The commercial for the new Meat Man Barbecue claims that it takes 10 minutes for assembly. A consumer advocate thinks that the claim is false. The advocate surveyed 50 randomly selected people who purchased the Meat Man Barbecue and found that their average time was 11.2 minutes. The standard deviation for this survey group was 3.1 minutes. What can be concluded at the 0.05 level of significance?H0: mu.gif= 10Ha: mu.gif [ Select ] [">", "<", "Not Equal to"] 10Test statistic: [ Select ] ["Chi-square", "F", "Z", "t"] p-Value = [ Select ] ["0.105", "0.009", "0.091", "0.025"] . Round your answer to three decimal places. [ Select ] ["Reject the null hypothesis", "Fail to reject the null hypothesis"] Conclusion: There is [ Select ] ["sufficient", "insufficient"] evidence to make the conclusion that the population mean amount of time to assemble the Meat Man barbecue is not equal to 10 minutes.

Answers

Answer 1

Answer:

There is enough evidence to make the conclusion that the population mean amount of time to assemble the Meat Man barbecue is not equal to 10 minutes (P-value=0.009).

Step-by-step explanation:

We have to perform an hypothesis test on the mean.

The null and alternative hypothesis are:

[tex]H_0: \mu=10\\\\H_1: \mu \neq 10[/tex]

The significance level is [tex]\alpha=0.05[/tex].

The test statistic t can be calculated as:

[tex]t=\frac{M-\mu}{s/\sqrt{N} } =\frac{11.2-10}{3.1/\sqrt{50} }=2.737[/tex]

The degrees of freedom are:

[tex]df=N-1=50-1=49[/tex]

The P-value (two-tailed test) for t=2.737 and df=49 is P=0.00862.

This P-value (0.009) is smaller than the significance level, so the effect is significant. The null hypothesis is rejected.

There is enough evidence to make the conclusion that the population mean amount of time to assemble the Meat Man barbecue is not equal to 10 minutes.

Answer 2

Final answer:

A hypothesis test can be conducted to test the claim made in the commercial for the new Meat Man Barbecue. The test results indicate that there is evidence to support that the population mean assembly time is not equal to 10 minutes.

Explanation:

To test the claim made in the commercial for the new Meat Man Barbecue, a hypothesis test can be conducted. The null hypothesis, H0, states that the population mean assembly time is 10 minutes, while the alternative hypothesis, Ha, states that it is not equal to 10 minutes. The test statistic to use in this case is the t-test, as we are comparing the sample mean to a known value. The p-value for this test is 0.009, which is less than the significance level of 0.05. Therefore, we reject the null hypothesis and conclude that there is evidence to support that the population mean assembly time is not equal to 10 minutes.


Related Questions

An article reported that for a sample of 58 kitchens with gas cooking appliances monitored during a one-week period, the sample mean CO2 level (ppm) was 654.16, and the sample standard deviation was 165.4.

(a) Calculate and interpret a 95% (two-sided) confidence interval for true average CO2 level in the population of all homes from which the sample was selected. (Round your answers to two decimal places.) , ppm Interpret the resulting interval. We are 95% confident that the true population mean lies below this interval. We are 95% confident that this interval does not contain the true population mean. We are 95% confident that this interval contains the true population mean. We are 95% confident that the true population mean lies above this interval.
(b) Suppose the investigators had made a rough guess of 184 for the value of s before collecting data. What sample size would be necessary to obtain an interval width of 47 ppm for a confidence level of 95%?

Answers

Answer:

Step-by-step explanation:

Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.




11.8 7.7 6.5 6.8 9.7 6.8 7.3



7.9 9.7 8.7 8.1 8.5 6.3 7.0



7.3 7.4 5.3 9.0 8.1 11.3 6.3



7.2 7.7 7.8 11.6 10.7 7.0



a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. [Hint: ?xi = 219.5.] (Round your answer to three decimal places.)



MPa




State which estimator you used.




x




p?




s / x




s




x tilde

Answers

Answer:

The point estimate for population mean is 8.129 Mpa.

