The chemical formula for ferric sulfate is Fe(SO4)3. Determine the following:

a) the number of sulfur atoms in 1.75 mole of Fe(SO4)3
b) the mass in grams of 2.65 mol of Fe(SO4)3
c) the number of moles of Fe(SO4)3 in 3.45 grams of Fe(SO4)3.
d)the mass in grams of 3 formula unit of Fe(SO4)3

Answers

Answer 1

Answer :

(a) The number of sulfur atoms are, [tex]31.61\times 10^{23}[/tex].

(b) The mass of the mass of [tex]Fe_2(SO_4)_3[/tex] is, 1059.682 grams.

(c) The number of moles of [tex]Fe_2(SO_4)_3[/tex] is, [tex]8.63\times 10^{-3}mole[/tex]

(d) The mass of the mass of [tex]Fe_2(SO_4)_3[/tex] is, [tex]19.95\times 10^{-22}g[/tex]

Explanation :

(a) As we are given the number of moles of [tex]Fe_2(SO_4)_3[/tex] is, 1.75 mole. Now we have to calculate the number of sulfur atoms.

In the [tex]Fe_2(SO_4)_3[/tex], there are 2 iron atoms, 3 sulfur atoms, 12 oxygen atoms.

As, 1 mole of [tex]Fe_2(SO_4)_3[/tex] contains [tex]3\times 6.022\times 10^{23}[/tex] number of sulfur atoms.

So, 1.75 mole of [tex]Fe_2(SO_4)_3[/tex] contains [tex]1.75\times 3\times 6.022\times 10^{23}=31.61\times 10^{23}[/tex] number of sulfur atoms.

The number of sulfur atoms are, [tex]31.61\times 10^{23}[/tex]

(b) As we are given the number of moles of [tex]Fe_2(SO_4)_3[/tex] is, 2.65 mole. Now we have to calculate the mass of [tex]Fe_2(SO_4)_3[/tex].

[tex]\text{Mass of }Fe_2(SO_4)_3=\text{Moles of }Fe_2(SO_4)_3\times \text{Molar mass of }Fe_2(SO_4)_3[/tex]

The molar mass of [tex]Fe_2(SO_4)_3[/tex] = 399.88 g/mole

[tex]\text{Mass of }Fe_2(SO_4)_3=2.65mole\times 399.88g/mole=1059.682g[/tex]

The mass of the mass of [tex]Fe_2(SO_4)_3[/tex] is, 1059.682 grams.

(c) As we are given the mass of [tex]Fe_2(SO_4)_3[/tex] is, 3.45 grams. Now we have to calculate the moles of [tex]Fe_2(SO_4)_3[/tex].

[tex]\text{Mass of }Fe_2(SO_4)_3=\text{Moles of }Fe_2(SO_4)_3\times \text{Molar mass of }Fe_2(SO_4)_3[/tex]

The molar mass of [tex]Fe_2(SO_4)_3[/tex] = 399.88 g/mole

[tex]3.45g=\text{Moles of }Fe_2(SO_4)_3\times 399.88g/mole[/tex]

[tex]\text{Moles of }Fe_2(SO_4)_3=8.63\times 10^{-3}mole[/tex]

The number of moles of [tex]Fe_2(SO_4)_3[/tex] is, [tex]8.63\times 10^{-3}mole[/tex]

(d) As we are given the formula unit of [tex]Fe_2(SO_4)_3[/tex] is, 3. Now we have to calculate the mass of [tex]Fe_2(SO_4)_3[/tex].

As we know that 1 mole of [tex]Fe_2(SO_4)_3[/tex] contains [tex]6.022\times 10^{23}[/tex] formula unit.

Formula used :

[tex]\text{Formula unit of }Fe_2(SO_4)_3=\text{Moles of }Fe_2(SO_4)_3\times 6.022\times 10^{23}[/tex]

[tex]3=\text{Moles of }Fe_2(SO_4)_3\times 6.022\times 10^{23}[/tex]

[tex]\text{Moles of }Fe_2(SO_4)_3=4.989\times 10^{-24}mole[/tex]

Now we have to calculate the mass of [tex]Fe_2(SO_4)_3[/tex].

[tex]\text{Mass of }Fe_2(SO_4)_3=\text{Moles of }Fe_2(SO_4)_3\times \text{Molar mass of }Fe_2(SO_4)_3[/tex]

The molar mass of [tex]Fe_2(SO_4)_3[/tex] = 399.88 g/mole

[tex]\text{Mass of }Fe_2(SO_4)_3=4.989\times 10^{-24}mole\times 399.88g/mole=19.95\times 10^{-22}g[/tex]

The mass of the mass of [tex]Fe_2(SO_4)_3[/tex] is, [tex]19.95\times 10^{-22}g[/tex]

Answer 2

Final answer:

The key parts of solving chemistry problems include understanding chemical formulas and conducting mole-mass calculations. Using the formula for ferric sulfate, Fe(SO₄)₃, this response walks through how to find the number of atoms, mass of substance, and moles given specific quantities, showcasing the essential chemical calculations involved.

Explanation:

The chemical formula for ferric sulfate is Fe(SO₄)₃. Let's solve each part of the question:

a) The number of sulfur atoms in 1.75 mole of Fe(SO₄)₃: There are 3 sulfur atoms in one formula unit of Fe(SO₄)₃. Therefore, in 1.75 moles of Fe(SO₄)₃, there are 1.75 moles * 3 sulfur atoms per mole = 5.25 moles of sulfur atoms.

b) The mass in grams of 2.65 mol of Fe(SO₄)₃: First, we need to calculate the molar mass of Fe(SO₄)₃ (Fe = 55.85, S = 32.06, O = 16.00). The molar mass of Fe(SO₄)₃ is 399.88 g/mol. Thus, 2.65 moles * 399.88 g/mol = 1059.68 grams of Fe(SO₄)₃.

c) The number of moles of Fe(SO₄)₃ in 3.45 grams of Fe(SO₄)₃: Using the molar mass of Fe(SO₄)₃, 3.45 g / 399.88 g/mol = 0.00863 moles of Fe(SO₄)₃.

d) The mass in grams of 3 formula unit of Fe(SO₄)₃: The mass of one mole of Fe(SO₄)₃ is 399.88 g. Since one mole contains Avogadro's number (6.022 x 10²³) of formula units, 3 formula units' mass can be calculated as (3 / 6.022 x 10²³) * 399.88 g, which equals approximately 1.99 x 10⁻²² grams of Fe(SO₄)₃.


Related Questions

The vapor pressure of water is 23.76 mm Hg at 25 °C. A nonvolatile, nonelectrolyte that dissolves in water is sucrose. Calculate the vapor pressure of the solution at 25 °C when 12.25 grams of sucrose, C12H22O11 (342.3 g/mol), are dissolved in 176.3 grams of water. water = H2O = 18.02 g/mol.

Answers

Answer : The vapor pressure of solution is 23.67 mmHg.

Solution:

As the relative lowering of vapor pressure is directly proportional to the amount of dissolved solute.

The formula for relative lowering of vapor pressure will be,

[tex]\frac{p^o-p_s}{p^o}=\frac{w_2M_1}{w_1M_2}[/tex]

where,

[tex]p^o[/tex] = vapor pressure of pure solvent  (water) = 23.76 mmHg

[tex]p_s[/tex] = vapor pressure of solution= ?

[tex]w_2[/tex] = mass of solute  (sucrose) = 12.25 g

[tex]w_1[/tex] = mass of solvent  (water) = 176.3 g

[tex]M_1[/tex] = molar mass of solvent (water) = 18.02 g/mole

[tex]M_2[/tex] = molar mass of solute (sucrose) = 342.3 g/mole

Now put all the given values in this formula ,we get the vapor pressure of the solution.

[tex]\frac{23.76-p_s}{23.76}=\frac{12.25\times 18.02}{176.3\times 342.3}[/tex]

[tex]p_s=23.67mmHg[/tex]

Therefore, the vapor pressure of solution is 23.67 mmHg.

