The closest stars are 4 light years away from us. How far away must you be from a 854 kHz radio station with power 50.0 kW for there to be only one photon per second per square meter? Assume that the photons spread out spherically. The area of a sphere is 4????????2.

Answers

Answer 1

Answer:

The distance from the radio station is 0.28 light years away.

Solution:

As per the question:

Distance, d = 4 ly

Frequency of the radio station, f = 854 kHz = [tex]854\times 10^{3}\ Hz[/tex]

Power, P = 50 kW = [tex]50\times 10^{3}\ W[/tex]

[tex]I_{p} = 1\ photon/s/m^{2}[/tex]

Now,

From the relation:

P = nhf

where

n = no. of photons/second

h = Planck's constant

f = frequency

Now,

[tex]n = \frac{P}{hf} = \frac{50\times 10^{3}}{6.626\times 10^{- 34}\times 854\times 10^{3}} = 8.836\times 10^{31}\ photons/s[/tex]

Area of the sphere, A = [tex]4\pi r^{2}[/tex]

Now,

Suppose the distance from the radio station be 'r' from where the intensity of the photon is [tex]1\ photon/s/m^{2}[/tex]

[tex]I_{p} = \frac{n}{A} = \frac{n}{4\pi r^{2}}[/tex]

[tex]1 = \frac{8.836\times 10^{31}}{4\pi r^{2}}[/tex]

[tex]r = \sqrt{\frac{8.836\times 10^{31}}{4\pi}} = 2.65\times 10^{15}\ m[/tex]

Now,

We know that:

1 ly = [tex]9.4607\times 10^{15}\ m[/tex]

Thus

[tex]r = \frac{2.65\times 10^{15}}{9.4607\times 10^{15}} = 0.28\ ly[/tex]


Related Questions

Termination of translation requires a termination signal, RNA polymerase, and a release factor. a release factor, initiator tRNA, and ribosomes. initiation factors, the small subunit of the ribosome, and mRNA. elongation factors and charged tRNAs.

Answers

termination signala release factor

Termination of translation requires a termination signal, and a release factor

Explanation:

There are 3 stops codons of the 64 possible codons. These are UAA, UAG, or UGA. These do not code for amino acids and are therefore not recognized by any anticodons for any of the ‘charged’ tRNA. These codons, are recognized by release factors that ‘knock off’ the newly synthesized peptide from the ribosome through peptidyl-tRNA hydrolysis. There are several release factors (RF1 and RF2) in bacteria but in eukaryotes only one RF has been discovered to recognize the 3 stop codons.

Learn More:

For more on translation termination check out;

https://brainly.com/question/13868473

https://brainly.com/question/273550

https://brainly.com/question/2273699

#LearnWithBrainly

Final answer:

Translation termination is signaled by a stop codon and facilitated by release factors and ribosomes, which lead to the release of the newly synthesized protein and the disassembly of the ribosomal complex.

Explanation:

Termination of translation requires a termination signal, which is a stop codon (UAA, UAG, or UGA) that doesn't code for an amino acid but rather signals the end of the translation process. During this stage, release factors recognize the stop codon and prompt the addition of a water molecule to the carboxyl end of the peptidyl-tRNA in the P site. This action leads to the release of the newly synthesized polypeptide chain. Ribosomes, which consist of a large and a small subunit, dissociate from the mRNA and from each other upon the completion of translation.

Ribosomes, release factors, and the mRNA template are the key participants in the termination process. Initiator tRNA and elongation factors with charged tRNAs are involved in the initiation and elongation stages of translation, but not in termination.

A race car travels 99 m/s around a circular track of radius 52 m. What is the magnitude of the resultant force on the 1900 kg driver and his car if the car does not slip? Answer in units of kN.

Answers

Final answer:

The magnitude of the resultant force on the race car and driver is 357.375 kN.

Explanation:

First, we need to find the centripetal acceleration of the race car traveling around the circular track. The centripetal acceleration can be found using the formula:

a = v² / r

where v is the velocity of the car and r is the radius of the circular track. Plugging in the values, we get:

a = (99 m/s)² / 52 m = 188.25 m/s²

Next, we can use Newton's second law of motion to find the magnitude of the resultant force acting on the car. The formula is:

F = m * a

where F is the force, m is the mass of the car, and a is the centripetal acceleration. Plugging in the values, we get:

F = (1900 kg) * (188.25 m/s²) = 357,375 N

Finally, we can convert the force to kilonewtons (kN) by dividing by 1000:

F = 357,375 N / 1000 = 357.375 kN

Learn more about Centripetal force here:

https://brainly.com/question/11324711

#SPJ11

A cabin has a 0.159-m thick wooden floor [k = 0.141 W/(m · C°)] with an area of 13.4 m2. A roaring fire keeps the interior of the cabin at a comfortable 18.0 °C while the air temperature in the crawl space below the cabin is –16.4°C. What is the rate of heat conduction through the wooden floor?

Answers

Answer:

[/tex] 408.8[/tex]

Explanation:

[tex]t[/tex] = thickness of the floor = 0.159 m

[tex]k[/tex] = thermal conductivity of wooden floor = 0.141 Wm⁻¹ ⁰C⁻¹

[tex]T_{i}[/tex] = Temperature of the interior of the cabin = 18.0 ⁰C

[tex]T_{o}[/tex] = Temperature of the air below the cabin = - 16.4 ⁰C

Difference in temperature is given as

[tex]\Delta T[/tex] = Difference in temperature = [tex]T_{i} - T_{o} = 18 - (- 16.4) = 34.4[/tex]⁰C

[tex]A[/tex] = Area of the floor = 13.4 m²

[tex]Q[/tex] = Rate of heat conduction

Rate of heat conduction is given as

[tex]Q = \frac{kA \Delta T}{t}[/tex]

[tex]Q = \frac{(0.141) (13.4) (34.4)}{0.159}\\Q = 408.8[/tex] W

What can turn a natural hazard into a natural disaster?

