 μFcapacitor are connected in series. What is their equivalent capacitance? Express your answer using two significant figures.

Answers

Answer:

Equivalent capacitance, [tex]C'=3.9\ \mu F[/tex]

Explanation:

Capacitance, [tex]C_1=9\ \mu F[/tex]

Capacitance, [tex]C_2=13\ \mu F[/tex]

Capacitance, [tex]C_3=16\ \mu F[/tex]

Let C' is the equivalent capacitance of the combination of capacitors. It is given by :

[tex]\dfrac{1}{C'}=\dfrac{1}{C_1}+\dfrac{1}{C_2}+\dfrac{1}{C_3}[/tex]

[tex]\dfrac{1}{C'}=\dfrac{1}{9}+\dfrac{1}{13}+\dfrac{1}{16}[/tex]

[tex]C'=3.99\ \mu F[/tex]

or

[tex]C'=3.9\ \mu F[/tex]

So, their equivalent capacitance is [tex]3.9\ \mu F[/tex]. Hence, this is the required solution.

Final answer:

The equivalent capacitance of a 9.0 μF, 13 μF, and a 16 μF capacitors connected in series is approximately 4.0 μF when expressed with two significant figures.

Explanation:

The question concerns the calculation of the equivalent capacitance when multiple capacitors are connected in series. To find the equivalent capacitance of the 9.0 μF, 13 μF, and 16 μF capacitors connected in series, you use the formula for capacitors in series:


1/Ceq = 1/C1 + 1/C2 + 1/C3

Substituting the given values:


1/Ceq = 1/9.0 μF + 1/13 μF + 1/16 μF

Calculating the reciprocals and summing them gives:
1/Ceq = 0.111 + 0.077 + 0.063

1/Ceq = 0.251

Now, the equivalent series capacitance, Ceq, can be calculated by taking the reciprocal of the result:
Ceq = 1 / 0.251

Ceq is approximately 3.98 μF.

To express this answer using two significant figures, the equivalent capacitance is 4.0 μF.

Initially at rest a single-stage rocket is launched vertically from the ground. The rocket’s thrust overcomes gravity and provides the rocket a constant upward acceleration a. The fuel is exhausted 10 seconds after launch and then the motion of the rocket is free fall only due to gravity. If the total flight time is 30 s when the rocket strikes the ground, determine (a) the initial acceleration a, (b) the rocket’s impact speed as it hits the ground, (c) the height h from the ground the rockets reaches

Answers

Answer:

Explanation:

Let a be the acceleration of launch. In 10 seconds , Distance gone up in 10 seconds

s = 1/2at²

= .5 x a x 100

=50a

Velocity after 10 s

u = at = 10a

Now 50a distance in downward direction is travelled in 20 s with initial velocity 10a in upward direction.

s = ut + 1/2 gt²

50a = -10ax20 + .5 x 10x400

250a = 2000

a = 8 m s⁻² .

Velocity after 10 s

= at = 80 m/s

further height reached with this speed under free fall

h = v² / 2g

= 80 x 80 / 2 x 10

= 320 m

height achieved under acceleration

= 50a

= 50 x 8 = 400m

Total height

= 320 + 400= 720 m

velocity after falling from 720 m

v² = 2gh = 2 x10 x 720

v = 120 m/s

Answer:

a) The initial acceleration is 7.84 m/s²

b) The impact speed is 117.6 m/s

c) The height is 705.6 m

Explanation:

a) The speed from A to B is:

v = u + at

Where

u = initial speed = 0

t = 10 s

Replacing:

v = 10t (eq. 1)

The vertical distance between A to B is:

[tex]h=\frac{1}{2} at^{2} +ut=\frac{1}{2} a*(10)^{2}+0=50a[/tex] (eq. 2)

From B to C, the time it take is equal to 20 s, then:

[tex]h=vt+\frac{1}{2} at^{2}[/tex]

Replacing eq. 1 and 2:

[tex]-50a=(10a*20)-\frac{1}{2} *g*20^{2} \\-250a=-\frac{1}{2} *9.8*20^{2} \\a=7.84m/s^{2}[/tex]

b) The impact speed is equal:

[tex]v_{i} ^{2} =v^{2} +2gs[/tex]

Where

s = h = -50a

[tex]v^{2} _{i} =(10a)^{2} +2*(-9.8)*(-50a)\\v=\sqrt{100a^{2}+980a } \\v=\sqrt{(100*7.84^{2})+(980*7.84) } =117.6m/s[/tex]

c) The height is:

[tex]v_{i} ^{2} =v^{2} +2gs\\0=(10a)^{2} -2gs\\(10a)^{2} =2gs\\s=\frac{(10a)^{2} }{2g} \\s=\frac{(10*7.84)^{2} }{2*9.8} =313.6m[/tex]

htotal = 313.6 + 50a = 313.6 + (50*7.84) = 705.6 m

A river with a flow rate of 7 m3/s discharges into a lake with a volume of 9,000,000 m3. The concentration of a particular VOC in the river is 3 mg/L. The lake has a decay coefficient for the VOC of 0.3 per day. What is the concentration of the VOC in the river downstream?