Final answer:

The vapor pressure of a solution made by dissolving 12.25 grams of sucrose in 176.3 grams of water at 25 °C is calculated as 23.68 mm Hg, using Raoult's Law and the vapor pressure of pure water (23.76 mm Hg) as the basis.

Explanation:

Calculation of Vapor Pressure of a Sucrose Solution

To calculate the vapor pressure of a solution made by dissolving 12.25 grams of sucrose in 176.3 grams of water at 25 °C, where the vapor pressure of pure water is 23.76 mm Hg, we use Raoult's Law. Raoult's Law states that the vapor pressure of a solvent in a solution (Πsolvent) is equal to the vapor pressure of the pure solvent (Πpure solvent) times the mole fraction of the solvent (χsolvent) in the solution.

First, calculate the moles of sucrose (C12H22O11): Moles = 12.25 g / 342.3 g/mol.

Then, calculate the moles of water (H2O): Moles = 176.3 g / 18.02 g/mol.

Next, compute the mole fraction of water: χH2O = moles of H2O / (moles of H2O + moles of C12H22O11).

Finally, calculate vapor pressure of the solution: Πsolution = Πpure water * χH2O.

Working through the calculations:

Moles of sucrose = 12.25 / 342.3 = 0.0358 mol.
Moles of water = 176.3 / 18.02 = 9.785 mol.
Mole fraction of water = 9.785 / (9.785 + 0.0358) = 0.99636.
Vapor pressure of the solution = 23.76 mm Hg * 0.99636 = 23.68 mm Hg.

Thus, the vapor pressure of the sucrose solution at 25 °C is 23.68 mm Hg.

A mixture initially contains A, B, and C in the following concentrations: [A] = 0.350 M , [B] = 0.650 M , and [C] = 0.300 M . The following reaction occurs and equilibrium is established: A+2B⇌C At equilibrium, [A] = 0.220 M and [C] = 0.430 M . Calculate the value of the equilibrium constant, Kc.

Answers

Answer: The value of equilibrium constant, [tex]K_c[/tex] for the given reaction is 12.85.

Explanation:

For the given chemical equation:

                         [tex]A+2B\rightleftharpoons C[/tex]

At t = 0      0.350M     0.650M      0.300M

At [tex]t=t_{eq}[/tex]  (0.350 - x)    (0.650 - 2x)     (0.300 + x)

We are given:

Equilibrium concentration of A = 0.220 M

Forming an equation for concentration of A at equilibrium:

[tex]0.350-x=0.220\\x=0.130[/tex]

Thus, the concentration of B at equilibrium becomes = [tex]0.650-(2\times 0.130)=0.390M[/tex]

Equilibrium concentration of C = 0.430 M

The expression of [tex]K_c[/tex] for the given chemical equation is:

[tex]K_c=\frac{[C]}{[A][B]^2}[/tex]

Putting values in above equation:

[tex]K_c=\frac{0.430}{0.220\times (0.390)^2}\\\\K_c=12.85[/tex]

Hence, the value of equilibrium constant, [tex]K_c[/tex] for the given reaction is 12.85.

Final answer:

The equilibrium constant, Kc, can be calculated using the concentrations of the reactants and products at equilibrium.

Explanation:

The equilibrium constant, denoted as Kc, is the mathematical expression that relates the concentrations of the reactants and products at equilibrium. For the reaction A + 2B ⇌ C, the equilibrium constant expression is given by:

Kc = [C] / ([A] * [B]^2)

Using the given concentrations at equilibrium ([A] = 0.220 M and [C] = 0.430 M), we can substitute these values into the expression to calculate the value of Kc.

Kc = 0.430 / (0.220 * (0.650)^2)

Calculating this expression will give you the value of the equilibrium constant, Kc.

Learn more about Equilibrium constant here:

https://brainly.com/question/32442283

#SPJ3

The heat flux, or the rate of heat transfer per unit area, is measured in watts (Watts) only A. TRUE B. FALSE

Answers

Answer: The given statement is false.

Explanation:

Heat flux is defined as the flow of heat or energy per unit time in per unit area. S.I. unit of heat flux is watts per square meter.

Heat flux is represented by the symbol [tex]\phi _{q}[/tex].

So, it means heat flux is not measured in watts only as it includes per unit area also.

Therefore, we can conclude that the given statement heat flux, or the rate of heat transfer per unit area, is measured in watts (Watts) only, is false.

What is a hydrocarbon? What is a hydrocarbon? It is a molecule derived from hydrogen synthesis. It is a wet carbon atom It is any organic molecule. It is a molecule composed of carbon and hydrogen only. none of the above

Answers

Answer:

The correct answer is :It is a molecule composed of carbon and hydrogen only.

Explanation:

Hydrocarbons are defined as compounds which majorly made up carbon and hydrogen.There three types of hydrocarbons:

Alkanes : These are saturated hydrocarbons with single bond present in between two carbon atoms.The general structure of an alkane is:[tex]C_nH_{2n+2}[/tex]Alkene :These are unsaturated hydrocarbons with double bond present in between two carbon atoms.The general structure of an alkene is:[tex]C_nH_{2n}[/tex]Alkyne :These are unsaturated hydrocarbons with triple bond present in between two carbon atoms.The general structure of an alkyne is:[tex]C_nH_{2n-1}[/tex]

The tiara worn by Kate Middleton for her wedding to Prince William of England contains 888 diamonds and belongs to the British monarchy. If each diamond in the tiara is 1.0 carat, and given that diamond is a form of carbon and that 1 carat is defined as 0.200 g, calculate the number of atoms in the gemstones of that tiara.

Answers

Answer:

The number of atoms in the gemstones of that tiara is [tex]8.9125\times 10^{24} atoms[/tex].

Explanation:

Number of diamonds ion tiara = 888

Mass of  each diamond = 1.0 carat = 0.200 g (given)

Mass of 888 diamonds in tiara:

[tex]888\times 0.200 g=177.600 g[/tex]

Given that diamond is a form of carbon.

Atomic mass of  carbon atom = 12 g/mol

Moles of 77.600 g of carbon =[tex]\frac{177.600 g}{12 g/mol}=14.800 mol[/tex]

Number of atoms of carbon 14.800 moles:

[tex]14.800 mol\times 6.022\times 10^{23} atoms =8.9125\times 10^{24} atoms[/tex]

The number of atoms in the gemstones of that tiara is [tex]8.9125\times 10^{24} atoms[/tex].

Which of the following has the greatest electronegativity difference between the bonded atoms? View Available Hint(s) Which of the following has the greatest electronegativity difference between the bonded atoms? A strong acid made of hydrogen and a halogen, such as HCl A group 1 alkali metal bonded to fluoride, such as LiF. Carbon bonded to a group 6A (16) nonmetal chalcogen, such as in CO A diatomic gas, such as nitrogen (N2).

Answers

Answer: A group 1 alkali metal bonded to fluoride, such as LiF.

Explanation:

Electronegativity is defined as the property of an element to attract a shared pair of electron towards itself. The size of an atom increases as we move down the group because a new shell is added and electron gets added up.

1. A strong acid made of hydrogen and a halogen, such as HCl : A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms. Electronegativity difference = electronegativity of chlorine - electronegativity of hydrogen = 3-2.1= 0.9

2. A group 1 alkali metal bonded to fluoride, such as LiF: Ionic bond is formed when there is complete transfer of electron from a highly electropositive metal to a highly electronegative non metal.

Electronegativity difference = electronegativity of fluorine - electronegativity of lithium= 4-1= 3

3. Carbon bonded to a group 6A (16) nonmetal chalcogen, such as in CO: A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms.

Electronegativity difference = electronegativity of oxygen - electronegativity of carbon= 3.5-2.5= 1.0

4. A diatomic gas, such as nitrogen [tex](N_2)[/tex]: Non-polar covalent bond is defined as the bond which is formed when there is no difference of electronegativities between the atoms.

Electronegativity difference = 0

Thus the greatest electronegativity difference between the bonded atoms is in LiF.

Among the given compounds, a group 1 alkali metal bonded to fluoride, such as LiF, has the greatest electronegativity difference because fluoride is highly electronegative while group 1 alkali metals like lithium have low electronegativity.

