Susan quits her administrative job, which pays $40,000 a year, to finish her four-year college degree. Her annual college expenses are $8,000 for tuition, $900 for books, and $2,500 for food. The opportunity cost of attending college for the year:

Answers

Answer 1
Final answer:

The opportunity cost of Susan attending college for a year is $51,400 ($11,400 of actual college expenses and $40,000 of foregone income from her previous job).

Explanation:

The opportunity cost of attending college is determined not only by the actual expenditure but also by the income you forgo by not working. In Susan's case, her actual expenses include $8,000 for tuition, $900 for books, and $2,500 for food, which total to $11,400. However, since she quit her $40,000 a year job to attend college, that lost income is also part of her opportunity cost. So, we add the lost income to her college expenses to get the total opportunity cost. Therefore, the opportunity cost of Susan attending college for the year would be $51,400 ($40,000 + $11,400).

Learn more about Opportunity Cost here:

https://brainly.com/question/13036997

#SPJ12


Related Questions

Given m< LOM = 3x +38 m< MON= 9x+28 find m< LOM:
PLEASE HELP ME !!!

Answers

Answer:

The answer to your question is: m∠LOM = 44°

Step-by-step explanation:

Data

m< LOM = 3x +38

m< MON= 9x+28

m< LOM = ?

Process

They are complementary angles

                    m∠LOM + m∠MON = 90°

                   3x + 38 + 9x + 28 = 90°

                   12x + 66 = 90°

                   12x = 90 - 66

                   12x = 24

                   x = 24/12

                   x = 2

m∠LOM = 3(2) + 38

             = 6 + 38

            = 44°

m∠ MON = 9(2) + 28

m∠MON = 18 + 28

m∠MON = 46°

You are driving to visit a friend in another state who lives 440 miles away. You are driving 55 miles per hour and have already driven 275 miles. Write and solve an equation to find how much longer in hours you must drive to reach your destination.

Answers

Answer:

3 hours

Step-by-step explanation:

275+55 t=440

55 t=440-275

or 55 t=165

t=165/55=3

Hello there i hope you are having a good day :) your question: You are driving to visit a friend in another state who lives 440 miles away. You are driving 55 miles per hour and have already driven 275 miles. Write and solve an equation to find how much longer in hours you must drive to reach your destination.Answer: firstly you would do the 55 so you would added this too the already driven which is 275 so 55 + 275 then you would need to times this by 3 so it would equal 165 then you got the driven miles again so you would do 165 + 275 that would equal 440 then the rest of the time you would need to work out how many hours altogether it would be 3 hours. Hopefully this help you ❤

The length of a rectangle is five times its width.
If the area of the rectangle is 405 in^2, find its perimeter.

Answers

Answer:

The answer to your question is: Perimeter = 108 in

Step-by-step explanation:

Data

Length (l) = 5 width (w)

A = 405 in²

Perimeter = ?

Formula

Area = l x w

Perimeter = 2w + 2l

Process

                      405 = 5w x w

                       405 = 5w²

                     405/5 = w²

                       w = √81

                       w = 9 in

                       l = 5(9) = 45 in

Perimeter = 2(9) + 2(45)

                 = 18 + 90

                 = 108 in

A solid lies between planes perpendicular to the x-axis at x=0 and x=3. The cross-sections perpendicular to the axis on the interval 0≤x≤3 are squares whose diagonals run from the parabola y=−x‾‾√ to the parabola y=x‾‾√.Find the volume of the solid.

Answers

Answer:

V = 9

Step-by-step explanation:

You can see it in the picture.

Final answer:

The side length of the square is found using the diagonal, which is the distance between the two parabolas. The area of each square cross section is then integrated from 0 to 3 to find the solid's volume, which is 9 cubic units.

Explanation:

For these types of volume problems, you'll need to integrate. However, first you have to find the area of the square formed by the diagonals. The distance between the parabolas y=-√x and y=√x forms the square's diagonal. This distance, or length of the diagonal, can be obtained by adding the y-values of the two parabolas which gives 2√x. Given the diagonal, the side length of the square (s) can be obtained from the diagonal using Pythagoras theorem: s=diagonal/√2 => s=2√x/√2 => s=√2* √x => s=√2x. The area of the square is the side length squared, A=s² => A= 2x. Now, integrate the area function from 0 to 3 to get the volume of the solid: Volume= ∫ from 0 to 3 [2x dx] = [x²] from 0 to 3 = 9 - 0 = 9 cubic units.

Learn more about Volume of Solid here:

https://brainly.com/question/32439212

#SPJ3

20 POINTS AND BRAINLIEST PLZ HELP
Given f(x) and g(x) = k⋅f(x), use the graph to determine the value of k.


A. −5
B. -1/5
C. 1/5
D. 5

Answers

Answer:

Step-by-step explanation:

B or C is your answer

It is A. You need to determinate the slope. As you can see f(x) is creasing and g(x) is decreasing. So that’s the reason for the minus. And for every unit g(x) moves at x axis it moves 5 five units at y axis. So the slope is 5.

A repeated-measures experiment and a matched-subjects experiment each produce a t statistic with df = 10. How many individuals participated in each study?