Step-by-step explanation:

We are given the following in the question:

Data on flexural strength(MPa) for concrete beams of a certain type:

11.8, 7.7, 6.5, 6.8, 9.7, 6.8, 7.3, 7.9, 9.7, 8.7, 8.1, 8.5, 6.3, 7.0, 7.3, 7.4, 5.3, 9.0, 8.1, 11.3, 6.3, 7.2, 7.7, 7.8, 11.6, 10.7, 7.0

a) Point estimate of the mean value of strength for the conceptual population of all beams manufactured

We use the sample mean, [tex]\bar{x}[/tex] as the point estimate for population mean.

Formula:

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

[tex]\bar{x} = \dfrac{\sum x_i}{n} = \dfrac{219.5}{27} = 8.129[/tex]

Thus, the point estimate for population mean is 8.129 Mpa.

Final answer:

To estimate the mean flexural strength, the sum of strengths (219.5 MPa) is divided by the total number of beams measured (26), which yields a mean value of 8.442 MPa when rounded to three decimal places. The estimator used is the sample mean.

Explanation:

To calculate a point estimate of the mean value for flexural strength (MPa) for a conceptual population of concrete beams, we use the sum of all measured strengths and divide by the number of measurements. The sum of the flexural strengths is provided as Σxi = 219.5 MPa.

Given the dataset:

11.87.76.56.89.76.87.37.99.78.78.18.56.37.07.37.45.39.08.111.36.37.27.77.811.610.77.0

The number of measurements is the number of data points, which is 26. To find the mean:

mean = Sum of strengths / Number of measurements

mean = 219.5 MPa / 26

mean = 8.442 MPa (rounded to three decimal places)

The estimator used here is the sample mean (×).

Learn more about Mean Flexural Strength here:

https://brainly.com/question/35911194

#SPJ3

A linear enzyme is formed by four alpha and two beta protein subunits. How manydifferent arrangements are there?

Answers

Answer:

15

Step-by-step explanation:

We are given that

Number of alpha protein subunits=4

Number of beta protein subunits=2

Total number of protein sub-units=2+4=6

We have to find the number of different arrangements are there.

When r identical letters and y identical letters and total object are n then arrangements are

[tex]\frac{n!}{r!x!}[/tex]

n=6,r=2,x=4

By using the formula

Then, we get

Number of different arrangements =[tex]\frac{6!}{2!4!}[/tex]

Number of different arrangements=[tex]\frac{6\times 5\times 4!}{2\times 1\times 4!}[/tex]

Number of different arrangements=15

Hence, different arrangements are there= 15

Before lending someone money, banks must decide whether they believe the applicant will repay the loan. One strategy used is a point system. Loan officers assess information about the applicant, totalling points they award for the persons income level, credit history, current debt burden, and so on. The higher the point total, the more convinced the bank is that it’s safe to make the loan. Any applicant with a lower point total than a certain cut-off score is denied a loan. We can think of this decision as a hypothesis test. Since the bank makes its profit from the interest collected on repaid loans, their null hypothesis is that the applicant will repay the loan and therefore should get the money. Only if the persons score falls below the minimum cut-off will the bank reject the null and deny the loan. This system is reasonably reliable, but, of course, sometimes there are mistakes.a) When a person defaults on a loan, which type of error did the bank make?b) Which kind of error is it when the bank misses an opportunity to make a loan to someone who would have repaid it?c) Suppose the bank decides to lower the cut-off score from 250 points to 200. Is that analogous to choosing a higher or lower value of for a hypothesis test? Explain.d) What impact does this change in the cut-off value have on the chance of each type of error?