To determine which of the given compounds has the greatest electronegativity difference between the bonded atoms, we need to consider the electronegativities of the individual atoms involved. Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons.

A strong acid made of hydrogen and a halogen, such as HCl, has a significant electronegativity difference due to chlorine being much more electronegative than hydrogen. However, a group 1 alkali metal bonded to fluoride, such as LiF, will typically have an even greater electronegativity difference. This is because fluoride is one of the most electronegative elements, and lithium is a metal with a much lower electronegativity. Carbon bonded to a group 6A (16) nonmetal chalcogen, such as in CO, will have a moderate electronegativity difference, but less than that between lithium and fluoride. A diatomic gas, such as nitrogen (N₂), will have no electronegativity difference because both atoms are the same and thus have the same electronegativity.

Therefore, a group 1 alkali metal bonded to fluoride, such as LiF, has the greatest electronegativity difference of the options provided.

Arrange the following aqueous solutions in order of decreasing freezing point. (The last three are all assumed to dissociate completely into ions in water.) (a) 0.20 m ethylene glycol (nonvolatile, nonelectrolyte) (b) 0.12 m K2SO4 (c) 0.10 m MgCl2 (d) 0.12 m KBr

Answers

The answer would be Lead.

Why do you require an acid catalyst to make an ester? Why not just mix acid and alcohol? Describe an alternate method of making an ester that doesn't involve an acid catalyst. Describe how to distinguish between a carboxylic acid and an ester by IR spectroscopy. Describe how to distinguish between an alcohol and an ester by IR spectroscopy

Answers

Answer:Acid catalyst is needed to increase the electrophilicity of Carbonyl group of Carboxylic acid as alcohol is a weak nucleophile.

Alternatively esters can be synthesised by converting carboxylic acid into acyl chloride using thionyl chloride(SOCl_{2} and then further treating acyl chloride with alcohol.

Carboxylic acid and esters can be easily distinguished on the basis of IR as carboxylic acid would contain a broad intense peak in 2500-3200cm_{-1} corresponding to OH stretching frequency whereas esters would not contain any such broad intense peak.

Alcohol and esters can also be distinguished using IR as alcohols would contain a broad intense peak at around 3200-3600cm_{-1}

Explanation: For the synthesis of esters using alcohol and carboxylic acid we need to add a little amount of acid in the reaction . The acid used here increases the electrophilicity of carbonyl carbon and hence makes it easier for a weaker nucleophile like alcohol to attack the carbonyl carbon of acid.

The oxygen of the carbonyl group is protonated using the acidic proton which  leads to the generation of positive charge on the oxygen. The positive charge generated is delocalised over the whole acid molecule and hence the electrophilicity of carbonyl group is increased. Kindly refer attachment for the structures.

If we simply mix the acid and alcohol then no appreciable reaction would take place between them and ester formation would not take place because the carboxylic acid in that case is not a good electrophile whereas alcohol is also not a very strong nucleophile which can attack the carbonyl group.

Alternatively we can use thionyl chloride or any other reagent which can convert the carboxylic acid into acyl chloride. Acyl chloride is very elctrophilic and alcohol can very easily attack the acyl chloride and esters could be synthesized.

The carboxylic acid and ester can very easily be distinguished on the basis of broad intense OH stretching frequency peak at around 2500-3200cm_{-1} . The broad intense OH stretching frequency peak is present in carboxylic acids as they contain OH groups and absent in case of esters .

Likewise esters and alcohols can also be distinguished on the basis IR spectra as alcohols will have broad intense spectra  at around 3200-3600cm_{-1}corresponding to OH stretching frequency whereas esters will not have any such peak. Rather esters would be having a Carbonyl stretching frequency at around 1720-1760

Final answer:

An acid catalyst is required for ester formation from carboxylic acids and alcohols due to the poor leaving group ability of -OH. Alternative ester synthesis can avoid acids by using acyl chlorides. IR spectroscopy differentiates carboxylic acids, esters, and alcohols by their unique O-H and C=O stretching vibrations.

Explanation:

An acid catalyst is required to make an ester from a carboxylic acid and an alcohol due to the poor leaving group ability of -OH in carboxylic acids. The acid catalyst speeds up the reaction by protonating the carbonyl oxygen, which allows the alcohol to act as a nucleophile and attack more readily. An alternative method to create esters, that avoids using an acid catalyst, involves converting the carboxylic acid into an acid chloride (using thionyl chloride), followed by a reaction with an alcohol.

In IR spectroscopy, distinguishing between a carboxylic acid and an ester involves looking for the presence of a broad O-H stretch around 2500-3000 cm-1 in acids that are absent in esters. Esters, however, will show a strong C=O stretch around 1735-1750 cm-1. To differentiate an alcohol from an ester, look for the O-H stretch in alcohols around 3200-3600 cm-1 which is sharper and more defined compared to the broad O-H stretch observed in carboxylic acids and absent in esters.

A solution of NaCl(aq) is added slowly to a solution of lead nitrate, Pb(NO3)2(aq) , until no further precipitation occurs. The precipitate is collected by filtration, dried, and weighed. A total of 18.86 g PbCl2(s) is obtained from 200.0 mL of the original solution. Calculate the molarity of the Pb(NO3)2(aq) solution.

Answers

Answer: The molarity of [tex]Pb(NO_3)-2[/tex] solution is 0.34 M.

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

For lead chloride:

Given mass of lead chloride = 18.86 g

Molar mass of lead chloride = 278.1 g/mol

Putting values in above equation, we get:

[tex]\text{Moles of lead chloride}=\frac{18.86g}{278.1g/mol}=0.068mol[/tex]

For the balanced chemical equation:

[tex]Pb(NO_3)_2+2NaCl\rightarrow PbCl_2+2NaNO_3[/tex]

By Stoichiometry of the reaction:

1 mole of lead chloride is formed by 1 mole of lead nitrate

So, 0.068 moles of lead chloride will be formed from = [tex]\frac{1}{1}\times 0.068=0.068mol[/tex] of lead nitrate

To calculate the molarity of solution, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]

We are given:

Volume of solution = 200 mL = 0.200 L   (Conversion factor: 1 L = 1000 mL)

Moles of lead nitrate = 0.068 moles

Putting values in above equation, we get:

[tex]\text{Molarity of }Pb(NO_3)_2\text{ solution}=\frac{0.068mol}{0.065L}\\\\\text{Molarity of }Pb(NO_3)_2\text{ solution}=0.34M[/tex]

Hence, the molarity of [tex]Pb(NO_3)-2[/tex] solution is 0.34 M.

Final answer:

The molarity of the Pb(NO3)2(aq) solution can be calculated by first finding the number of moles of PbCl2 formed in the reaction and then dividing it by the original volume of Pb(NO3)2 solution. The calculated molarity of the Pb(NO3)2(aq) solution is 0.339 M.

Explanation:

The calculation of molarity of the Pb(NO3)2(aq) solution is necessary in this case. In this precipitation reaction, lead nitrate reacts with sodium chloride to form lead chloride, which precipitates out, and sodium nitrate. The molar mass of lead chloride (PbCl2) is 278.1 g/mol.

Step 1: Find the number of moles of PbCl2. For this, you can divide the mass of the precipitate (PbCl2) obtained by the molar mass of PbCl2. So, the number of moles are 18.86 g / 278.1 g/mol = 0.0678 mol.

Step 2: Calculate the amount in liters of original solution of lead nitrate. Here, since the given volume is in milliliters, you need to convert it to liters. Therefore, 200.0 mL = 0.2000 L.

Step 3: Calculate the molarity. Molarity is the number of moles of solute divided by volume of the solution in liters. Hence, M = 0.0678 mol / 0.2000 L = 0.339 M. Therefore, the molarity of Pb(NO3)2(aq) solution is 0.339 M.

Learn more about Molarity calculation here:

https://brainly.com/question/15948514

#SPJ3

You carefully weigh 5.724 g of potato flour into a Kjeldahl flask and add an appropriate reagent to digest the flour. You then carefully distill the material by adding a reagent to the digestion flask and stirring vigorously, then heating while under a closed system. You collect distillate in a collection flask containing a liquid, then titrate with 0.1 N HCl. It takes 11.95 ml to titrate the sample. The volume of titrate for blank titration is 0.1 ml. What was the percent protein in the potato flour if the protein in potato flour is 16% nitrogen?