Answers

Answer: A hazard is a condition that has the potential to cause harm.

A natural hazard is a potentially harmful situation, where a person places himself in a naturally unsafe zone.

A natural disaster is a large scale destruction of life and properties by the forces of nature.

A natural hazard can become a natural disaster in some cases where the natural harmful situation a person places himself in, is acted upon by the forces of nature on a large scale.

Which of the following would constitute evidence against Turcotte's model?
A) the success of gradualist models explaining the surface of Mars
B) an even more detailed map of the surface of Venus
C) an even longer river of lava on Io, a moon of Jupiter
D) a few active volcanoes on Ishtar Terra, a continent on Venus
E) a volcano on Earth releasing a massive burst of thermal energy all at once

Answers

Answer: answer is option A

Explanation: gradually model ascertained the features of the surface of mass is explaining it as gradual incremental changes continuously over a long period of time which negates the catastrophic model nature of turtles model

A heavy steel ball is hung from a cord to make a pendulum. The ball is pulled to the side so that the cord makes a 5 ∘ angle with the vertical. Holding the ball in place takes a force of 40 N . If the ball is pulled farther to the side so that the cord makes a 8 ∘ angle, what force is required to hold the ball?

Answers

Answer:

f = 63.8 N

Explanation:

initial angle to the vertical = 5 degrees

initial holding force = 40 N

final angle to the vertical = 8 degrees

final holding force = ?

find the final holding force

force = mgSinθ

        m = mass  and  g = acceleration due to gravity

for the initial holding force:

        40 = mgSin5

        mg = [tex]\frac{40}{sin5}[/tex] ....equation 1

for the final holding force:

        f = mgSin8  ......equation 2

   substituting the value of mg from equation 1 (where mg = [tex]\frac{40}{sin5}[/tex] ) into equation 2

    f = mgSin8 = [tex]\frac{40}{sin5}[/tex] x Sin8

   f = 63.8 N

       

Answer:

64 N

Explanation:

Given that the angles are very small, the following approximation can be made:

F ≈ m*g*α

where F is the force needed to hold the ball, m is the ball mass, g is the acceleration of gravity and α is the angle between the cord and the vertical.

Let's call F1 the force needed to hold the ball at 5° (α1) and F2 the force needed to hold the ball at 8° (α2).

F1 ≈ m*g*α1

F2 ≈ m*g*α2

Dividing the equations:

F1/F2 = α1/α2

F2 = (α2/α1)*F1

F2 = (8/5)*40

F2 = 64 N

Standing at a crosswalk, you hear a frequency of 540 Hz from the siren of an approaching ambulance. After the ambulance passes, the observed frequency of the siren is 446 Hz. Determine the ambulance's speed from these observations. (Take the speed of sound to be 343 m/s.)

Answers

Answer:

Speed of the ambulance is 32.7 metres per second.

Explanation:

Let the actual frequency of the siren be [tex]f_{0}[/tex].

Frequency observed by me when ambulance is approaching = 540 Hz

Frequency observed by me when ambulance is moving away = 446 Hz

Let [tex]v_{s}[/tex] be the speed of sound and [tex]v_{a}[/tex] be the speed of ambulance.Then according to Doppler effect:

When source is moving towards observer,frequency observed is given as

[tex]f_{0} \times \frac{v_{s} }{v_{s} - v_{a} }[/tex] = 540 Hz    

When source is moving away from observer,frequency observed is given as

[tex]f_{0} \times \frac{v_{s} }{v_{s} + v_{a} }[/tex] = 446 Hz    

Taking [tex]v_{s} = 343 \frac{m}{s}[/tex] and solving the above two equations by eliminating [tex]f_{0}[/tex],

we get [tex]v_{a} = 32.7 \frac{m}{s}[/tex]

Approximately how long does it take the sun to orbit the milky way galaxy?

Answers

Answer:

it takes the sun about 230 million years to orbit the milky way.

Explanation:

we're moving at an average velocity of 828,000 km/hr but it still takes us a long time to orbit the milky way.

Amy is out with her friends. Misfortune occurs and Amy and her friends find themselves getting a workout. They apply a cumulative force of 1080 N to push the car 218 m to the nearest fuel station. Determine the work done on the car.A. 2.35 x 105 JB. 2.05 x 105 JC. 1.35 x 105 JD. 3.25 x 105 J

Answers

Answer:

2.35 x 10^{5} J

Explanation:

force (f) = 1080 N

distance (d) = 218 m

find the work done

work is said to be done when force applied to an object moves the object, therefore work done = force x distance

work done = 1080 x 218 = 235,440 J = 2.35 x 10^{5} J

The Earth and the moon are attracted to each other by gravitational force. The more massive Earth attract the less massive moon with a force that is (greater than, less than, the same as) the force with which the moon attracts the Earth.

Answers

Answer:

Earth attract the less massive moon with a force that is the same as the force with which the moon attracts the Earth.

Explanation:

This can be explained by Newton's third law:

[tex]F_{12}=-F_{21}[/tex]

The force exerted by body 1 on body 2 is the same as that exerted by body 2 on body 1, only with the opposite sign.

In this case that force is the gravitational force, but the law still applies.

So the moon and the earth are attracted with the same magnitude of force.

A cylinder is 0.10 m in radius and 0.20 in length. Its rotational inertia, about the cylinder axis on which it is mounted, is 0.020 kg  m2. A string is wound around the cylinder and pulled with a force of 1.0 N. The angular acceleration of the cylinder is:

Answers

Answer:[tex]5 rad/s^2[/tex]

Explanation:

Given

Radius of cylinder r=0.1 m

Length L=0.2 in.