Answers

Answer:

(a) Type II error

(b) Type I error

(c) It is analogous to choosing a lower value for a hypothesis test

(d) There will be more tendency of making type II error and less tendency of making type I error

Step-by-step explanation:

(a) The bank made a type II error because they accepted the null hypothesis when it is false

(b) The bank made a type I error because they rejected the null hypothesis when it is true

(c) By lowering the value for the hypothesis test, they give applicants who do not meet the initial cut-off point the benefit of doubt of repaying the loan thus increasing their chances of making more profit

(d) There will be more tendency of making type II error because the bank accepts the null hypothesis though they are not fully convinced the applicants will repay the loan and less tendency of making type I error because the bank rejects the null hypothesis knowing the applicants might not be able to repay the loan

Final answer:

In hypothesis testing, a person defaulting on a loan represents a Type I error, while missing an opportunity to make a loan to someone who would have repaid it represents a Type II error. Lowering the cut-off score is analogous to increasing the value in a hypothesis test, accepting more risk. This increases the likelihood of Type I errors but decreases the likelihood of Type II errors.

Explanation:

In the context of hypothesis testing in banking and the financial capital market, (a) when a person defaults on a loan, the bank made a Type I error: they lent money to an individual who failed to repay it. (b) If the bank does not lend money to someone who would have repaid it, it's a Type II error: they missed an opportunity to profit from interest because they incorrectly predicted the person would not pay back the loan. (c) Lowering the cut-off score from 250 points to 200 is analogous to choosing a higher value for a hypothesis test, which means the bank is willing to accept more risk. (d) Changing the cut-off value impacts the chance of each kind of error. By lowering the score, the bank is more likely to make Type I errors (lending to individuals who won't repay), but less likely to make Type II errors (not lending to individuals who would repay).

Learn more about Hypothesis Testing in Banking here:

https://brainly.com/question/34017090

#SPJ11

A psychologist wants to see if a certain company has fair hiring practices in an industry where 60% of the workers are men and 40% are women. She finds that the company has 55 women and 52 men. Test to see if these numbers are different from the industry numbers, and if so, how are they different? Use alpha -.05 and four steps. A) what is the null hypothesis? B) what is the alternative hypothesis? C) what is the critical value of the test statistic? D) what is the value of the test statistic? E) Reject or accept the null? And why?

Answers

The hypothesis test examines if the company's hiring distribution differs from industry standards. The null hypothesis represents no difference, while the alternative suggests a discrepancy.

The critical value for the test statistic at a 0.05 significance level is ±1.96 for a two-tailed test, and we either reject or fail to reject the null based on the comparison of the calculated Chi-square statistic to the critical value.

To determine if there is a significant difference between the hiring practices of a certain company and the industry standard, we use a hypothesis test for proportions.

A. Null Hypothesis (H₀)

The null hypothesis H0: P_(men) = 0.60 and P_(women) = 0.40, where P represents the proportion of men and women in the company, respectively.

B. Alternative Hypothesis (Ha)

The alternative hypothesis Ha: P_(men) ≠ 0.60 and P_(women) ≠ 0.40.

C. Critical Value of Test Statistic

The critical value for a two-tailed test at alpha = 0.05 is z = ±1.96.

D. Value of the Test Statistic

To calculate the test statistic, we use the formula for a test of proportions:

Calculate the expected counts based on industry proportions: expected men = 107 * 0.60 = 64.2, expected women = 107 * 0.40 = 42.8.

Compute the Chi-square test statistic: Χ2 = ((52-64.2)2/64.2) + ((55-42.8)2/42.8).

The resulting Χ₂ statistic can then be compared against the critical Χ₂ value with 1 degree of freedom at alpha = 0.05, which is 3.841.

E. Reject or Accept the Null Hypothesis

If the calculated Χ₂ is greater than 3.841, we reject the null hypothesis; if not, we fail to reject the null hypothesis. Without the actual calculation of the Χ₂, we cannot definitively conclude the action on the null hypothesis in this context.

The price of a new computer is p dollars. The computer is on sale for 30% off. Which expression shows the savings that are being offered on the computer?

A. p - 0.3p B. 0.7 × p C. 0.3 × p D. p ÷ 30

Answers

Option C

Expression that shows the savings that are being offered on the computer is 0.3p

Solution:

Given that price of a new computer is p dollars

The computer is on sale for 30% offer

To find: Expression that shows the savings that are being offered on the computer

Computer is on sale for 30% offer which means 30 % offer on original price "p"

Original price = "p" dollars

offer price / saved price = 30 % of "p"

[tex]\text{ saved price } = 30 \% \times p\\\\\text{ saved price } = \frac{30}{100} \times p\\\\\text{ saved price } = 0.3p[/tex]

Thus the required expression is 0.3p

Thus option C is correct.