Answers

Hey there!:

In Kjeldahl's method  estimation of amount of nitrogen in a sample, the sample is first digested by using sulphuric acid , which converts the nitrogen in the sample to ammonium sulphate.

The ammonium ions in the digested product are converted to ammonia gas by adding excess of base like NaOH. The ammonia gas thus produced is collected by condensation.

The amount of ammonia produced is estimated by titration with standard solution of acid. We are using 0.1 N HCl in this case.

Volume of 0.1 N HCl used = 11.95 mL

Volume of of 0.1 N HCl used in blank titration =0.1 mL

Therefore,actual volume us of 0.1 N HCl

used by analyte( ammonia solution) = 11.95 mL - 0.1 mL  

= 11.85 mL

0.1 N HCl = 0.1 M HCl , as HCl is a monobasic acid and therefore its molar mass will be equal to its equivalent mass.

Therefore, concentration of HCl solution used = 0.1 M = 0.1 mol L-1

Volume of HCl solution used =11.85 mL =0.01185 L

Nº.of moles of  HCl used =  0.1 mol L-1  * 0.01185 L

= 0.001185 moles

The equation for reaction between NH3 (aq) and HCl during titration is  :

NH3 (aq) + HCl (aq) <= >  NH4Cl

From the above equation, we see that each mole of HCl reacts completely with 1 mole of NH3 during titration.

Therefore, no. of moles of NH3 that would have been neutralized by 0.001185 moles of HCl = 0.001185 moles

From the formula of  NH3 , 1 mole of  NH3 contains 1 mole of N atoms.

Therefore, nº of moles of :

N - atoms present = 0.001185 moles

Moar mass of N= 14 g/mol

Mass of 0.001185 moles of N =0.001185 moles * 14 g/ mol

=  0.01659 g

% of N in protein is given as 16%.

16%.of mass of protein  = mass of nitrogen in protein sample  = 0.01659 g

(16/100) *mass of protein  =  0.01659 g

mass of protein  =  0.1036875 g

% of protein  in potato flour = [mass of protein in  potato flour / mass of  potato flour] * 100%

( 0.1036875 g / 5.724 ) * 100%

=  1.812 %

Hope this helps!

Final answer:

The percent protein was found to be 1.8113 %.

Explanation:

To calculate the percent protein in the potato flour, we first need to correct the titration volume for the blank, then figure out the amount of Nitrogen (N) in the potato flour and finally convert this to percent protein using the factor that proteins in potato flour contain 16% nitrogen. Since each gram of nitrogen corresponds to 6.25 grams of protein (since 100/16 = 6.25), we can use this conversion factor to get the final percent protein.

Volume of HCl used for the sample is 11.95 mL

Volume of HCl used for the blank is 0.1 mL

Net volume of HCl used for the sample is 11.85 mL (11.95 mL - 0.1 mL)

Since the concentration of HCl is 0.1 N, we multiply the net volume by the normality to find the milliequivalents (meq) of nitrogen:
11.85 mL * 0.1 N = 1.185 meq

To find the grams of nitrogen, we use the fact that 1 meq of N equals 0.014 g:
1.185 meq * 0.014 g/meq = 0.01659 g of N

To convert grams of N to percent nitrogen in the sample, we divide by the sample mass and multiply by 100:
(0.01659 g / 5.724 g) * 100 = 0.2898 % N

Multiply the percent N by the conversion factor to get percent protein:
 0.2898 % N * 6.25 = 1.8113 % Protein

Imagine two solutions with the same concentration and the same boiling point, but one has benzene as the solvent and the other has carbon tetrachloride as the solvent. Determine the molal concentration, ???? (or ????), and boiling point, ????b. Solvent Normal boiling point (∘????) ????b (∘????/????) benzene 80.1 2.53 carbon tetrachloride 76.8 5.03

Answers

Hey there!:

Δt =  m * Kf

Boiling point of a solution =>  Boiling point + Δt ( Kc * m )

Boiling point of benzene solution => 80.1 + 2.53 m

Boiling point of CCl₄ solution => 76.8 +5.03 m

Since the boiling points are the same 80.1 + 2.53 m = 76.8 +5.03 m

3.3 = 2.5 m

m =  3.3 / 2.5 => 1.32 moles of solute per kg of solvent

Bp =   80.1 + 2.53 * 1.32 => 83.4396 ºC

Hope this helps!

Complete question:

Imagine two solutions with the same concentration and the same boiling point, but one has benzene as the solvent and the other has carbon tetrachloride as the solvent. Determine that molal concentration, m (or b), and boiling point, Tb.

benzene boiling point=80.1 Kb=2.53

carbon tetrachloride boiling point=76.8 Kb=5.03

Answer:

m = 1.32 mol/kg

Boiling point: 83.4°C

Explanation:

When a nonvolatile solute is added to a pure solvent, the boiling point of the solvent increases, a phenomenon called ebullioscopy. This happens because of the interactions between the solute and the solvent. The temperature variation (new boiling point - normal boiling point) can be calculated by:

ΔT = m*Kb*i

Where m is the molal concentration (moles o solute/mass of solvent in kg), Kb is the ebullioscopy constant of the solvent, and i is the van't Hoff factor, which indicates how much of the solute dissociates. Let's assume that i is equal in both solvents and equal to 1 (the solvent dissociates completely)

Calling the new boiling point as Tb, for benzene:

Tb - 80.1 = m*2.53*1

Tb = 2.53m + 80.1

For carbon tetrachloride:

Tb - 76.8 = m*5.03*1

Tb = 5.03m + 76.8

Because Tb and m are equal for both:

5.03m + 76.8 = 2.53m + 80.1

2.5m = 3.3

m = 1.32 mol/kg

So, substituting m in any of the equations (choosing the first):

Tb = 2.53 * 1.32 + 80.1

Tb = 83.4°C

What condition leads to the production of ketone bodies from acetyl CoA? a. low blood pH b. low supply of oxaloacetate in the citric acid cycle c. high levels of ATP d. high blood pH e. low supply of carnitine in β-oxidation

Answers

Answer:

low supply of oxaloacetate in the citric acid cycle

Explanation:

When there is low supply of oxalo acetate the acetyl CoA gets converted to ketone bodies to enter the TCA cycle.

In the condition of low level of glucose, the supply of oxaloacetate decreases. Thus making it unavailable to react with acetyl CoA, in this condition ketogenesis occur i.e. acetyl CoA gets converted to ketone bodies.

When 2-methyl-2,5-pentanediol is treated with sulfuric acid, dehydration occurs and 2,2-dimethyltetrahydrofuran is formed. Suggest a mechanism for this reaction. Which of the two oxygen atoms is most likely to be eliminated, and why?

Answers

Answer:The oxygen present at the tertiary carbon would be eliminated.The suggested mechanism of the reaction can be found in attachment

Explanation:

The Oxygen atom at the tertiary carbon atom would be eliminated because the removal of this oxygen in form of water after the protonation by sulphuric acid would lead to the formation of a stable tertiary carbocation which is vary stable.

The tertiary carbocation is  stable on account of inductive effect of the methy groups.

The oxygen atom at the primary carbon would not be eliminated as its elimination would result in a primary carbocation which is unstable in nature,.

The mechanism of the overall reaction is following:

1. In the first step the OH group present at the tertiary carbocation is protonated  by sulphuric acid and on account of this protonation the OH group turns into a good leaving group and leaves as (water) H₂O.

2. Once the H₂O molecule is eliminated it leads to the formation of a stable tertiary carbocation.

3. The tertiary carbocation so formed is electrophilic in nature and as there is one more OH group present at the primary carbon which is 3 carbons away . The OH group is weakly nucleophilic in nature and can appreciably attack the carbocation . The attack of OH at the carbocation leads to the formation of a 5-membered ring containing oxygen as heteroatom.

4.The 5-membered ring so formed has Oxygen as hetero atom which is protonated so the protonated oxygen atom is deprotonated using H₂O.