Answers

Answer: 11

Step-by-step explanation:

We know that the degree of freedom for a t-distribution is given by :-

[tex]df=n-1[/tex], where n is the sample size.

Given : A repeated-measures experiment and a matched-subjects experiment each produce a t statistic with df = 10.

Then, the number of  individuals participated in each study = [tex]df+1=10+1=11[/tex]

Hence, the number of  individuals participated in each study =11.

An octave contains twelve distinct notes (on a piano, five black keys and seven white keys). How many different eight-note melodies within a single octave can be written if the black keys and white keys need to alternate?

Answers

Final answer:

To determine the number of different eight-note melodies that alternate between black and white keys within a single octave, you calculate the permutations starting with either type of key and add them together, resulting in 141,120 possible melodies.

Explanation:

The question asks: How many different eight-note melodies within a single octave can be written if the black keys and white keys need to alternate? To solve this, we need to understand the structure of a piano octave, which consists of seven white keys and five black keys. Since melodies must alternate between black and white keys, starting with a white key will always result in a pattern of white-black-white-black, and so on, until eight notes are reached. Conversely, starting with a black key follows a black-white pattern.

If we start with a white key, we have 7 options for the first note. The next note (a black key) gives us 5 options. This alternating pattern continues, decreasing the number of options by 1 for each type of key used, until we have selected all eight notes. Mathematically, this calculates as 7 × 5 × 6 × 4 × 5 × 3 × 4 × 2. Similarly, starting with a black key would result in a calculation of 5 × 7 × 4 × 6 × 3 × 5 × 2 × 4.

However, since an eight-note melody can start with either a white or a black key, we calculate both scenarios and add them together for the total amount of possible melodies. The sum of the series for both starting options gives us 141,120 possible eight-note melodies that alternate between black and white keys within a single octave.

When blood flows along a blood vessel, the flux F (the volume of blood per unit time that flows past a given point) is proportional to the fourth power of the radius R of the blood vessel:
F=kR4(This is known as Poiseuille’s Law;) A partially clogged artery can be expanded by an operation called angioplasty, in which a balloon-tipped catheter is inflated inside the artery in order to widen it and restore the normal blood flow. Show that the relative change in F is about four times the relative change in R. How will a 5% increase in the radius affect the flow of blood?

Answers

Answer:

[tex]\frac{dF}{F}=4\frac{dR}{R}[/tex]

So a 5% relative increase in R would mean a 20% relative increase in F

Step-by-step explanation:

First we need to remind the definition of relative increase of a variable.

For a variable A its relative increase is given by [tex]\frac{dA}{A}[/tex].

Using this, the relative increase in F is [tex]\frac{dF}{F}[/tex] and similarly the relative increase in R is given by [tex]\frac{dR}{R}[/tex].

Let's then start by deriving F with respect to R:

[tex]\frac{dF}{dR}=4kR^3[/tex]

thus

[tex]dF=4kR^3dR[/tex]

[tex]\implies \frac{dF}{F}=\frac{4kR^3dR}{F}[/tex]

[tex]\implies \frac{dF}{F}=\frac{4kR^3dR}{kR^4}[/tex]

[tex]\implies \frac{dF}{F}=4\frac{dR}{R}[/tex].

If we plug the value 5% [tex]\left( \frac{5}{100}\right)[/tex] in [tex]\frac{dR}{R}[/tex] we get

[tex]\frac{dF}{F}=4\times5\%=20\%[/tex]

Final answer:

According to Poiseuille's Law, the flux of blood through a blood vessel is proportional to the fourth power of the vessel's radius. By differentiating both sides of the equation, it can be shown that a small relative change in radius corresponds to four times that change in flux. Therefore, a 5% increase in radius results in a 20% increase in blood flow.

Explanation:

Poiseuille’s Law states that the flux (F), which is the volume of blood flowing per unit time through a given point in a blood vessel, is proportional to the fourth power of the blood vessel's radius, R. In terms of an equation, F = kR4, where k is a constant of proportionality.

To show that the relative change in F is approximately four times the relative change in R, consider a small change in R (expressed as ΔR), and the corresponding change in F (ΔF). The relative change in F is ΔF/F and the relative change in R is ΔR/R.

By differentiating both sides of the equation, you get ΔF/ΔR = 4kR3. Therefore, ΔF/F = 4(ΔR/R), proving the statement. A 5% increase in the radius would therefore result in a 20% increase in the flux, or the blood flow rate.

Learn more about Poiseuille’s Law here:

https://brainly.com/question/31595067

#SPJ12

Find the area of this irregular polygon.

Answers

Answer:

970m^{2}

Step-by-step explanation:

This polygon can be divided in two figures: one is a triangle, an the other one is a square.

We'll begin calculating the triangle's area, using the following formula:

[tex]At= \frac{b.h}{2}[/tex]

Where:

[tex]H= height = 30 m[/tex]

[tex]B = 9 m + 9 m + 20 m = 38 m[/tex]

As you can see, I added both sides of the triangle that measure 9 m and also the lenght of the square that measures 20 m! This added up is what the base of the triangle measures on total.