A supervisor records the repair cost for 11 randomly selected refrigerators. A sample mean of $82.43 and standard deviation of $13.96 are subsequently computed. Determine the 99% confidence interval for the mean repair cost for the refrigerators. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.

Answers

Final answer:

The critical value for constructing a 99% confidence interval is 2.576.

Explanation:

To determine the critical value for constructing the 99% confidence interval, we need to find the Z-value that represents the level of confidence. For a 99% confidence interval, the alpha level (1 - confidence level) is 0.01. Since the data is approximately normally distributed and the sample size is greater than 30, we can use the Z-distribution. Using a Z-table or calculator, we find that the Z-value for a 0.01 alpha level is approximately 2.576.

Identify the type of observational study (cross-sectional, retrospective, or prospective) described below. A research company uses a device to record the viewing habits of about 2500 households, and the data collected over the past 2 years will be used to determine whether the proportion of households tuned to a particular children's program increased. Which type of observational study is described in the problem statement?

A. A prospective study
B. A retrospective study
C. A cross-sectional study

Answers

Answer:

B

Step-by-step explanation:

The retrospective or historic cohort story, is a longitudinal cohort story that considers a particular set of individuals that share the same exposure factor to ascertain its influence in the developments of an occurrence, which are compared with the other set or cohort which were not exposed to the same factors.

Retrospective studies have existed about the same time as prospective studies, hence their names.

A company wants to determine where they should locate a new warehouse. They have two existing production plants (i.e., Plant A and Plant B) that will ship units of a product to this warehouse. Plant A is located at the (X, Y) coordinates of (50, 100) and will have volume of shipping of 250 units a day. Plant B is located at the (X, Y) coordinates of (150, 200) and will have a volume of shipping of 150 units a day. Using the centroid method, which of the following are the X and Y coordinates for the new plant location?

Answers

Answer:

X = 87.5

Y = 137.5

Step-by-step explanation:

Let's X and Y be the xy-coordinates of the center warehouse.

We know that X is in between the x coordinates or the 2 plants:

50 < X < 150

Similarly Y is in between the y coordinates or the 2 plants:

100 < Y < 200

Using centroid method with the shipping units being weight we can have the following equations

250*50 + 150*150 = X*(250 + 150)

Hence X = (250*50 + 150*150)/(250+150) = 87.5

Similarly 250*100 + 150*200 = Y*(250 + 150)

Hence Y =  (250*100 + 150*200)/(250+150) = 137.5

A particle moves according to the law of motion s(t) = t^{3}-8t^{2}+2t, where t is measured in seconds and s in feet.

(a) Find the velocity at time t.
(b) What is the velocity after 3 seconds?
(c) When is the particle at rest?

Answers

Answer:

a) [tex]v(t) = 3t^{2} - 16t + 2[/tex]

b) The velocity after 3 seconds is -3m/s.

c) [tex]t = 0.13s[/tex] and [tex]t = 5.2s[/tex].

Step-by-step explanation:

The position is given by the following equation.

[tex]s(t) = t^{3} - 8t^{2} + 2t[/tex]

(a) Find the velocity at time t.

The velocity is the derivative of position. So:

[tex]v(t) = s^{\prime}(t) = 3t^{2} - 16t + 2[/tex].

(b) What is the velocity after 3 seconds?

This is v(3).

[tex]v(t) = 3t^{2} - 16t + 2[/tex]

[tex]v(3) = 3*(3)^{2} - 16*(3) + 2 = -19[/tex]

The velocity after 3 seconds is -3m/s.

(c) When is the particle at rest?

This is when [tex]v(t) = 0[/tex].

So:

[tex]v(t) = 3t^{2} - 16t + 2[/tex]

[tex]3t^{2} - 16t + 2 = 0[/tex]

This is when [tex]t = 0.13s[/tex] and [tex]t = 5.2s[/tex].