This further leads to the product formation.

Kindly refer the attachment for the complete reaction mechanism:

Why should ketoses not react with Benedict’s reagent? Think about the type of reaction and be specific.

Answers

Answer:

There's no reducing sugar.

Explanation:

The Benedict test is another of the oxidation reactions, which, as we know, helps us to recognize reducing sugars, that is, those compounds that have their free anomeric OH, such as glucose, lactose or maltose or cellobiose, in the Benedict reaction can reduce the Cu2 + that presents a blue color, in an alkaline medium, the cupric ion (given by cupric sulfate) is able to be reduced by the effect of the aldehyde group of sugar (CHO) to its Cu + form. This new ion is observed as a red brick precipitate corresponding to cuprous oxide (Cu2O), which precipitates from the alkaline solution with a red-orange color, this precipitate is considered as evidence that there is a reducing sugar.

Benedict's reagent is composed of:

*Cupric sulfate.

*Sodium citrate.

*Anhydrous sodium carbonate.

The evidence of Benedict's reaction is the formation of the precipitate Ion Cuprous (Cu2O).

It means:

Cu+2 ------> Cu+1

Then, if we don't have a reducing sugar, the reactive is not going to react with our sample.

n-Butanol (CH3CH2CH2CH2OH) and t-butanol ((CH3)3COH) are converted to their corresponding alkyl chorides on being reacted with hydrogen chloride. Write out an equation for each reaction Assign each the appropriate symbol (SN1 or SN2) Write a suitable mechanism for each reaction.

Answers

Answer: n-Butanol are converted using SN2 and tert-butanol is converted using SN1

Explanation: For the conversion of n-butanol into butyl chloride using Hydrogen Chloride the reaction would follow SN2 mechanism.

SN2 reaction mechanism occurs only in the case of primary substrates as it is a one step mechanism that happens in a concerted manner. It involves backside attack of nucleophile on the substrate such that the nucleophile attacks from the back side and leaving group leaves from the front side.

In this reaction since hydroxy group (OH) is not a good leaving group hence firstly we need to convert it into a good leaving group. When we treat n-butanol with HCl hydroxy group is protonated and now it turns into a good leaving group as it can leave as H₂O.

Cl⁻  here acts as nucleophile and now attacks the primary carbon center from the back side which contains the protonated hydroxy group as a leaving group.

In the case of tertiary butanol the reaction follows SN1  mechanism and it is 2 step mechanism.

In the first step hydroxy group is protonated and as it becomes a good leaving group it leaves and leads to the formation of a stable tertiary carbocation as an intermediate.

In the second step this intermediate carbocation is attacked by the Cl⁻  nucleophile which leads to the formation of tertiary butyl chloride.

Kindly find in attachment the reaction mechanism for both the reactions.

7. Suppose 1.01 g of iron (III) chloride is placed in a 10.00-mL volumetric flask with a bit of water in it. The flask is shaken to dissolve the solid and the flask is then filled to the mark. What is the molarity of the final solution?

Answers

Answer: The molarity of Iron (III) chloride is 0.622 M.

Explanation:

Molarity is defined as the number of moles present in one liter of solution.  The equation used to calculate molarity of the solution is:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]

Or,

[tex]\text{Molarity of the solution}=\frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}[/tex]

We are given:

Mass of iron (III) chloride = 1.01 g

Molar mass of iron (III) chloride = 162.2 g/mol

Volume of the solution = 10 mL

Putting values in above equation, we get:

[tex]\text{Molarity of Iron (III) chloride}=\frac{1.01g\times 1000}{162.2g/mol\times 10mL}\\\\\text{Molarity of Iron (III) chloride}=0.622M[/tex]

Hence, the molarity of Iron (III) chloride is 0.622 M.

Three gases (8.00 g of methane, CH4, 18.0 g of ethane, C2H6, and an unknown amount of propane, C3H8) were added to the same 10.0-L container. At 23.0 ∘C, the total pressure in the container is 5.00 atm . Calculate the partial pressure of each gas in the container.

Answers

Answer:

Partial pressure of methane: 1.18 atm

Partial pressure of ethane: 1.45 atm

Partial pressure of propane: 2.35 atm

Explanation:

Let the total moles of gases in a container be n.

Total pressure of the gases in a container =P = 5.0 atm

Temperature of the gases in a container =T = 23°C = 296.15 K

Volume of the container = V = 10.0 L

[tex]PV=nRT[/tex] (Ideal gas equation)

[tex]n=\frac{PV}{RT}=\frac{5.0 atm\times 10.0 L}{0.0821 atm L/mol K\times 296.15 K}=2.0564 mol[/tex]

Moles of methane gas =[tex]n_1=\frac{8.00 g}{16.04 g/mol}=0.4878 mol[/tex]

Moles of ethane gas =[tex]n_2=\frac{18.00 g}{30.07 g/mol}=0.5986 mol[/tex]

Moles of propane gas =[tex]n_3=?[/tex]

[tex]n=n_1+n_2+n_3[/tex]

[tex]n_3=n-n_1-n_2=2.0564 mol-0.4878 mol-0.5986 mol= 0.9700 mol[/tex]

Partial pressure of all the gases can be calculated by using Raoult's law:

[tex]p_i=P\times \chi_i[/tex]

[tex]p_i[/tex] = partial pressure of 'i' component.

[tex]\chi_1[/tex] = mole fraction of 'i' component in mixture

P = total pressure of the mixture

Partial pressure of methane:

[tex]p_1=P\times \chi_1=P\times \frac{n_1}{n_1+n+2+n_3}=P\times \frac{n_1}{n}[/tex]

[tex]p_1=5.00 atm\times \frac{0.4878 mol}{2.0564 mol}=1.18 atm[/tex]

Partial pressure of ethane:

[tex]p_2=P\times \chi_2=P\times \frac{n_2}{n_1+n+2+n_3}=P\times \frac{n_2}{n}[/tex]

[tex]p_2=5.00 atm\times \frac{0.5986 mol}{2.0564 mol}=1.45 atm[/tex]

Partial pressure of propane:

[tex]p_3=P\times \chi_3=P\times \frac{n_3}{n_1+n+2+n_3}=P\times \frac{n_3}{n}[/tex]

[tex]p_3=5.00 atm\times \frac{0.9700 mol}{2.0564 mol}=2.35 atm[/tex]

Final answer:

After calculating moles for each gas, the partial pressure for methane, ethane, and propane was calculated as 1.21 atm, 1.45 atm, and 2.34 atm respectively.

Explanation:

To calculate the partial pressure of each gas, we will first need to calculate the moles of each gas. For methane, the molar mass is 16.04 g/mol, so 8.00 g / 16.04 g/mol = 0.499 mol. The molar mass of ethane is 30.07 g/mol, so 18.0 g / 30.07 g/mol = 0.598 mol. The total moles of gas can be calculated by the total pressure and volume using the Ideal gas law, PV=nRT. The total moles of gases are 5.0 atm *10.0L/(0.0821*296.15K) = 2.06 mol. Hence, the moles of propane are 2.06 - 0.499 - 0.598 = 0.963 mol.

Using Dalton's law of partial pressures, the partial pressure of each gas can be calculated by (moles of gas/ total moles) * total pressure. Hence, the partial pressures of methane, ethane, and propane are  0.499 / 2.06 * 5.00 atm = 1.21 atm, 0.598 / 2.06 * 5.00 atm = 1.45 atm, and 0.963 / 2.06 * 5.00 atm = 2.34 atm, respectively.

Learn more about partial pressure here:

https://brainly.com/question/31214700

#SPJ3

When (1R,2R)-2-bromocyclohexanol is treated with a strong base, an epoxide (cyclic ether) is formed. Suggest a mechanism for formation of the epoxide: Draw step 1 of the mechanism. Include lone pairs and formal charges in your answer. Do not explicitly draw out any hydrogen atoms in this step of the mechanism EXCEPT for the hydrogen on the oxygen atom of the organic starting material.

Answers

Answer:

Here's what I get  

Explanation:

In Step 1, the hydroxide ion removes a proton from the OH group (acid-base equilibrium).