[tex]At= \frac{38 m .30 m}{2}[/tex]

[tex]At= \frac{1140 m^{2} }{2}[/tex]

[tex]At= 570 m^{2} [/tex]

Now we are going to calculate the square's area, that is much more simple:

[tex]As= L^{2} [/tex]

Where:

[tex]L=20 m [/tex]

[tex]As= (20 m)^{2} = 400m^{2} [/tex]

To know the whole figure's area, we add up both areas:

[tex]A = At+As = 570m^{2} +400m^{2}=970m^{2} [/tex]

Upon joining the Girl Scouts a member receives 4 patches. Karen has been in the girls scouts for quite awhile and has a total of 70 patches. If Karen earns 3 patches each month,how many months has Karen been a member of the girls scouts?

Answers

Answer:

Karen has been a member of Girl Scouts for 22 months

Step-by-step explanation:

Let

x -----> the time in months

we know that

The total number of patches must be equal to the number of months multiplied by 3 patches each month plus 4 patches

so

[tex]70=3x+4[/tex]

Solve for x

Subtract 4 both sides

[tex]70-4=3x\\66=3x[/tex]

Divide by 3 both sides

[tex]22=x[/tex]

Rewrite

[tex]x=22\ months[/tex]

therefore

Karen has been a member of Girl Scouts for 22 months

Final answer:

Karen has been a member of the Girl Scouts for 22 months.

Explanation:

To determine the number of months Karen has been a member of the Girl Scouts, we can set up an equation using the information given.

Let's assume that Karen has been a member for x months.

Since she earns 3 patches each month, the total number of patches she has earned is 3x.

Adding the initial 4 patches she received upon joining, we have the equation 3x + 4 = 70.

To solve for x, we can subtract 4 from both sides of the equation: 3x + 4 - 4 = 70 - 4, which simplifies to 3x = 66.

Finally, we can divide both sides of the equation by 3 to solve for x: x = 66 ÷ 3 = 22.

Learn more about Membership duration here:

https://brainly.com/question/36764285

#SPJ12

Do the sample standard deviations target the value of the population standard​ deviation? In​ general, do sample standard deviations make good estimators of population standard​ deviations? Why or why​ not?

Answers

Answer:

If the mean of the sample standard deviations is equal to the population standard​ deviation, then the sample standard deviations target the population standard deviation and are called an unbiased estimator.  

If the mean of the sample standard deviations is not equal to the population standard​ deviation, then the sample standard deviations target the population standard deviation and are called a biased estimator.

A biased estimator regularly underestimates or overestimates the parameter.  

An unbiased sample statistics are good​ estimators A biased sample statistics are not good estimators.

Final answer:

Sample standard deviations do not target the population standard deviation but serve as estimators. The accuracy of the estimation depends on the sample size.

Explanation:

The sample standard deviations do not target the exact value of the population standard deviation. Instead, they serve as estimators of the population standard deviation. In general, sample standard deviations can be good estimators of population standard deviations, but the accuracy of the estimation depends on the sample size. When the sample size is large, the sample standard deviation tends to be close to the population standard deviation. However, when the sample size is small, the sample standard deviation may not accurately estimate the population standard deviation.

Evaluate the radical

Answers

Answer:

  5 1/2

Step-by-step explanation:

Your calculator can give you the correct answer.

___

[tex]\sqrt[3]{343}+\dfrac{3}{4}\sqrt[3]{-8}=7+\dfrac{3}{4}(-2)=7-\dfrac{3}{2}=5\frac{1}{2}[/tex]

When the moving sidewalk at the airport is broken, as it often seems to be, it takes you 54s to walk from your gate to the baggage claim. When it is working and you stand on the moving sidewalk the entire way, without walking, it takes 83s to travel the same distance. How long will it take you to travel from the gate to baggage claim if you walk while riding of the moving sidewalk?

Answers

Answer:

Your travel time will be 32.71 secs.

Step-by-step explanation:

Let the total distance be x feet.

Speed while walking = [tex]\frac{x}{54}[/tex] feet per second

Speed on the sidewalk = [tex]\frac{x}{83}[/tex] feet per second

Therefore, total speed while walking on moving sidewalk =

[tex]\frac{x}{54} +\frac{x}{83y}[/tex]

= [tex]\frac{83x+54x}{54\times83}[/tex]

= [tex]\frac{137x}{4482}[/tex]

= [tex]\frac{x}{32.71}[/tex]

Hence, your travel time will be 32.71 secs.

Use the formula to estimate the temperature when n = 52 chirps/min. Round to the nearest whole number, if necessary. The formula F equals n divided by 4 plus 37 estimates the temperature F in degrees Fahrenheit when crickets chirp n times per minute. A. 58°F B. 52°F C. 53°F D. 50°F

Answers

Answer:

The answer to your question is: d) 50°F

Step-by-step explanation:

Data

n = 52 chirps/min

Formula

F = n/4 + 37

Substitution

F = 52/4 + 37

F = 13 + 37         simplifying

F = 50 °F        result

You are going to make three shelves for your father and have one piece of lumber 14 feet long. Your plan is to make the top shelf a foot shorter than then middle shelf and to have the bottom shelf a foot shorter then twice the length of the top shelf. How long is each shelf?