A solid lies between planes perpendicular to the​ x-axis at x=0 and x=8. The​ cross-sections perpendicular to the axis on the interval 0

Answers

Answer:

The volume of the solid is 256 cubic units.

Step-by-step explanation:

Given:

The solid lies between planes [tex]x=0\ and\ x=8[/tex]

The cross section of the solid is a square with diagonal length equal to the distance between the parabolas [tex]y=-2\sqrt{x}\ and\ y=2\sqrt{x}[/tex].

The distance between the parabolas is given as:

[tex]D=2\sqrt x-(-2\sqrt x)\\\\D=2\sqrt x+2\sqrt x\\\\D=4\sqrt x[/tex]

Now, we know that, area of a square with diagonal 'D' is given as:

[tex]A=\frac{D^2}{2}[/tex]

Plug in [tex]D=4\sqrt x[/tex]. This gives,

[tex]A=\frac{(4\sqrt x)^2}{2}\\\\A=\frac{16x}{2}\\\\A=8x[/tex]

Now, volume of the solid is equal to the product of area of cross section and length [tex]dx[/tex]. So, we integrate it over the length from [tex]x=0\ to\ x=8[/tex]. This gives,

[tex]V=\int\limits^8_0 {A} \, dx\\\\V=\int\limits^8_0 {(8x)} \, dx\\\\V=8\int\limits^8_0 {(x)} \, dx\\\\V=8(\frac{x^2}{2})_{0}^{8}\\\\V=4[8^2-0]\\\\V=4\times 64\\\\V=256\ units^3[/tex]

Therefore, the volume of the solid is 256 cubic units.

Final answer:

This question is about volume calculation using calculus. The solid between two planes at x=0 and x=8 has cross-sections which, when described by a function of x A(x), the volume of the object can be computed via integration of A(x) dx from x=0 to x=8.

Explanation:

The subject of this question falls under the field of Calculus, specifically, it's about Volume Calculation. The question describes a solid which is located between two planes at x=0 and x=8, perpendicular to the x-axis. Cross-sections perpendicular to the axis of this solid can be visualized like slices of the solid made along the x-axis.

If the area of these cross-sections can be represented by a function of x, A(x), then the volume of the entirety of the solid, V, can be calculated using the definite integral from x=0 to x=8 of A(x) dx. Essentially, this is summing up the volumes of the infinitesimal discs that make up the solid along the x-axis, from x=0 to x=8.

Learn more about Volume Calculation here:

https://brainly.com/question/32822827

#SPJ3

The random variable X = the number of vehicles owned. Find the expected number of vehicles owned. Round answer to two decimal places.

Answers

Answer:

The expected number of vehicles owned to two decimal places is: 1.85.

Step-by-step explanation:

The table to the question is attached.

[tex]E(X) =[/tex]∑[tex]xp(x)[/tex]

Where:

E(X) = expected number of vehicles owned

∑ = Summation

x = number of vehicle owned

p(x) = probability of the vehicle owned

[tex]E(X) = (0 * 0.1) + (1 * 0.35) + (2 * 0.25) + (3 * 0.2) + (4 * 0.1)\\E(X) = 0 + 0.35 + 0.50 + 0.60 + 0.4\\E(X) = 1.85[/tex]

The expected number of vehicles owned is 1.85.

Final answer:

The expected number of vehicles owned, based on probability of ownership of 0 to 3 vehicles, is calculated by multiplying each possible number of vehicles by their corresponding probabilities and then summing up all the products. The calculated expected number is approximately 1.7 vehicles.

Explanation:

To find the expected number of vehicles owned, we first need to multiply each possible number of vehicles someone could own by the probability of them owning that many vehicles. Then, sum up all of these products.

For instance, if they could own up to 3 cars and the probability for owning 0, 1, 2, or 3 cars is 0.1, 0.3, 0.4, and 0.2 respectively:

For 0 cars: 0 * 0.1 = 0

For 1 car: 1 * 0.3 = 0.3

For 2 cars: 2 * 0.4 = 0.8

For 3 cars: 3 * 0.2 = 0.6    

Adding these together gives the expected number of cars:
0 + 0.3 + 0.8 + 0.6 = 1.7 (rounded to two decimal places).