Moment of inertia I=0.020 kg-m^2

Force F=1 N

We Know Torque is given by

[tex]Torque =I\alpha =F\cdot r[/tex]

where [tex]\alpha =angular\ acceleration[/tex]

[tex]I\alpha =F\cdot r[/tex]

[tex]0.02\cdot \alpha =1\cdot 0.1[/tex]

[tex]\alpha =5 rad/s^2[/tex]    

The angular acceleration of the cylinder is 5 rad/s².

To calculate the angular acceleration of the cylinder, we use the formula of torque below.

What is torque?

Torque is the force that causes a body to rotate about an axis.

Formula:

Iα = Fr........... Equation 1

Where:

I = rotational initialα = Angular accelerationr = Radius of the cylinderF = Forceθ = Angle.

Make α the subject of the equation

α  = RFsinθ/I............. Equation 2

From the question,

Given:

r = 0.1 mF = 1.0 NI = 0.020 kgm²θ = 90° ( Since the rope is tangental to the side of the cylinder).

Substitute these values into equation 2

α = (1.0×0.1×sin90°)/(0.02)α = 5 rad/s²

Hence, The angular acceleration of the cylinder is 5 rad/s².

Learn more about torque here: https://brainly.com/question/20691242

Each of 100 identical blocks sitting on a frictionless surface is connected to the next block by a massless string. The first block is pulled with a force of 100 N. What is the tension in the string connecting block 100 to block 99? What is the tension in the string connecting block 50 to block 51?

Answers

Answer:

The tension in the string connecting block 50 to block 51 is 50 N.

Explanation:

Given that,

Number of block = 100

Force = 100 N

let m be the mass of each block.

We need to calculate the net force acting on the 100th block

Using second law of newton

[tex]F=ma[/tex]

[tex]100=100m\times a[/tex]

[tex]ma=1\ N[/tex]

We need to calculate the tension in the string between blocks 99 and 100

Using formula of force

[tex]F_{100-99}=ma[/tex]

[tex]F_{100-99}=1[/tex]

We need to calculate the total number of masses attached to the string

Using formula for mass

[tex]m'=(100-50)m[/tex]

[tex]m'=50m[/tex]

We need to calculate the tension in the string connecting block 50 to block 51

Using formula of tension

[tex]F_{50}=m'a[/tex]

Put the value into the formula

[tex]F_{50}=50m\times a[/tex]

[tex]F_{50}=50\times1[/tex]

[tex]F_{50}=50\ N[/tex]

Hence, The tension in the string connecting block 50 to block 51 is 50 N.

We have that for the Question "What is the tension in the string connecting block 100 to block 99? What is the tension in the string connecting block 50 to block 51?"

it can be said that

The tension in the string connecting block 100 to block 99 = [tex]1N[/tex]The tension in the string connecting block 50 to block 51 = [tex]50N[/tex]

From the question we are told

Each of 100 identical blocks sitting on a frictionless surface is connected to the next block by a massless string. The first block is pulled with a force of 100 N.

Assuming mass of each block is 1 kg

The equation for the force is given as

[tex]F = ma\\\\a = \frac{F}{m}\\\\ = \frac{100}{100*1}\\\\ = 1 m/s^2[/tex]

Now, between block 100 and 99,

[tex]F = ma\\\\F = 1*1 \\\\= 1 N[/tex]

Now between block 50 and 51. There are 50 blocks behind 51 st block,  so,

[tex]m = 50 Kg\\\\a = 1 m/s2 (assuming all blocks accelerate at same rate)\\\\F = 50 * 1\\\\F= 50 N[/tex]

For more information on this visit

https://brainly.com/question/23379286

1. The ___________ was used to find a Jupiter-sized planet through careful measurements of the changing position of a star in the sky.2. Discovering planets through the __________ requires obtaining and studying many spectra of the same star.3. The________________ successfully discovered thousands of extrasolar planets with a spacecraft that searched for transits among some 100,000 stars.4. The ____________ is used to find extrasolar planets by carefully monitoring changes in a star's brightness with time.5. Compared to the planets of our solar system, the composition of a _________________ most resembles the compositions of Uranus and Neptune.6. Observations indicating that other planetary systems often have jovian planets orbiting close to their stars are best explained by what we call______.7. An extrasolar planet that is rocky and larger than Earth is often called a_____.

Answers

Answer:

(1) The ____astrometric method_______ was used to find a Jupiter-sized planet through careful measurements of the changing position of a star in the sky.

(2) Discovering planets through the ____doppler method ______ requires obtaining and studying many spectra of the same star.

(3) The____kepler mission ____________ successfully discovered thousands of extrasolar planets with a spacecraft that searched for transits among some 100,000 stars.

(4) The ___transit method_________ is used to find extrasolar planets by carefully monitoring changes in a star's brightness with time.

(5) Compared to the planets of our solar system, the composition of a ____water world _____________ most resembles the compositions of Uranus and Neptune.

(6) Observations indicating that other planetary systems often have jovian planets orbiting close to their stars are best explained by what we call__migration ____.

(7) An extrasolar planet that is rocky and larger than Earth is often called a__super-Earth ___.

Final answer:

The Doppler technique and transit technique are used to discover extrasolar planets such as Jupiter-sized ones and those larger than Earth respectively. The Kepler mission has been successful in identifying thousands of these. The composition of extrasolar planets can differ, some resembling Uranus and Neptune, while the concept of 'planet migration' explains the closeness of large planets to their stars.

Explanation:

1. The Doppler technique was used to find a Jupiter-sized planet through careful measurements of the changing position of a star in the sky.

2. Discovering planets through the spectroscopy requires obtaining and studying many spectra of the same star.

3. The Kepler mission successfully discovered thousands of extrasolar planets with a spacecraft that searched for transits among some 100,000 stars.

4. The transit technique is used to find extrasolar planets by carefully monitoring changes in a star's brightness with time.