Answers

Answer:

The lengths of the shelves are 3.5 feet , 4.5 feet , 6 feet

Step-by-step explanation:

* Lets explain how to solve the problem

- There are 3 shelves

- You have  one piece of lumber 14 feet long

- Your plane is:

# The top shelf is 1 foot shorter than the middle shelf

# The Bottom shelf a foot shorter than twice the length of the top shelf

* Assume that the length of the middle shelf is x feet

∵ The length of the middle shelf = x

∵ The top shelf is shorter by 1 foot

∴ The length of the top shelf = x - 1

∵ The length of the bottom shelf is 1 less than twice the length of

   the top shelf

- That means multiply the length of the top shelf by 2 and subtract

 1 from the product

∵ The length of the top shelf is x - 1

∴ The length of the bottom shelf = 2(x - 1) - 1

- Simplify it by multiplying the bracket by 2 and add like terms

∴ The length of the bottom shelf = 2x - 2 - 1

∴ The length of the bottom shelf = 2x - 3

* The sum of the lengths of the 3 shelves equal the length of lumber

∵ The length of the lumber is 14 feet

∵ The length of the 3 shelves are x - 1 , x , 2x - 3

∴ x - 1 + x + 2x - 3 = 14

- Add like terms in the left hand sides

∴ 4x - 4 = 14

- Add 4 for both sides

∴ 4x = 18

- Divide both by 4

x = 4.5

- Lets find the length of each shelf

∵ The length of the top shelf is x - 1

∴ The length of the top shelf = 4.5 - 1 = 3.5 feet

∵ The length of the middle shelf is x

∴ The length of the middle shelf = 4.5 feet

∵ The length of the bottom shelf is 2x - 3

∴ The length of the bottom shelf = 2(4.5) - 3 = 9 - 3 = 6 feet

* The lengths of the shelves are 3.5 feet , 4.5 feet , 6 feet

Final answer:

To find the length of each shelf, a system of equations is created based on the conditions given. Solving this system shows the middle shelf to be 4.5 feet, the top shelf to be 3.5 feet, and the bottom shelf to be 6 feet long.

Explanation:

The question involves using a piece of lumber that is 14 feet long to make three shelves with specific relative lengths. We can let the length of the middle shelf be x feet. Therefore, the top shelf will be x - 1 feet long, and the bottom shelf will be 2(x - 1) - 1 feet long, which simplifies to 2x - 3 feet. Adding together the lengths of the three shelves gives us the total length of the lumber:

x (middle shelf)x - 1 (top shelf)2x - 3 (bottom shelf)

So: x + (x - 1) + (2x - 3) = 14.

Solving the equation:

x + x - 1 + 2x - 3 = 144x - 4 = 144x = 18x = 4.5

Therefore, the middle shelf is 4.5 feet long, the top shelf is 3.5 feet (4.5 - 1), and the bottom shelf is 6 feet (2(3.5) - 1).

3. Suppose that you initially have $100 to spend on books or movie tickets. The books start off costing $25 each and the movie tickets start off costing $10 each. For each of the following situations, would the attainable set of combinations that you can afford increase or decrease?
a. Your budget increases from $100 to $150 while the prices stay the same.
b. Your budget remains $100, the price of books remains $25, but the price of movie tickets rises to $20.
c. Your budget remains $100, the price of movie tickets remains $10, but the price of a book falls to $15.

Answers

Answer:

Suppose that you initially have $100 to spend on books or movie tickets.

The books start off costing $25 each and the movie tickets start off costing $10 each.

a. Your budget increases from $100 to $150 while the prices stay the same.

Increase

b. Your budget remains $100, the price of books remains $25, but the price of movie tickets rises to $20.

Decrease

c. Your budget remains $100, the price of movie tickets remains $10, but the price of a book falls to $15.

Increase

A university found that 30% of its students withdraw without completing the introductory statistics course. Assume that 20 students registered for the course. Compute the probability that 2 or fewer will withdraw (to 4 decimals). Compute the probability that exactly 4 will withdraw (to 4 decimals). Compute the probability that more than 3 will withdraw (to 4 decimals). Compute the expected number of withdrawals.

Answers

Step-by-step explanation:

a) Compute the probability that 2 or fewer will withdraw

First we need to determine, given 2 students from the 20. Which is the probability of those 2 to withdraw and all others to complete the course. This is given by:

[tex](0.3)^2(0.7)^{18}[/tex].

Then, we must multiply this quantity by

[tex]{20\choose2}=\frac{20!}{18!2!}=\frac{20\times19}{2}=190,[/tex]

which is the number of ways to choose 2 students from the total of 20. Therefore:

the probability that exactly 2 students withdraw is [tex]190(0.3)^2(0.7)^{18}[/tex].

Following an analogous process we can determine that:

The probability that exactly 1 student withdraw is [tex]{20\choose1}(0.3)(0.7)^{19}=20(0.3)(0.7)^{19}.[/tex] The probability that exactly none students withdraw is [tex]{20\choose 0}(0.7)^{20}=(0.7)^{20}.[/tex]

Finally, the probability that 2 or fewer students will withdraw is

[tex]190(0.3)^2(0.7)^{18}+20(0.3)(0.7)^{19}+(0.7)^{20}=(0.7)^{18}(190(0.3)^2+20(0.3)(0.7)+(0.7)^2)\approx0.0355[/tex]

b) Compute the probability that exactly 4 will withdraw.