In Step 2, the alkoxide non undergoes an internal SN2 attack on the back side of the carbon bearing the bromine.

The bromide ion is ejected, and the final product is the epoxide.

Precipitation reactions always occur when two aqueous solutions are mixed (T/F)

Answers

Answer: The given statement is false.

Explanation:

Precipitation reaction is defined as the chemical reaction in which two aqueous solution upon mixing together results in the formation of an insoluble solid.

For example, [tex]NaCl(aq) + AgNO_{3} \rightarrow NaNO_{3}(aq) + AgCl(s)[/tex]

Here AgCl is present in solid state so, it is the precipitate.

But it is not necessarily true that two aqueous solutions will always result in the formation of a precipitate.

For example, [tex]NaCl(aq) + KNO_{3}(aq) \rightarrow KCl(aq) + NaNO_{3}(aq)[/tex]

Hence, we can conclude that the statement precipitation reactions always occur when two aqueous solutions are mixed, is false.

The statement is false; precipitation reactions occur when two aqueous solutions form an insoluble product. Whether a reaction occurs depends on the solubility rules of the compounds formed.

The statement that precipitation reactions always occur when two aqueous solutions are mixed is false. A precipitation reaction occurs when two solutions are mixed and an insoluble product, the precipitate, forms. Whether a precipitation reaction occurs depends on the solubility rules of the ionic compounds formed during the mixing of the two solutions. If none of the possible combinations result in an insoluble product, then no precipitation will occur. This is described by solubility rules, which predict the solubility of different ionic compounds in water.

Ammonia, NH3, is used as a refrigerant. At its boiling point of –33 oC, the standard enthalpy of vaporization of ammonia is 23.3 kJ/mol. How much heat is released when 50.0 g of ammonia is condensed at –33 oC?–0.466 kJ–7.94 kJ–36.6 kJ–68.4 kJ–1.17 x 103 kJ

Answers

Answer:

-68.4 kJ

Explanation:

The standard enthalpy of vaporization = 23.3 kJ/mol

which means the energy required to vaporize 1 mole of ammonia at its boiling point (-33 °C).

To calculate heat released when 50.0 g of ammonia is condensed at -33 °C.

This is the opposite of enthalpy of vaporization which means that same magnitude of heat is released.

Thus,  Q = -23.3 kJ/mol

Where negative sign signifies release of heat

Given: mass of 50.0 g

Molar mass of ammonia = 17.034 g/mol

Moles of ammonia = 50.0 /17.034 moles = 2.9353 moles

Also,

1 mole of ammonia when condenses at -33 °C releases 23.3 kJ

2.9412 moles of ammonia when condenses at -33 °C releases 23.3×2.9353 kJ

Thus, amount of heat released when 50 g of ammonia condensed at -33 °C= -68.4 kJ, where negative sign signifies release of heat.

Final answer:

The heat released when 50.0 g of ammonia condenses at its boiling point is -68.4 kJ. This is calculated by multiplying the moles of ammonia by the enthalpy of vaporization and recognizing that heat is released in condensation.

Explanation:

To solve this problem, we need to understand the concept of enthalpy of vaporization, which is the heat needed to convert 1 mole of a substance from a liquid to a gas at constant pressure and temperature. For ammonia (NH3), which boils at -33 °C, the enthalpy of vaporization is 23.3 kJ/mol. However, we want the heat released when 50.0 g (around 2.94 moles) of ammonia condenses, which is the reverse process of vaporization. Thus, the energy would be released rather than absorbed.

Now, let's calculate this value. We multiply the number of moles of ammonia by the enthalpy of vaporization:

2.94 moles x 23.3 kJ/mol = 68.4 kJ

Since this is the reverse of the process of vaporization, heat is released, so the enthalpy change is negative (-68.4 kJ). Therefore, the correct answer is -68.4 kJ.

Learn more about Enthalpy of Vaporization here:

https://brainly.com/question/32361849

#SPJ11

A sample containing only carbon, hydrogen, and silicon is subjected to elemental analysis. After complete combustion, a 0.7020 g sample of the compound yields 1.4 g of CO2, 0.86 g of H2O, and 0.478 g of SiO2. What is the empirical formula of the compound?

Answers

Answer: The empirical formula of compound is [tex]C_4H_{12}Si[/tex].

Explanation:

Mass of Sample= 0.702 g

Mass of [tex]CO_2[/tex] = 1.4 g

Mass of [tex]H_2O[/tex] = 0.86 g

Mass of [tex]SiO_2[/tex] = 0.478 g  

First we have to calculate moles of[tex]CO_2[/tex], [tex]H_2O[/tex] and [tex]SiO_2[/tex] formed.

1. Moles of [tex]CO_2=\frac{1.4g}{44g/mol}=0.032mol[/tex]

Now , Moles of carbon == Moles of [tex]CO_2[/tex] = 0.032

2.  Moles of [tex]H_2O=\frac{0.86g}{18g/mol}[/tex]=0.048mol​​​

Now , Moles of hydrogen = [tex]2\times[/tex] Moles of [tex]H_2O[/tex] =[tex]2\times 0.048=0.096mol[/tex]

3.  Moles of [tex]SiO_2=\frac{0.478g}{60g/mol}=0.008[/tex] mol

Now , Moles of silicon = Moles of [tex]SiO_2[/tex] = 0.008 moles

Therefore, the ratio of number of moles of C : H : Si is  = 0.032 : 0.096 : 0.008

For the mole ratio, divide each value of moles by the smallest number of moles calculated.

For C= [tex]\frac{0.032}{0.008}=4[/tex]

For H =[tex]\frac{0.096}{0.008}=12[/tex]

For Si=[tex]\frac{0.008}{0.008}=1[/tex]

Thus, C: H: Si = 4 : 12 : 1

The simplest ratio represent empirical formula.

Hence, the empirical formula of compound is [tex]C_4H_{12}Si[/tex].

Final answer:

To find the empirical formula of the compound, calculate the moles of each element from the given masses of CO2, H2O, and SiO2. The empirical formula for this compound is CH4Si.

Explanation:

To determine the empirical formula of the compound, first, calculate the moles of each element using the given masses of CO2, H2O, and SiO2. Next, find the ratio of the moles of each element to each other and simplify if necessary to get the empirical formula. In this case, the empirical formula of the compound is **CH4Si**.

Type in the correct values to correctly represent the valence electron configuration of oxygen: AsB2pC

Answers

Answer:

2s²2p⁴

Explanation:

Oxygen is an element on the periodic table with a total of 8 electrons. It's electronic configuration is given as 2,6.

Using the orbital notation we write as 1s²2s²2p⁴

Also, the valence electrons are the electrons in the outermost shell of an atom. These electrons mostly determine the chemical properties of an atom.

Oxygen has a total of 6 electrons in its outermost shell and it is given as 2s²2p⁴

Answer:

2s²2p⁴

Explanation:

A second order reaction is 50% complete in 15 min. How long after the start of the 10 reaction will it be 85% complete?

Answers

Answer: 85 minutes

Explanation:

Half life is the amount of time taken by a radioactive material to decay to half of its original value.

Half life for second order kinetics is given by:

[tex]t_{\frac{1}{2}=\frac{1}{k\times a_0}[/tex]

[tex]t_{\frac{1}{2}[/tex] = half life = 15 min

k = rate constant =?

[tex]a_0[/tex] = initial concentration = 100 (say)

[tex]15min=\frac{1}{k\times 100}[/tex]

[tex]k=\frac{1}{1500}[/tex]

Integrated rate law for second order kinetics is given by:

[tex]\frac{1}{a}=kt+\frac{1}{a_0}[/tex]

a= concentration left after time t = [tex]100-\farc{85}{100}\times 100=15[/tex]

[tex]\frac{1}{15}=\frac{1}{1500}\times t+\frac{1}{100}[/tex]

[tex]t=85min[/tex]

Thus after 85 minutes after the start of the reaction, it will be 85% complete.

Triacylglycerols (triglycerides) are the form of lipids that are efficient reserves for storage of energy, and are found in adipose tissues.(T/F)

Answers

Answer:

True

Explanation:

When we consume food, our body converts the excess amount of food in our body into triglycerides and stores it. These triacylglycerols or triglycerides, commonly known as fats, come under the category of lipids.