5. Compared to the planets of our solar system, the composition of a mini-Neptune most resembles the compositions of Uranus and Neptune.

6. Observations indicating that other planetary systems often have jovian planets orbiting close to their stars are best explained by what we call planet migration.

7. An extrasolar planet that is rocky and larger than Earth is often called a super-Earth.

Learn more about Extrasolar Planets here:

https://brainly.com/question/32889401

#SPJ12

Tech A says the first external component to install when assembling an engine is the intake manifold. Tech B says the exhaust manifolds should be installed after the intake manifold. Who is correct?

Answers

Answer:

both technicians are correct

Explanation:

both technicians are correct because technician A says the first external component to be installed is the intake manifold and technician B says the exhaust manifold should be installed after the intake manifold has been installed, this implies the same thing because installing the exhaust manifold after installing the intake manifold means you are installing the intake manifold first.

(a) How far must the spring be compressed for 3.20 J of potential energy to be stored in it? (b) You place the spring vertically with one end on the floor. You then drop a 1.20 kg book onto it from a height of 0.800 m above the top of the spring. Find the maximum distance the spring will be compressed.

Answers

Answer:

a= 0.063 m

b = 0.116 m

Explanation:

First of all, we need the spring constant in order to solve this problem. You are not giving that data, but I will tell you how to solve this assuming a value of k, In this case, let's assume the value of k is 1600 N/m. (I solved an exercise like this before, using this value).

Now, we need to use the expressions to calculate the distance of the spring.

The elastic potential energy (Uel) is given with the following formula:

Uel = 1/2 kx²

Solving for x:

x = √2*Uel/k

Replacing the data in the above formula (And using the value of k os 1,600):

x = √2 * 3.2 / 1600

x = 0.063 m

b) For this part, we need to apply the work energy theorem which is:

K1 + Ugrav1 + Uel1 + Uo = K2 + Ugrav2 + Uel2

Since in this part, the exercise states that the book is dropped, we can say that the innitial and the end is 0, therefore, K1 = K2 = 0.

The spring at first is not compressed, so Uel1 = 0, and Uo which is the potential energy of other factors, is also 0, because there are no other force or factor here. Therefore, our theorem is resumed like this:

Ugrav1 = Uel2

The potential energy from gravity is given by:

Ug = mgy

And as the spring is placed vertically, we know the height which the book is dropped, so the distance y is:

y = x + h

And this value of x, is the one we need to solve. Replacing this in the theorem we have:

mg(h+x) = 1/2kx²

g would be 9.8 m/s²

Now, replacing the data:

1.2*9.8(0.8 + x) = 1/2*1600x²

Rearranging and solving for x we have:

1.2*9.8*2(0.8 + x) = 1600x²

18.82 + 23.52x = 1600x²

1600x² - 23.52x - 18.82 = 0

Now we need to solve for x, using the general formula:

x = - (-23.52) ± √(-23.52)² - 4 * 1600 * (-18.82) / 2*1600

x = 23.52 ± √553.19 + 120,448 / 3200

x = 23.52 ± 347.85 / 3200

x1 = 23.52 + 347.85 / 3200 = 0.116 m

x2 = 23.52 - 347.85 / 3200 = -0.101 m

Using the positive value, we have that the distance is 0.116 m.

Point P is on the rim of a wheel of radius 2.0 m. At time t = 0, the wheel is at rest, and P is on the x-axis. The wheel undergoes a uniform angular acceleration of 0.01 rad/s2 about the center O. In the figure, the magnitude of the linear acceleration of P, when it reaches the y-axis, is closest to:
a..063
b..075
c..072
d..069
e..066

Answers

Answer:

e). [tex]a = 0.066 m/s^2[/tex]

Explanation:

As we know that wheel is turned by 90 degree angle

so the angular speed of the wheel is given as

[tex]\omega_f^2 - \omega_i^2 = 2\alpha \theta[/tex]

now we have

[tex]\omega_f^2 - 0 = 2(0.01)(\frac{\pi}{2})[/tex]

[tex]\omega = 0.177 rad/s[/tex]

now the centripetal acceleration of the point P is given as

[tex]a_c = \omega^2 R[/tex]

[tex]a_c = (0.177)^2(2)[/tex]

[tex]a_c = 0.063 m/s^2[/tex]

tangential acceleration is given as

[tex]a_t = R\alpha[/tex]

[tex]a_t = 2(0.01)[/tex]

[tex]a_t = 0.02 m/s^2[/tex]

now net acceleration is given as

[tex]a = \sqrt{a_t^2 + a_c^2}[/tex]

[tex]a = \sqrt{0.02^2 + 0.063^2}[/tex]

[tex]a = 0.066 m/s^2[/tex]

Final answer:

The question involves the calculation of linear acceleration of a point on a wheel undergoing angular acceleration. The linear acceleration involves both tangential and radial components, and these are combined to provide the total acceleration. The closest answer is 0.066 m/s^2.

Explanation:

The subject of this question is physics, specifically the concepts of angular acceleration and linear acceleration. Given an angular acceleration, we can find the linear acceleration by using the formula a = rα, where a is linear acceleration, r is the radius, and α is angular acceleration. Substituting the given values, we get a = 2.0 m * 0.01 rad/s2 = 0.02 m/s2. This value is the tangential acceleration of point P.

Since the point P is on the y-axis, the linear acceleration, a, is given by the radial acceleration which is equal to ω2r, where ω is the angular velocity and r is the radius of the circle. But we also have ω2 = 2αr, where ρ is the angular acceleration and r is the radius. So, the radial acceleration is (2αr)2r = 4α2r3. Substituting for α and r we get: 4*(0.01 rad/s2)2*(2.0 m)3 = 0.0016 m/s2.