Following the process explained in a), the probability that 4 student withdraw is given by

[tex]{20\choose4}(0.3)^4(0.7)^{16}=\frac{20\times19\times18\times17}{4\times3\times2} (0.3)^4(0.7)^{16}=4845(0.3)^4(0.7)^{16}\approx 0.1304.[/tex]

c) Compute the probability that more than 3 will withdraw

First we will compute the probability that exactly 3 students withdraw, which is given by

[tex]{20\choose3}(0.3)^3(0.7)^{17}=\frac{20\times19\times18}{3\times2} (0.3)^3(0.7)^{17}=1140(0.3)^3(0.7)^{17}\approx 0.0716.[/tex]

Then, using a) we have that the probability that 3 or fewer students withdraw is 0.0355+0.0716=0.1071. Therefore the probability that more than 3 will withdraw is 1-0.1071=0.8929

d) Compute the expected number of withdrawals.

As stated in the problem, 30% of the students withdraw, then, the expected number of withdrawals is the 30% of 20 which is 6.

Final answer:

This problem involves using the binomial distribution to compute probabilities of student withdrawal and the expected number of withdrawals. Probability values are computed using the binomial probability formula and the expected number of students withdrawing from the course is given by n*p.

Explanation:

To solve the probability and expected value questions, we need to use the binomial distribution since the event (a student withdraws or not) is independent and repeated a fixed number of times.

1. The probability that 2 or fewer will withdraw is [tex]P(X < =2) = P(0)+P(1)+P(2) where P(x) = C(n, x) * (p^x) * (q^(n-x)). For n=20, p=0.3, q=0.7.[/tex]

2. The probability that exactly 4 withdraw is given by the binomial probability formula P(X=4). Again, use the same values of n, p, and q.

3. The probability that more than 3 will withdraw is P(X > 3) which is 1 - P(X<= 3). Compute P(X<=3) similar to the first situation and subtract it from 1.

4. The expected number of withdrawals, or the expectation of a binomial distribution, is given by n*p.

Calculations using these formulas will give you the desired probabilities to the accuracy you require.

Learn more about Binomial Probability here:

https://brainly.com/question/34083389

#SPJ3

Suppose in a society where there are equal numbers of men and women. There is a 50% chance for each child that a couple gives birth to is a girl and the genders of their children are mutually independent. Suppose in this strange and primitive society every couple prefers a girl and they will continue to have more children until they get a girl and once they have a girl they will stop having more children, what will eventually happen to the gender ratio of population in this society?

Answers

Answer:

eventually the gender ratio of population in this society will be 50% male and 50% female.

Step-by-step explanation:

For practical purposes we will think that every couple is healthy enough to give birth as much children needed until giving birth a girl.

As the problem states, "each couple continue to have more children until they get a girl and once they have a girl they will stop having more children". Then, every couple will have one and only one girl.

This girl would be the n-th child with a probability [tex](0.5)^n[/tex].

We will denote for P(Bₙ) the probability of a couple to have exactly n boys.

Observe that statement 1 implies that:

[tex]P(B_{n-1})=(0.5)^{n}[/tex].

Then, the average number of boys per couple is given by

[tex]\sum^{\infty}_{n=1}(n-1)P(B_{n-1})=\sum^{\infty}_{n=1}(n-1)(\frac{1}{2} )^n=\sum^{\infty}_{n=2}n(\frac{1}{2} )^n=\\\\=\sum^{\infty}_{m=2}\sum^{\infty}_{n=m}(\frac{1}{2} )^n=\sum^{\infty}_{m=2}(\frac{1}{2} )^{m-1}=\sum^{\infty}_{m=1}(\frac{1}{2} )^{m}=1.\\[/tex]

This means that in average every couple has a boy and a girl. Then eventually the gender ratio of population in this society will be 50% male and 50% female.

Suppose f left parenthesis x right parenthesis right arrow 150f(x)→150 and g left parenthesis x right parenthesis right arrow 0g(x)→0 with ​g(x)less than<0 as x right arrow 3x→3. Determine modifyingbelow lim with x right arrow 3 startfraction f left parenthesis x right parenthesis over g left parenthesis x right parenthesis endfractionlimx→3 f(x) g(x).

Answers

Final answer:

The limit of f(x)/g(x) as x approaches 3 is negative infinity, since f(x) approaches 150 and g(x) approaches 0 with g(x) < 0.

Explanation:

We are given that as x approaches 3, f(x) approaches 150, and g(x) approaches 0 while being less than zero. The question is to determine the limit of f(x)/g(x) as x approaches 3.

To find this limit, we should consider the behavior of both f(x) and g(x) as x approaches 3.

Since f(x) approaches a finite number and g(x) approaches 0, the limit of the quotient could potentially be infinity or negative infinity, depending on the sign of g(x).

Since g(x) is less than 0 as x approaches 3, the quotient f(x)/g(x) will approach negative infinity.

Hence, the limit limx→3 f(x)/g(x) = -∞.