Triglycerides are the stored form of energy, that our body uses at the time of need.

Adipose tissues are known as fat tissues, as their main function is the storage of triglycerides in our body.

When rubidium ions are heated to a high temperature, two lines are observed in its line spectrum at wavelengths (a) 7.9 × 10−7 m and (b) 4.2 × 10−7 m. What are the frequencies of the two lines? What color do we see when we heat a rubidium compound?

Answers

Answer:

The frequencies of the two lines are:

a) [tex]3.79\times 10^{14} s^{-1}[/tex]

b)[tex]7.14\times 10^{14} s^{-1}[/tex]

When we heat rubidium compound we will see red color.

Explanation:

[tex]\nu=\frac{c}{\lambda }[/tex]

c = speed of light

[tex]\lambda [/tex] = wavelength of light

a) Frequency of the light when wavelength is equal to [tex]7.9\times 10^{-7} m[/tex]

[tex]\nu=\frac{c}{\lambda }[/tex]

[tex]\nu=\frac{3\times 10^8m/s)}{7.9\times 10^{-7}}[/tex]

[tex]\nu=3.79\times 10^{14} s^{-1}[/tex]

This frequency corresponds to red light

b) Frequency of the light when wavelength is equal to [tex]4.2\times 10^{-7} m[/tex]

[tex]\nu=\frac{c}{\lambda }[/tex]

[tex]\nu=\frac{3\times 10^8m/s)}{4.2\times 10^{-7}}[/tex]

[tex]\nu=7.14\times 10^{14} s^{-1}[/tex]

This frequency corresponds to violet light

When we heat rubidium compound we will see red color.

Final answer:

When rubidium ions are heated to a high temperature, two lines are observed in its line spectrum at wavelengths (a) 7.9 × 10⁻⁷ m and (b) 4.2 × 10⁻⁷ m. The frequencies of the two lines are 3.8 × 10¹⁴ Hz and 7.1 × 10¹⁴ Hz. The color observed when we heat a rubidium compound is red and blue.

Explanation:

When rubidium ions are heated to a high temperature, two lines are observed in its line spectrum at wavelengths (a) 7.9 × 10⁻⁷ m and (b)  4.2 × 10⁻⁷ m. To find the frequencies of these lines, we can use the equation v = c/λ, where v is the frequency, c is the speed of light, and λ is the wavelength. By plugging in the given wavelengths, we can calculate the frequencies.

The frequency of line (a) is 3.8 × 10¹⁴ Hz, and the frequency of line (b) is 7.1 × 10¹⁴ Hz.

When a rubidium compound is heated, we observe two lines in the line spectrum. The first line has a wavelength of 7.9 × 10⁻⁷ m, which corresponds to a red color. The second line has a wavelength of  4.2 × 10⁻⁷ m, which corresponds to a blue color.

Learn more about Rubidium ions line spectrum here:

https://brainly.com/question/4994855

#SPJ3

Metal Specific Heat Copper 0.385 J/(g°C) Magnesium 1.02 J/(g°C) Iron 0.450 J/(g°C) Silver 0.237 J/(g°C) Lead 0.127 J/(g°C) If the same amount of heat is added to 25.0 g of each of the metals, which are all at the same initial temperature, which metal will have the highest temperature?

Answers

Answer:

The answer would be Lead.

Explanation:

If the absolute temperature of a gas is quadrupled, what happens to the root‑mean‑square speed of the molecules? Nothing happens to the rms speed. The new rms speed is 16 times the original rms speed. The new rms speed is 4 times the original rms speed. The new rms speed is 2 times the original rms speed. The new rms speed is 1/4 the original rms speed.

Answers

Answer:

The new rms speed is 2 times the original rms speed.

Explanation:

The root‑mean‑square speed, rms, is related to temperature, , by the formula

[tex]_{rms}[/tex]= √3 / ℳ

For a given gas,  

[tex]_{rms}[/tex] ∝ √

or

[tex]_{rms,2}[/tex] / [tex]_{rms,1}[/tex] = √[tex]_{2}[/tex] / [tex]_{1}[/tex]

In this case, is quadrupled.

√4 = 2

The new rms speed is 2 times the original rms speed.

The root-mean-square (rms) speed of gas molecules is proportional to the square root of the temperature. If the absolute temperature is quadrupled, the new rms speed is 2 times the original rms speed.

Effect of Temperature on Root Mean Square Speed of Gas Molecules

The root-mean-square (rms) speed, [tex]V_{rms[/tex] , of the molecules in a gas is related to the absolute temperature, T, by the equation:

[tex]V_{rms[/tex] = [tex]\sqrt((3kBT) / m)[/tex]

where kB is the Boltzmann constant and m is the mass of a molecule. This shows that Vrms is proportional to the square root of the temperature. If the temperature T is quadrupled, the new temperature T' is 4T.

Therefore, the new rms speed [tex]V_{rms[/tex]' becomes:

[tex]V_{rms[/tex]' = [tex]\sqrt((3kB * 4T) / m)[/tex]= [tex]\sqrt(4) * \sqrt((3kBT) / m)[/tex] = 2 * [tex]V_{rms[/tex]

This means that the new rms speed is 2 times the original rms speed.

At a certain temperature the rate of this reaction is first order in HI with a rate constant of :0.0632s

2HIg=H2g+I2g Suppose a vessel contains HI at a concentration of 1.28M . Calculate how long it takes for the concentration of HI to decrease to 17.0% of its initial value. You may assume no other reaction is important. Round your answer to 2 significant digits.

Answers

Answer : The time taken for the reaction is, 28 s.

Explanation :

Expression for rate law for first order kinetics is given by :

[tex]k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}[/tex]

where,

k = rate constant  = 0.0632

t = time taken for the process  = ?

[tex][A_o][/tex] = initial amount or concentration of the reactant  = 1.28 M

[tex][A][/tex] = amount or concentration left time 't' = [tex]1.28\times \frac{17}{100}=0.2176M[/tex]

Now put all the given values in above equation, we get:

[tex]0.0632=\frac{2.303}{t}\log\frac{1.28}{0.2176}[/tex]

[tex]t=28s[/tex]

Therefore, the time taken for the reaction is, 28 s.

For an ideal gas mixture of A and B, if the total pressure is 100 kPa and component B has a mole fraction of 0.25, calculate the partial pressure of component

Answers

Answer:

The partial pressure of component A and B is 75 kPa and 25kPa respectively.

Explanation:

Total pressure of ideal gas mixture = 100kPa

Mole fraction of component B, [tex]\chi_B= 0.25[/tex]

Mole fraction of component A ,[tex]\chi_A[/tex]

As we know sum of all mole fraction in a mixture is equal to zero.

[tex]\chi_A+\chi+B=1[/tex]

[tex]\chi_A=1-\chi_B=1-0.25=0.75[/tex]

For partial pressure of each component we will apply Dalton's law of partial pressure:

[tex]p^{o}_i=p_{total}\times \chi_i[/tex]

Partial pressure of component a in a mixture:

[tex]p^{o}_A=p\times \chi_A=100kPa\times 0.75=75 kPa[/tex]

Partial pressure of component a in a mixture:

[tex]p^{o}_B=p\times \chi_B=100kPa\times 0.25=25 kPa[/tex]

When 1.6968 g of an organic iron compound containing Fe, C, H, and O was burned in O2, 3.1737 g of CO2 and 0.90829 g of H2O were produced. In a separate experiment to determine the mass percent of iron, 0.5446 g of the compound yielded 0.1230 g of Fe2O3. What is the empirical formula of the compound?

Answers

Answer: The empirical formula for the given compound is [tex]FeC_{47}H_{66}O_{26}[/tex]

Explanation:

The chemical equation for the combustion of compound having carbon, hydrogen, iron and oxygen follows:

[tex]Fe_wC_xH_yO_z+O_2\rightarrow CO_2+H_2O[/tex]

where, 'w', 'x', 'y' and 'z' are the subscripts of Iron, carbon, hydrogen and oxygen respectively.