Answers

Answer:

The concentration downstream reduces to 0.03463mg/L

Explanation:

Initially let us calculate the time it is required to fill the lake, since for that period of time the pollutant shall remain in the lake before being flushed out.

Thus the detention period is calculated as

[tex]t=\frac{V}{Q}\\\\t=\frac{9000000}{7}=1.285\times 10^{6}seconds\\\\\therefore t = 14.872days[/tex]

Now the concentration of the pollutant after 14.872 days is calculated as

[tex]N_{t}=N_{0}e^{-kt}[/tex]

where

[tex]N_{o}[/tex] is the initial concentration

't' is the time elapsed after which the remaining concentration is calculated

k is the dissociation constant.

Applying values we get

[tex]N_{t}=3\times e^{-0.3\times 14.872}[/tex]

[tex]N_{t}=0.03463mg/L[/tex]

Other Questions
After several shares of the company's stock were sold, a profit of $1.320 was earned. The profit was 15%over a 30 day period. How much were the shares worth when they were originally purchased? You have been dispatched to a park for a 10-year-old boy who has fallen from a slide. His right wrist is deformed and he is in pain. He states that he lives with his mother and she is working. He does not know her work number. The EMT's best action would be to: Describe what happens when a keynote species is removed from an ecosystem Highspeed ultracentrifuges are useful devices to sediment materials quickly or to separate materials. An ultracentrifuge spins a small tube in a circle of radius 13.1 cm at 50000.0 rev/min. What is the centripetal force experienced by a sample that has a mass of 0.00310 kg? A model of a helicopter rotor has four blades, each of length 3.80 m from the central shaft to the blade tip. The model is rotated in a wind tunnel at a rotational speed of 450 rev/min.a. What is the linear speed of the blade tip?b. What is the radial acceleration of the blade tip expressed as a multiple of the acceleration of gravity? Following the birth of his baby brother, five-year-old Ermen feels that he is no longer the center of his parents' attention. He resents this fact, but he is unable to express his dislike for his sibling for fear of being reprimanded. When Ermen is left to take care of his baby brother, he often resorts to hurting him but shows intense affection toward the baby in the presence of his family. According to Freudian psychoanalytic theory, this is an example of ___________. Lyle was asked if more words start with the letter r, or have r as the third letter. Since he could think of more words that started with r, he concluded that must be the correct answer. Lyle's reasoning best illustratesa.the representativeness heuristic.b.confirmation bias.c.a mental set.d.the availability heuristic.e.a fixation If a child pulls a sled through the snow on a level path with a force of 60 N exerted at an angle of 39 above the horizontal, find the horizontal and vertical components of the force. Wildwood, an outdoors clothing store, reports the following information for June: Sales revenue $104,000 Income tax expense $11,000 Operating expenses 22,000 Cost of goods sold 65,000 Deferred revenues $15,000 Nonoperating revenues 12,000 What is Wildwood's gross profit for June? An airplane heading due east has a velocity of 210 miles per hour. A wind is blowing from the north at 38 miles per hour. What is the resultant velocity of the airplane? (Assume that east lies in the direction of the positive x-axis and north in the direction of the positive y-axis.) The flowrate of methyl acetate in a methanol-methyl acetate mixture containing 16.0 weight percent methanol is to be 135.0 lbmols/hour. What must the overall mixture flowrate be in lb,mass/hour? In the Maori myth, the children try to separate their parents. Which evidence illustrates the point that the Maori understand the importance of patience and hard work? baFor Exercises 5-13, write the prime factorization of each number inexpanded form.5. 366. 1807. 5258. 1659. 29310. 76011. 21612. 23113. 3122011at 10.- At the fundraiser, there were only 3 prices for books: $2. $5 and $10. There were 6 more $5 books sold than $10 books. There were 8 more$2 books sold than $10 books. A total of $250 was raisedHow many $5 books were sold?A. 12B. 14C. 17D. 18E. 20 The statement, "A person who eats meat and then fights for animal rights demonstrates double standards" is an evaluative statement. Such an opinion constitutes the ________ component of an attitude.A) cognitiveB) affectiveC) reflectiveD) behavioralE) reactive Can you help me I reaaaaaly neeed the answers quickly please and thx u if temperature in an experiment is allowed to change, it is the a. control b. hypothesis c. variable d. conclusion 10. The convention center has 18 pianos. Each piano has 88 piano keys. Whatis the total number of piano keys? Kelly plans to put her graduation money into an account and leave it there for 4 years while she goes to college. She receives $750 in graduation money that she puts it into an account that earns 4.25% interest compounded semi-annually. How much will be in Kellys account at the end of four years? Which of the following characteristics best describes the Mississippian culture? Select the two correct answers.A.Mound BuildersB.farmersC.Paleo-IndiansD.matriarchalE.nomadic