Please please help me out! :)

Answers

Answer:

x = 24

Step-by-step explanation:

Given that y varies directly with x the the equation relating them is

y = kx ← k is the constant of variation

To find k use the condition y = 10 when x = 8, then

k = [tex]\frac{y}{x}[/tex] = [tex]\frac{10}{8}[/tex] = 1.25, thus

y = 1.25x ← equation of variation

When y = 30, then

30 = 1.25x ( divide both sides by 1.25 )

x = 24

2(x + 1 ) - 3(x + 5) ≥ 0

Answers

answer is x is less than or equal to -13

hope this helps:-)

Answer:

x  ≤ -13.

Step-by-step explanation:

2(x + 1 ) - 3(x + 5) ≥ 0      Distribute the 2 and -3 over the parentheses:

2x + 2 - 3x - 15   ≥  0

-x  ≥  15 - 2

-x  ≥  13

x  ≤  -13      Note: when dividing by a negative the inequality sign is flipped .

Susan needs to buy apples and oranges to make fruit salad. She needs 15 fruits in all. Apples cost $3 per piece, and oranges cost $2 per piece. Let m represent the number of apples. Identify an expression that represents the amount Susan spent on the fruits. Then identify the amount she spent if she bought 6 apples.

Answers

Answer:

Step-by-step explanation:

$3x6=18 the six represents the apples and the 3 is the cost of each apple, 18 is the cost.

$2x9=$18 the nine is the oranges and the two is the money spent on each one. The total would be $36 in total for all the fruit.

So (9x2)+(3x6)=$36

Answer with Step-by-step explanation:

Susan needs to buy apples and oranges to make fruit salad.

She needs 15 fruits in all.

Let m represent the number of apples.

Number of oranges= 15-m

Apples cost $3 per piece, and oranges cost $2 per piece.

Amount spent= $ (3m+2(15-m))

                       = $ (3m + 2×15 - 2m)

                       = $ (m+30)

If she bought 6 apples.

i.e. m=6

Amount spent =$ (6+30)

                        = $ 36

Hence,

Expression that represents the amount Susan spent on the fruits is:

m+30

The amount Susan spent if she bought 6 apples is:

$ 36

In the equation left parenthesis x squared plus 14 x right parenthesis plus left parenthesis y squared minus 18 y right parenthesisequals​5, complete the square on x by adding​ _______ to both sides. Complete the square on y by adding​ _______ to both sides.

Answers

Answer:

Complete the square on x by adding​ 49 to both sides.

Complete the square on y by adding​ 81 to both sides.

Step-by-step explanation:

We have been given an equation [tex](x^2+14x)+(y^2+18y)=5[/tex]. We are asked to complete the squares for both x and y.

We know to complete a square, we add the half the square of coefficient of x or y term.

Upon looking at our given equation, we can see that coefficient of x is 14 and coefficient of y is 18.

[tex](\frac{14}{2})^2=7^2=49[/tex]

[tex](\frac{18}{2})^2=9^2=81[/tex]

Now, we will add 49 to complete the x term square and 81 to complete y term square on both sides of our given equation as:

[tex](x^2+14x+49)+(y^2+18y+81)=5+49+81[/tex]

Applying the perfect square formula [tex]a^2+2ab+b^2=(a+b)^2[/tex], we will get:

[tex](x+7)^2+(y+9)^2=135[/tex]

Therefore, We can complete the square on x by adding​ 49 to both sides and the square on y by adding​ 81 to both sides.

Which of the following is the solution to 9 | x + 4 | >= 54?

PLEASE HELP

Answers

Answer:

  your selection is correct

Step-by-step explanation:

You can divide by 9 to get ...

  | x+4 | ≥ 6

This resolves to two inequalities:

-6 ≥ x +4   ⇒   -10 ≥ xx +4 ≥ 6   ⇒   x ≥ 2

These are disjoint intervals, so the solution set is the union of them:

  x ≤ -10 or 2 ≤ x

Answer:

Step-by-step explanation: A is correct

Mary and tom park their cars in an empty parking lot with n ≥ 2 consecutive parking spaces (i.e, n spaces in a row, where only one car fits in each space). mary and tom pick parking spaces at random. (all pairs of distinct parking spaces are equally likely.) what is the probability that there is at most one empty parking space between them?

Answers

Answer:

  p(at most one space between) = (4n-6)/(n(n-1))

Step-by-step explanation:

There are n-1 ways the cars can be parked next to each other, and n-2 ways they can be parked with one empty space between. So, the total number of ways the cars can be parked with at most one empty space is ...

  (n -1) +(n -2) = 2n-3

The number of ways that 2 cars can be parked in n spaces is ...

  (n)(n -1)/2

So, the probability is ...

  (2n-3)/((n(n-1)/2) = (4n -6)/(n(n -1))

___

If the cars are considered distinguishable and order matters, then the number of ways they can be parked will double. The factor of 2 cancels in the final probability ratio, so the answer remains the same.

__

Check

For n=2 or 3, p=1 as you expect.

For n=4, p=5/6, since there is only one of the 6 ways the cars can be parked that has 2 spaces between.

The probability that there is at most one empty parking space between Mary and Tom's cars is (2n - 3) / n.