We are given:

Mass of [tex]CO_2=3.1737g[/tex]

Mass of [tex]H_2O=0.90829g[/tex]

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

For calculating the mass of carbon:

In 44g of carbon dioxide, 12 g of carbon is contained.

So, in 3.1737 g of carbon dioxide, [tex]\frac{12}{44}\times 3.1737=0.865g[/tex] of carbon will be contained.

For calculating the mass of hydrogen:

In 18g of water, 2 g of hydrogen is contained.

So, in 0.90829 g of water, [tex]\frac{2}{18}\times 0.90829=0.101g[/tex] of hydrogen will be contained.

For calculating the mass of iron:

Percent of Fe in [tex]Fe_2O_3[/tex] = [tex]\frac{(2\times \text{molar mass of Fe}}{\text{molar mass of }Fe_2O_3}\times 100[/tex]

Molar mass of iron = 55.85 g/mol

Molar mass of iron (III) oxide = 159.69 g/mol

Putting values in above equation, we get:

[tex]\%\text{ mass of iron in }Fe_2O_3=\frac{2\times 55.85}{159.69}\times 100=69.94\%[/tex]

So, the amount of iron present in 0.1230 g of [tex]Fe_2O_3=\frac{69.94}{100}\times 0.1230=0.0860g[/tex] of iron.

Mass of oxygen in the compound = (1.6968) - (0.865 + 0.101 + 0.0860) = 0.6448 g

To formulate the empirical formula, we need to follow some steps:

Step 1: Converting the given masses into moles.

Moles of Carbon =[tex]\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{0.865g}{12g/mole}=0.072moles[/tex]

Moles of Hydrogen = [tex]\frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{0.101g}{1g/mole}=0.101moles[/tex]

Moles of Oxygen = [tex]\frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{0.6448g}{16g/mole}=0.0403moles[/tex]

Moles of Iron = [tex]\frac{\text{Given mass of iron}}{\text{Molar mass of iron}}=\frac{0.0860g}{55.85g/mole}=0.00153moles[/tex]

Step 2: Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.00153 moles.

For Carbon = [tex]\frac{0.072}{0.00153}=47.05\approx 47[/tex]

For Hydrogen  = [tex]\frac{0.101}{0.00153}=66.01\approx 66[/tex]

For Oxygen  = [tex]\frac{0.0403}{0.00153}=26.33\approx 26[/tex]

For Iron  = [tex]\frac{0.00153}{0.00153}=1[/tex]

Step 3: Taking the mole ratio as their subscripts.

The ratio of Fe : C : H : O = 1 : 47 : 66  : 26

Hence, the empirical formula for the given compound is [tex]Fe_1C_{47}H_{66}O_{26}=FeC_{47}H_{66}O_{26}[/tex]

Other Questions
A 1500-kg car traveling at 30 m/s east collides with a 3000-kg car traveling at 20 m/s south. The two cars stick together after the collision. What is the speed of the cars after collision? the variable z is directly proportional to x, and inversely proportional to y. when x is 9 and y is 6, z has the value 19.5. what is the value of z when x=14, and y=7 A circle has its center at (1, 4) and a radius of 2 units. What is the equation of the circle? A circle is centered at the point (-3,2) and passes through the point (1,5). What is the radius of the circle? Which expression is equivalent to the expression below? (X/x+4)/x When graphing any equation what is a great fall back plan if you can't remember the learned procedure?EstimateCreate a t-chart to graph the coordinatesSolve for y and use the slope-intercept formFind the 0's of the function Question 1 (Essay Worth 10 points)(07.02 MC)The lengths of three sides of a quadrilateral are shown below:Side 1: 4y + 2y2 3Side 2: 4 + 2y2 + 2y Side 3: 4y2 3 + 2yThe perimeter of the quadrilateral is 22y3 + 10y2 + 10y 17.Part A: What is the total length of sides 1, 2, and 3 of the quadrilateral? (4 points)Part B: What is the length of the fourth side of the quadrilateral? (4 points)Part C: Do the answers for Part A and Part B show that the polynomials are closed under addition and subtraction? Justify your answer. (2 points)Question 2 (Essay Worth 10 points)(07.01, 07.06 MC)The side of a square measures (2x 5) units.Part A: What is the expression that represents the area of the square? Show your work to receive full credit. (4 points)Part B: What are the degree and classification of the expression obtained in Part A? (3 points)Part C: How does Part A demonstrate the closure property for polynomials? (3 points)Question 3 (Essay Worth 10 points)(07.09 HC)A container of oil has spilled on a concrete floor. The oil flow can be expressed with the function n(t) = 7t, where t represents time in minutes and n represents how far the oil is spreading.The flowing oil is creating a circular pattern on the concrete. The area of the pattern can be expressed as A(n) = n2.Part A: Find the area of the circle of spilled oil as a function of time, or A[n(t)]. Show your work. (6 points)Part B: How large is the area of spilled oil after 8 minutes? You may use 3.14 to approximate in this problem. (4 points) Twenty percent of all telephones of a certain type are submitted for service while under warranty. Of these, 60% can be repaired, whereas the other 40% must be replaced with new units. If a company purchases ten of these telephones, what is the probability that exactly two will end up being replaced under warranty? St has endpoint S(-2,-4) and T(6,8). Find the coordinates of the midpoint of ST Given the graph below, identify the list that has each point correctly identified. PLEASEEE HELPPP PLEASE HELP!!! WILL MARK BRAINLIESTIf you lean a ladder against a wall, the length of the ladder should be square root of (x)^2+(4x)^2ft to be considered safe. The distance x is how far the ladder's base is from the wall. estimate the desired length of the ladder when the base is positioned 5 ft from the wall. round your answers to the nearest tenth What happens during the S phase of the cell cycle? A. The cell copies its organelles B. The cell makes daughter cells. C. The cell doubles in size. D. The cell copies its DNA Which statements can be concluded from the diagram and used to prove that the triangles are similar by the SAS similarity theorem?PLEASE HELP ME!!!!!1 Value of X- intercept he following information applies to the questions displayed below:Wendell's Donut Shoppe is investigating the purchase of a new $18,600 donut-making machine. The new machine would permit the company to reduce the amount of part-time help needed, at a cost savings of $3,800 per year. In addition, the new machine would allow the company to produce one new style of donut, resulting in the sale of 1,000 dozen more donuts each year. The company realizes a contribution margin of $1.20 per dozen donuts sold. The new machine would have a six-year useful life. (Ignore income taxes.)Requirements:1. What would be the total annual cash inflows associated with the new machine for capital budgeting purposes?Total annual cash inflows$ 2. Find the internal rate of return promised by the new machine. (Round your answer to two decimal places.)Internal rate of return %3. In addition to the data given previously, assume that the machine will have a $4,125 salvage value at the end of six years. Under these conditions, compute the internal rate of return. (Round your answer to two decimal places.)Internal rate of return % what is the perimeter of a polygon abcd vertex a(5,12) b(9,9) c(12,5) d(0,0)a.28 unitsb.32 unitsc.36 unitsd.44 units Which Response core capability includes delivering essential commodities, equipment, and services in support of impacted communities and survivors, to include emergency power and fuel support, as well as the coordination of access to community staples? A. Logistics and Supply Chain Management B. Mass-Care Services C. Infrastructure Systems D. Environmental Response/Health and Safety Which of the following is considered venison? A. Rabbit B. Elk C. Lamb D. Squab Use the substitution method to solve the system of equations. Choose thecorrect ordered pair.x + 2y = 12- x= -y-6O A. (6.0)O B. (8,2)C. (9,3)(7.1) Rewrite the sentences replacing the subjects with the ones in parentheses. Follow the model Modelo Ayer Mara sirvi una rica cena. (t) Ayer t serviste una rica cena. 1 Anoche nos sentimos alegres. (mis primos) 2. Melinda y Juan siguieron a Camelia por la ciudad en el auto. (yo) 3. Alejandro prefiri quedarse en casa. (ustedes) 4. Ped un plato de langosta con salsa de mantequilla. (ellas) 5. Los camareros les sirvieron una ensalada con atn y esprragos. (tu esposo)