The total linear acceleration is the vector sum of the radial and tangential accelerations. Since these vectors are perpendicular, we calculate their resultant by Pythagoras' theorem: √(at2 + ar2) = √(0.022 m/s2 + 0.00162 m/s2) = 0.02016 m/s2. Hence, the choice that's closest is (a) 0.066 m/s2.

Learn more about Angular Acceleration here:

https://brainly.com/question/32293403

#SPJ11

A vertical spring withk= 245N/m oscillates with an amplitude of 19.2cm when 0.457kg hangs from it. The mass posses through the equilibrium point (y= 0) with a negative velocity at t= 0.Assume that downward is the positive direction of motion. What equation describes this motion as a function of time?

Answers

Answer:

 y = -19.2 sin (23.15t) cm

Explanation:

The spring mass system is an oscillatory movement that is described by the equation

      y = yo cos (wt + φ)

Let's look for the terms of this equation the amplitude I

     y₀ = 19.2 cm

Angular velocity is

     w = √ (k / m)

     w = √ (245 / 0.457

     w = 23.15 rad / s

The φ phase is determined for the initial condition   t = 0 s ,  the velocity is negative v (0) = -vo

The speed of the equation is obtained by the derivative with respect to time

     v = dy / dt

     v = - y₀ w sin (wt + φ)

For t = 0

     -vo = -yo w sin φ

The angular and linear velocity are related v = w r

      v₀ = w r₀

      v₀ = v₀ sinφ

      sinφ = 1

      φ = sin⁻¹ 1

      φ = π / 4    rad

Let's build the equation

      y = 19.2 cos (23.15 t + π/ 4)

Let's use the trigonometric ratio π/ 4 = 90º

      Cos (a +90) = cos a cos90 - sin a sin sin 90 = 0 - sin a

       y = -19.2 sin (23.15t) cm

A new gel is being developed to use inside padding and helmets to cushion the body from impacts. The gel is stored in a 4.1 m^3 cylindrical tank with a diameter of 2 m. The tank is pressurized to 1.3 atm of surface pressure to prevent evaporation. A total pressure probe located at the bottom of the tank reads 60 ft of water. What is the specific gravity of the gel contained in the tank?

Answers

Answer:

[tex]SE_{gel} = 3.75[/tex]

Explanation:

First, we have to calculate the gel's column height using the cylinder's volume, as follows:

[tex]V=\pi\times r \times h\\h=\frac{V}{\pi \times r}\\h=\frac{4.1m^3}{\pi \times 1m}= 1.30 m[/tex]

Then, as the pressure given at the bottom of the tank is the sum of the surface pressure and the gel's column pressure, we need to calculate only the gel's column pressure:

ft of water is a unit of pressure, but we need to convert it to atm and then to Pa, in order to calculate our results in the correct units. Therefore, the conversion factor is:

1 ft of water (4°C) = 0.0295 atm

[tex]60 ft water \times \frac{0.0295 atm}{1 ft water}= 1.77  atm\\P_{bottom}=P_{surface}+P_{gel}\\P_{gel}=P_{bottom}-P_{surface}=1.77 atm - 1.3 atm\\P_{gel}= 0.47 atm\times \frac{101325Pa}{1 atm}=47622.75 Pa[/tex]

Now, to calculate the specific gravity, we need to find first the gel's density:

[tex]P_{gel} = \rho gh\\\rho = \frac{P_{gel}}{gh}=\frac{47622.75 Pa}{9.8 m/s^2 \times 1.30m}= 3738.04 \frac{kg}{m^3}[/tex]

[tex]SE_{gel} = \frac{\rho_{gel}}{\rho_{water}}= \frac{3738.04 kg/m^3}{997 kg/m^3} = 3.75\\SE_{gel} =3.75[/tex]

The specific gravity of the gel is 3.75.

Final answer:

To calculate the specific gravity of a gel, convert the pressure reading from feet of water to pascals, add the tank's pressurized atmosphere, then use the relation between pressure, density, gravity, and height to solve for the density of the gel, which is then compared to the density of water.

Explanation:

The question is asking to calculate the specific gravity of a gel based on the pressure reading from a probe at the bottom of a cylindrical tank. We are given the pressure as 60 ft of water. To convert this to a pressure that we can use to find density, we need to convert feet of water to pascals:

1 ft H2O = 2989.07 Pa

60 ft H2O = 60 * 2989.07 Pa = 179344.2 Pa

Since the tank is pressurized to 1.3 atmospheres at the surface, we must also consider this in our pressure calculation:

1 atm = 101325 Pa

1.3 atm = 1.3 * 101325 Pa = 131722.5 Pa

The total pressure at the bottom of the tank is the sum of the pressure due to the gel and the pressurized air:

Total pressure = 179344.2 Pa + 131722.5 Pa

Total pressure = 311066.7 Pa

To find the specific gravity, we use the following relation where the specific gravity is the ratio of the density of the gel (ρgel) to the density of water (ρH2O):

Specific gravity = ρgel / ρH2O

We know that pressure is also the product of density (ρ), gravity (g=9.81 m/s²), and height (h=60 ft * 0.3048 m/ft) for the fluid:

Pressure = ρgel * g * h

ρgel = Pressure / (g * h)

ρgel = 311066.7 Pa / (9.81 m/s² * 60 ft * 0.3048 m/ft)

After calculating ρgel, we divide that by the density of water (1000 kg/m³) to find the specific gravity.

Suppose that she pushes on the sphere tangent to its surface with a steady force of F = 75 N and that the pressured water provides a frictionless support. How long will it take her to rotate the sphere one time, starting from rest?