We have,

To find the probability that there is at most one empty parking space between Mary and Tom's cars, we need to consider two scenarios:

Mary and Tom park their cars in adjacent spaces.

Mary and Tom park their cars in spaces with one empty space in between them.

Scenario 1: Mary and Tom park their cars in adjacent spaces.

In this case, there are (n - 1) ways for them to pick adjacent spaces out of the n spaces. Since there are n spaces to choose from initially, the probability for this scenario is (n - 1) / n.

Scenario 2: Mary and Tom park their cars with one empty space between them.

In this case, there are (n - 2) ways to pick two parking spaces with one empty space in between them. Again, since there are n spaces to choose from initially, the probability for this scenario is (n - 2) / n.

Now, we add up the probabilities of both scenarios because they are mutually exclusive:

Total Probability = Probability of Scenario 1 + Probability of Scenario 2

Total Probability = [(n - 1) / n] + [(n - 2) / n]

To make these fractions have a common denominator, we can rewrite them as:

Total Probability = [(n - 1) + (n - 2)] / n

Total Probability = [2n - 3] / n

Thus,

The probability that there is at most one empty parking space between Mary and Tom's cars is (2n - 3) / n.

Learn more about probability here:

https://brainly.com/question/14099682

#SPJ3

The value of a collector's item is expected to increase exponentially each year. The item is purchased for $500 and its value increases at a rate of 5% per year. Find the value of the item after 4 years. $578.81 $607.75 $1687.50 $2531.25

Answers

Answer:

  $607.75

Step-by-step explanation:

As a first approximation, compound interest will be slightly higher than simple interest for a relatively short time period. Here simple interest at 5% for 4 years will add 4×5% = 20% to the value, adding about $100 to the initial $500 value. That is, we expect the value in 4 years to be slightly more than $600.

The appropriate answer choice is $607.75.

_____

The actual amount can be calculated using the multiplier 1.05 for each of the 4 years, or 1.05^4 ≈ 1.21550625 for the entire period. Then the predicted item value is ...

  $500 × 1.21550625 = $607.753125 ≈ $607.75

Answer:

Answer: $607.75

Step-by-step explanation:

Answer:

 $607.75

Step-by-step explanation:

As a first approximation, compound interest will be slightly higher than simple interest for a relatively short time period. Here simple interest at 5% for 4 years will add 4×5% = 20% to the value, adding about $100 to the initial $500 value. That is, we expect the value in 4 years to be slightly more than $600.

The appropriate answer choice is $607.75.

_____

The actual amount can be calculated using the multiplier 1.05 for each of the 4 years, or 1.05^4 ≈ 1.21550625 for the entire period. Then the predicted item value is ...

 $500 × 1.21550625 = $607.753125 ≈ $607.75

Which is the graph of f(x)=1/4(4)^x

Answers

Answer: the 3rd one

Step-by-step explanation: you can type it into a graphing calculator and get the answer

wants the perimeter of his rectangular garden to be, at most, 60 feet. He plans on making the length 19 feet. what is the maximum width of his garden , Solving Equations Word problems geometry and angles

Answers

Answer:

width = 11 feet

Step-by-step explanation:

The perimeter of a rectangle is 2 times length + width.

He already decided that the perimeter is at most 60 feet and the length is 19 feet. Then replacing in the formula for perimeter you have:

60 = 2 ( 19 + width)

30 = 19 + width

11 = width

Therefore the maximum width is 11 feet

Can someone help me with the ones that aren’t done

Answers

5:

C = 5/9(F - 32)

C = 5/9(F) - 17.777

-5/9(F) + C = -17.777

-5/9(F) = -C - 17.777

F = 5/9(C) + 32.0306

Answer:

[tex]5.\, F=\frac{9C}{5}+32\\6.\,y=\frac{c-ax}{b}\\7.\,p=\frac{mq}{n}\\8.\,t=\frac{A-P}{Pr}\\9.\,y=\frac{12-6x}{5}\\10.\,y=\frac{9x-6}{3}\\12. x=\frac{9+5y}{6}\\13.\,\pi=\frac{c}{d}\\14.\,A=\frac{s^2}{R}\\15.\,w=\frac{P-2l}{2}\\16.\,y=\frac{3x-2}{5}\\17.,x=\frac{6-3by}{2a}\\18.\,w=\frac{V}{lh}[/tex]

Step-by-step explanation:

We need to solve following equations in terms of indicated variable:

[tex]5.C=\frac{5}{9}\left ( F-32 \right ):F\\6.ax+by=c;y\\7.\frac{m}{n}=\frac{p}{q};p\\8.A=P+Prt;t\\9.6x+5y=12;y\\10.3y+2=9x-4;y\\12.6x-5y=9;x\\13.C=\pi d\\14.R=\frac{s^2}{A};A\\15.P=2l+2w;w\\16.3x-5y=2;y\\17.2ax+3by=6;x\\18.V=lwh;w[/tex]

Solution:

[tex]5.\, F=\frac{9C}{5}+32\\6.\,y=\frac{c-ax}{b}\\7.\,p=\frac{mq}{n}\\8.\,t=\frac{A-P}{Pr}\\9.\,y=\frac{12-6x}{5}\\10.\,y=\frac{9x-6}{3}\\12. x=\frac{9+5y}{6}\\13.\,\pi=\frac{c}{d}\\14.\,A=\frac{s^2}{R}\\15.\,w=\frac{P-2l}{2}\\16.\,y=\frac{3x-2}{5}\\17.,x=\frac{6-3by}{2a}\\18.\,w=\frac{V}{lh}[/tex]

You are adding air to a tire the air pressure in the tire should be 32 27/200 pounds per square inch. What decimal should you watch for not the digital pressure gauge

Answers

Answer:

24

Step-by-step explanation:

The air pressure in tire should be 32.135 pounds per square inch. Hence, Rounding of to nearest tenths, we get 32.1 pounds per square inch.