Answers

Answer:

The time taken to rotate the sphere one time is,  t = 22 s

Explanation:

Given data,

The mass of the sphere, m = 8200 kg

The radius of the sphere, r = 90 cm

                                             = .9 m

The force applied by the girl, F = 75 N

The moment of inertia of the sphere is,

                            I = 2/5 mr²

                              = (2/5) 8200 x (.9)²

                              = 2657 kg·m²

The torque,

                            τ = I α

                             75 x 0.9 = 2657 x α

                              α = 0.0254 rad/s²

The angular displacement,

                            θ = ½αt²

                             2π =  ½ x 0.0254 rad/s² x t²

                                t = 22 s

Hence, the time taken to rotate the sphere one time is,  t = 22 s

What is evaporation? Condensation? Drag the terms on the left to the appropriate blanks on the right to complete the sentences. ResetHelp liquid gaseous solid Evaporation is the physical change in which a substance converts from its state to its state. Condensation is the physical change in which a substance converts from its state to its state.

Answers

Answer:

Evaporation is the physical change in which a substance converts from its liquid state to its gaseous state. Condensation is the physical change in which a substance converts from its gaseous state to its liquid state.

Explanation:

Evaporation and condensation are opposite processes to each other. Evaporation changes a liquid to a gas and condensation is the reverse.

Waves on a swimming pool propagate at 0.720 m/s. You splash the water at one end of the pool and observe the wave go to the opposite end, reflect, and return in 31.0 s. How far away is the other end of the pool?

Answers

Answer:

11.16 m

Explanation:

total distance traveled by the wave = speed * time

                                                            = 0.720 m/s * 31.0 s

                                                            = 22.32 m

Since this is an echo back to the starting point then the length of the swimming pool must be half of the distance traveled.

length of swimming pool  =  22.32 m÷2 = 11.16 m

The intensity of a sunspot is found to be 3 times smaller than the intensity emitted by the solar surface. What is the approximate temperature of this sunspot if the temperature of the solar surface is 5800 K?

Answers

Answer:

4400 K approximately

Explanation:

Stefan-Boltzmann law establish that the power radiated from a black body in terms of its temperature which is proportional to [tex]T^4[/tex]

[tex]i = aT^4[/tex]  with a Stefan-Boltzmann constant

Also we know that [tex]i_{sunspot}[/tex] is three times [tex]i_{sun}[/tex]

[tex]i_{sun}=3i_{sunspot}[/tex] or [tex]\frac{i_{sun}}{i_{sunspot}} = 3[/tex]

Using the Stefan-Boltzmann we can write

[tex]\frac{i_{sun}}{i_{sunspot}} = 3 = \frac{aT_{sun}^4}{aT_{sunspot}^4}[/tex]

solving for [tex]T_{sunspot}[/tex]

[tex]T_{sunspot} = \left(\frac{T_{sun}^4}{3}\right)^{1/4}[/tex]

Replacing the value of [tex]T_{sun}[/tex] (5800 K) it is obtained that [tex]T_{sunspot}[/tex] is 4407.05

Based on discoveries to date, which of the following conclusions is justified?a) Most stars have one or more terrestrial planets orbiting within their habitable zones.b) Planets are common, but planets as small as Earth are extremely rare.c) Planetary systems are common and planets similar in size to Earth are also common.d) Although planetary systems are common, few resemble ours with terrestrial planets near the Sun and jovian planets far from the Sun.

Answers

Based on discoveries to date, the conclusion as “Planetary systems are common and planets similar in size to Earth are also common” is justified.

Answer: Option C

Explanation:

Some studies show that on average, each star has at least single planet. This means that most stars, such as the Solar System, possess planets (otherwise exoplanets). It is known that small planets (more or less Earthly or slightly larger) are more common than giant planets. The mediocrity principles state that planet like Earth should be universal in the universe, while the rare earth hypothesis says they are extremely rare.

Size is often considered an important factor, because planets the size of the Earth are probably more terrestrial and can hold the earth's atmosphere. The planetary system is a series of gravitational celestial objects orbiting a star or galaxy. Generally, planetary systems describe systems with one or more planets, although such systems may also consist of bodies such as dwarf planets, asteroids and the like.

To calculate current flow through any branch of a circuit by substituting the values of IX and RX for the branch
values when total circuit current and the resistance are known, use the _______________ formula.

A. reciprocal
B. current divider

Answers

Answer:

Current divider

Explanation:

To calculate current flow through any branch of a circuit by substituting the values of [tex]I_X\ and\ R_X[/tex] for the branch  values when total circuit current and the resistance are known, use the current divider formula.

A current divider is a circuit that produces output current as a function of input current. It is a rule to find the splitting of the current in all branches of the circuit. Hence, the correct option is (B).  

Final answer:

The formula to calculate the current flow through any branch of a circuit when the total circuit current and resistance are known is the current divider formula.

Explanation:

To calculate the current flow through any branch of a circuit by substituting the values of IX and RX for the branch values when total circuit current and the resistance are known, use the current divider formula. The current divider rule is particularly useful in parallel resistor circuits and it allows for the easy calculation of the current flowing through a resistor in parallel.

In a parallel circuit, the voltage across each branch is the same, but the current through each branch can be different, depending on the resistance of that branch. The current divider rule states that the current through a branch is the ratio of the total parallel resistance to the branch resistance, times the total current entering the parallel combination.

For example, if we want the current through resistor R1 (I1), and we know the total current (Itot) and the total parallel resistance (Rp), as well as the resistance of R1 (R1), we can use the formula:

I1 = Itot * (Rp / R1)

By knowing the total resistance and the total current, one can deduce the individual branch currents using Ohm's Law and the principles of parallel circuits.

Learn more about current divider formula here:

https://brainly.com/question/30637028

#SPJ3

What is the magnitude φinitial of the magnetic flux through one turn of the coil before it is rotated?

Answers

Answer:

Explanation:

Facts about magnetic flux;

(1). Change in magnetic flux is equal to the current generated.

(2). The magnetic field moves from the north to the south.

(3). Magnetic flux is equal to how much magnetic field goes through a direction.

(4). Magnetlc direction can be found found by using Lenz's law.

Faraday's law= emf= N(BA/ ∆t.

Where N= number of loop

∆B/∆T = rate at which flux changes.

The magnitude φ(initial) of the magnetic flux through one turn of the coil before it is rotated is

φ(initial) = BA while φ(final)= zero(0).

The initial magnetic flux through one turn of the coil, with the coil initially perpendicular to Earth's magnetic field, is 6.10 × 10⁻⁹ T×m².

To calculate the magnitude of the initial magnetic flux (φinitial) through one turn of the coil, we use the formula:

φ = B × A × cos(θ)

where:

B is the magnetic field (5.00 × 10⁻⁵ T)A is the area the coil encloses (12.2 cm²)θ is the angle between the magnetic field and the normal to the plane of the coil

Since initially, the plane of the coil is perpendicular to Earth's magnetic field, θ = 0°, and hence cos(θ) = 1. First, we must convert the area from cm² to m²:

A = 12.2 cm² × (1 m² / 10,000 cm²) = 12.2 × 10⁻⁴ m²

Now, we can calculate the magnetic flux:

φinitial = 5.00 × 10⁻⁵ T × 12.2 × 10⁻⁴ m² × cos(0°)

φinitial = 5.00 × 10⁻⁵ T × 12.2 × 10⁻⁴ m²

φinitial = 6.10 × 10⁻⁹ T×m²

This is the magnitude of the initial magnetic flux through one turn of the coil before it is rotated.

Complete Question:

A coil has 230 turns enclosing an area of 12.2 cm³. In a physics laboratory experiment, the coil is rotated during the time interval 3.00 × 10⁻² s from a position in which the plane of each turn is perpendicular to Earth's magnetic field to one in which the plane of each turn is parallel to the field. The magnitude of Earth's magnetic field at the lab location is 5.00 × 10⁻⁵ T.

What is the magnitude φinitial of the magnetic flux through one turn of the coil before it is rotated?

In a college homecoming competition, eighteen students lift a sports car. While holding the car off the ground, each student exerts an upward force of 400 N. (a) What is the mass of the car in kilograms? (b) What is its weight in pounds?

Answers

Answer:

Explanation:

Given

Each student exert a force of [tex]F=400 N[/tex]

Let mass of car be m

there are 18 students who lifts the car

Total force by 18 students [tex]F=18\times 400=7200 N[/tex]

therefore weight of car [tex]W=7200[/tex]

mass of car [tex]m=\frac{W}{g}[/tex]

[tex]m=\frac{7200}{9.8}=734.69 kg[/tex]

(b)[tex]7200 N \approx 1618.624\ Pound-force[/tex]

[tex]734.69 kg\approx 1619.71 Pounds[/tex]                  

The mass of the car lifted by eighteen students is 734.69 kg, and its weight is approximately 1620.29 pounds.

To determine the mass of the car that eighteen students lift in a college homecoming competition, given that each student exerts an upward force of 400 N, first calculate the total force exerted by the students: 18 students × 400 N per student = 7200 N.

Next, we use the equation for weight (W = mg) to find the mass (m), where W is the weight, m is the mass, and g is the acceleration due to gravity (9.8 m/s²). Thus, the mass of the car is m = W/g = 7200 N / 9.8 m/s² ≈ 734.69 kg.

To find the weight in pounds, we can use the conversion factor 1 kg ≈ 2.20462 lbs. Therefore, the weight of the car in pounds is approximately 734.69 kg × 2.20462 lbs/kg ≈ 1620.29 lbs.

A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light in the material?

Answers

Answer:

80% (Eighty percent)

Explanation:

The material has a refractive index (n) of 1.25

Speed of light in a vacuum (c) is 2.99792458 x 10⁸  m/s

We can find the speed of light in the material (v) using the relationship

n = c/v, similarly

v = c/n

therefore v = 2.99792458 x 10⁸  m/s ÷ (1.25) = 239 833 966 m/s

v = 239 833 966 m/s

Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as

(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%

Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)

Answer:

The percentage of speed of light in vacuum to the speed of light in the said material is 80%

Explanation:

The common values of refractive index are between 1 and 2 since nothing can travel faster than the speed of light, therefore, no material has a refractive index lower than 1.

According to the formula [tex]n=\frac{c}{v}[/tex]

where [tex]n[/tex] is the index of refraction

[tex]c[/tex] is the speed of light in vacuum

and [tex]v[/tex] is the speed of light in the material, it can be seen that n and v are inversely proportional which means greater the refractive index lower is the speed  of light.

Since we know that speed of light in vacuum is 300,000 km/s using the formula we get,

[tex]v=\frac{c}n}[/tex]

[tex]v=\frac{300000}{1.25}=240,000  km/s[/tex]

for finding percentage,

[tex]=\frac{240000}{300000}*100 = 80[/tex] %

A stone is launched vertically upward from a cliff 384 ft above the ground at a speed of 80 ft divided by s. Its height above the ground t seconds after the launch is given by s equals negative 16 t squared plus 80 t plus 384 for 0 less than or equals t less than or equals 8. When does the stone reach its maximum​ height?