What is the unitary method?

The unitary method is a method for solving a problem by the first value of a single unit and then finding the value by multiplying the single value.

The air pressure in the tire should be  pounds per square inch. This pressure is in the form of a mixed fraction. It is required to convert this pressure into a decimal form. We can convert it as follows;

The air pressure in tire  =32 27/200

It is given in the form of a mixed fraction.

32 27/200 = ( 32 x 200) 27/200

First we, convert this mixed fraction into unlike fraction and then convert it into a decimal number;

32 27/200 = ( 32 x 200) 27/200

= 6427 /200

= 32.135

Therefore, the air pressure in tire should be 32.135 pounds per square inch.

Hence, Rounding of to nearest tenths, we get 32.1 pounds per square inch.

Learn more about the unitary method;

https://brainly.com/question/23423168

#SPJ2

Other Questions
Assume the radius of an atom, which can be represented as a hard sphere, is r = 1.95 . The atom is placed in a (a) simple cubic, (b) fcc, (c) bcc, and (d) diamond lattice. As- suming that nearest atoms are touching each other, what is the lattice constant of each lattice? Draw the structure of an amino acid and a dipeptide. 10. A movie theater advertises that a family of two adults, one student, and one child between the ages of 3and 8 can attend a movie for $15. An adult ticket costs as much as the combined cost of a student ticketand a child ticket. You purchase 1 adult ticket, 4 student tickets, and 2 child tickets for $23. Phillip write an integer that is less than -2 and greater than -3.5 Which integer did he write? Jamestown was founded in 1607 and is important for being Question 4 options: The first French colony in the New World A major trading partner with the Spanish The first permanent English colony in the New World. Known as the "Lost Colony" The speed limit on many U.S. highways is 70 mi/hr. Convert this speed into each alternative unit. Express your answer using two significant figures.A)km/dayB)ft/sC)m/sD)yd/min why dont early paintings fend to look very realistic? Solve for x:LaTeX: \frac{x^2}{0.160-x}\:=\:0.058 how long ago, about, did music begin to be written down? What are positive shapes?the shapes of artists' canvasesO B. the main shapes in a paintingOC. the automatic shapes created for backgrounds Oil (specific gravity of 0.80 and a viscosity of 0.000042 lbf/ft2) at a temperature of 80 F flows through two separate pipes 10 and 12 inches in diameter. if the mean velocity of flow in the 12 in. pipe is 6 ft/s, the velocity of flow in the 10 in pipe will be: A client sustains a burn injury to the entire right and left arms, including the hands. Which emergency interventions should the nurse take before transferring the client to the burn center? Select all that apply. 1. Apply cool water to the area. 2.Place ice packs over the area. 3.Apply an absorbent material to the area. 4.Wrap burned fingers separately to prevent sticking together. 5.Cover the burns with a clean dry cloth as directed by a burn center If an object is than water, it will float. If it is than water, it will sink. A 7.00-mL portion of 8.00 M stock solution is to be diluted to 0.800 M. What will be the final volume after dilution? Enter your answer in scientific notation. Be sure to answer all parts. x 10 (select)L If a rectangle has a side with vertices located at (0, -8) and (10,-8), the length of the side is: If a 30 C air parcel rises from sea level to 3000 meters altitude and cools at the dry adiabatic rate, what will be its temperature at 3000 meters? O 10 C O-10 C 20 C 37 +(923) what does it equal?? A rock is shot vertically upward from the edge of the top of a tall building.The rock reaches its maximum height above the top of the building 1.60 s after being shot. Then, after barely missing the edge of the building as it falls downward, the rock strikes the ground 7.00 s after it is launched. In SI units: (a) with what upward velocity is the rock shot, (b) what maximum height above the top of the building is reached by the rock, and (c) how tall is the building? In general, the Earth's climate became cooler throughout the course of the Cenozoic which greatly influenced the evolution of mammal's during this time period. Which of these is not a correct statement about this cooling event?a. the Antarctic and Arctic ice sheet both formed during the end of the Mioceneb. falling carbon dioxide levels lead to a reverse greenhosue effectc. water locked in ice contributes to decreased sea levelsd. ocean circulation patterns are affected by global cooinge. the closing of the isthmus of Panama is a result of the drop in global temperature Rational choice theorists would define the behavior of corporate executives who outsource many jobs to countries where the cost of labor is substantially less than in the United States as being:a) instrumentalb) expressivec) habituald) affective