Answers

Answer:

2.5 seconds

Explanation:

s(t) = -16t^2 + 80t + 384

for

0≤t≤8

First we differentiate s(t) to get s'(t)

s'(t) = -32t + 80

Let us then find the critical point; thus we will equate s'(t) to zero and then search for values where s'(t) is undefined

s'(t) = -32t + 80 = 0

t = 80/32

t = 2.5 sec

Let us evaluate s at the critical points and end points

s(0) = -16(0)^2 + 80(0) + 384 = 384

s(2.5) = -16(2.5)^2 + 80(2.5) + 384 = 684

s(8) = -16(8)^2 + 80(8) + 384 = 0

Thus, the stone attains it maximum height of 684ft at at t=2.5s

Two balls are thrown horizontally. Ball C is thrown with a force of 20 N, and ball D is thrown with a force of 40 N. Assuming all other factors are equal, ball D will fall toward the ground

Answers

Answer:

ball D will fall toward the ground at the same time as ball C

Explanation:

both balls experience the same downward (vertical) force of gravity as such they will both fall down at the same time, given that all other factors are equal.

although the ball were through with different forces,

those forces where in the horizontal direction but the force of gravity (downward force) will act on them equally to bring them down at the same time

Most of the water vapor and carbon dioxide in earth's atmosphere is found A. In the upper part of the atmosphere. B.In the thin layer right in the middle of the atmosphere C.In the lower part of the atmosphere. D.In the thick layer right in the middle of the atmosphere

Answers

Answer:

C] In the lower part of atmosphere

As the gases ( O₂ & CO₂ ) are most abundant here and supports life.

Hope it helps!

Happy Learning!!

:D

Other Questions
Vulcan Flyovers offers scenic overflights of Mount St. Helens, the volcano in Washington State that explosively erupted in 1982. Data concerning the companys operations in July appear below: Vulcan Flyovers Operating Data For the Month Ended July 31Actual Results Flexible Budget Planning Budget Flights (q) 55 55 53 Revenue ($350.00q) $ 16,200 $ 19,250 $ 18,550 Expenses: Wages and salaries ($3,700 $86.00q) 8,398 8,430 8,258 Fuel ($33.00q) 1,979 1,815 1,749 Airport fees ($870 $32.00q) 2,510 2,630 2,566 Aircraft depreciation ($9.00q) 495 495 477 Office expenses ($230 $1.00q) 453 285 283 Total expense 13,835 13,655 13,333 Net operating income $ 2,365 $ 5,595 $ 5,217 The company measures its activity in terms of flights. Customers can buy individual tickets for overflights or hire an entire plane for an overflight at a discount. Required:Complete the fexible budget perfromance for july: (a) Revenue and spending variance. (b) Activity variances. What gas is produced when calcium metal is dropped in water Suppose that a bank with no excess reserves receives a deposit into a checking account of $10,000 in currency. If the required reserve ratio is 0.20, what is the maximum amount that the bank can lend out?A) $2,000B) $8,000C) $10,000D) $50,000 A cubical box 25.0 cm on each side is fully immersed in a fluid. The pressure at the top surface of the box is 109.40 kPa and the pressure on the bottom surface is 112.00 kPa. What is the density of the fluid? Alexandra has 127 flowers. She putsthe same number of flowers in eachof her vases. How many flowers willbe left over? Jenna bought 5 reams of paper at the store for a total of $21 . The tax on her purchase was $1 . Write a equation and solve to find the price of each ream of paper A force of 350N is applied to a body. If the work done is 40kJ, what is the distance through which the body moved? Which sentences shows possession correctly?a.Jeffs' guitar is broken.b.Mary's sweater is missing.c.The bell is Johns.d.We found the dogs bone. For the last five months, Vivian borrowed ($35 from her brother to pay for her gymmembership. Vivian just received a raise and wants to repay the money she borrowed fromher brother. Vivian can only afford to repay $25 each month to her brother. How manymonths will it take Vivian to repay her brother the money she borrowed? In the film Atonement, in the scene where Robbie is at the typewriter, he sets the phonograph needle down on a Puccini aria from La Boheme. The aria begins as diegetic music, but it soon functions, in many respects, as nondiegetic music. Which of the following is NOT a way in which the aria functions as nondiegetic music? 1.) What are the zeros of the polynomial? f(x)=x^4-x^3-16x^2+4x+48.2.) How many complex zeros does the function f(x)=x^4+3x^3+5x^2-3x-6? 3.) Factor the polynomial function. f(x)=x^4+2x^3-6x^2+4x-16.Thanks for whoever answers If there was 10 pine trees & 2 ash trees how many more pine trees were there? Answer is 8 but need to know how to show the work?? A firm that has total fixed costs of $40,000 sells its output for $250 per unit and has an average variable cost of $150. If the firm's cost and revenue curves are linear and output is equal to 500 units, what is the firm's degree of operating leverage? A. 5 B. 4 C. 3 D. None of the above is correct. Kristen is spinning on the ice at 40 rad/s about her longitudinal axis when she abducts her arms and doubles her radius of gyration about her longitudinal axis from 32 cm to 64 cm. If her angular momentum is conserved, what is her angular velocity about her longitudinal axis after she increases her radius of gyration (in rad/s) All the cells shown are part of the same organism. Which can you infer to betrue?OAll of the cells came from the same cell.OAll of the cells are able to produce food molecules.OAll of the cells have the exact same function.OAll of the cells have the exact same structures. A 0.026 kg bullet is fired straight up at a falling wooden block that has a mass of 5.0 kg. The bullet has a speed of 750 m/s when it strikes the block. The block originally was dropped from rest from the top of a building and had been falling for a time t when the collision with the bullet occured. As a result of the collision, the block (with the bullet in it) reverses direction, rises, and comes to a momentary halt at the top of the building. Find the time t. A group of 24 people have found 7.2 kg of gold. Assuming the gold is divided evenly, how much gold will each one get in grams? Betech Inc. has $50,000 in its bank account and $3,000 worth of goods in its warehouse. What is this amount ($53,000) known as in accountingterms?A slow variableB. flow variableC. stock variableD. flock variable Wilona continually encourages her team to work independently from her -- the group leader. She does this by encouraging group cohesion. Wilona is an example of a ________ leader. a. transformational b. servant c. authoritarian d. charismatic Howard is saving for a long holiday. He deposits a fixed amount every month in a bank account with an EAR of 11.8%. If this account pays interest every month then how much should he save from each monthly paycheck in order to have $ 15 comma 000 in the account in five years' time?