Learn more about Expected Number here:

https://brainly.com/question/32682379

#SPJ3

The lifetime of a cheap light bulb is an exponential random variable with mean 36 hours. Suppose that 16 light bulbs are tested and their lifetimes measured. Use the central limit theorem to estimate the probability that the sum of the lifetimes is less than 600 hours.

Answers

Answer:

[tex] P(T<600)=P(Z< \frac{600-576}{144})=P(Z<0.167)=0.566[/tex]

Step-by-step explanation:

Previous concepts

The central limit theorem states that "if we have a population with mean μ and standard deviation σ and take sufficiently large random samples from the population with replacement, then the distribution of the sample means will be approximately normally distributed. This will hold true regardless of whether the source population is normal or skewed, provided the sample size is sufficiently large".

The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution". The probability density function is given by:

[tex]P(X=x)=\lambda e^{-\lambda x}, x>0[/tex]

And 0 for other case. Let X the random variable that represent "The number of years a radio functions" and we know that the distribution is given by:

[tex]X \sim Exp(\lambda=\frac{1}{16})[/tex]

Or equivalently:

[tex]X \sim Exp(\mu=16)[/tex]

Solution to the problem

For this case we are interested in the total T, and we can find the mean and deviation for this like this:

[tex]\bar X =\frac{\sum_{i=1}^n X_i}{n}=\frac{T}{n}[/tex]

If we solve for T we got:

[tex] T= n\bar X[/tex]

And the expected value is given by:

[tex] E(T) = n E(\bar X)= n \mu= 16*36=576[/tex]

And we can find the variance like this:

[tex] Var(T) = Var(n\bar X)=n^2 Var(\bar X)= n^2 *\frac{\sigma^2}{n}=n \sigma^2[/tex]

And then the deviation is given by:

[tex]Sd(T)= \sqrt{n} \sigma=\sqrt{16} *36=144[/tex]

And the distribution for the total is:

[tex] T\sim N(n\mu, \sqrt{n}\sigma)[/tex]

And we want to find this probability:

[tex] P(T< 600)[/tex]

And we can use the z score formula given by:

[tex]z=\frac{T- \mu_T}{\sigma_T}[/tex]

And replacing we got this:

[tex] P(T<600)=P(Z< \frac{600-576}{144})=P(Z<0.167)=0.566[/tex]

Final answer:

Using the central limit theorem, the probability that the sum of the lifetimes of 16 light bulbs is less than 600 hours is found to be approximately 0.2514 after calculating the mean, standard deviation, and z-score for the sum.

Explanation:

To estimate the probability that the sum of the lifetimes of 16 light bulbs is less than 600 hours, we can use the central limit theorem. This theorem suggests that the sum (or average) of a large number of independent and identically distributed random variables will be approximately normally distributed, regardless of the original distribution of the variables. Here, each light bulb's lifetime is an exponential random variable with a mean of 36 hours.

First, we need to determine the mean (μ) and standard deviation (σ) of the sum of the lifetimes. For one light bulb, the mean is 36 hours, and since the standard deviation for an exponential distribution is equal to its mean, it is also 36 hours. For 16 light bulbs, the mean of the sum is 16 * 36 = 576 hours, and the standard deviation of the sum is √16 * 36 = 144 hours due to the square root rule for variances of independent sums.

To find the probability that the sum is less than 600 hours, we convert this to a standard normal distribution problem by calculating the z-score:

Z = (X - μ) / (σ/sqrt(n))
Z = (600 - 576) / (144/sqrt(16))
Z = 24 / 36
Z = 0.67

Now we look up the cumulative probability for a z-score of 0.67 using a standard normal distribution table or a calculator with normal distribution functions. The probability associated with a z-score of 0.67 is approximately 0.7486. Therefore, the probability that the sum of the lifetimes is less than 600 hours is 1 - 0.7486 = 0.2514.

A marketing company is interested in the proportion of people that will buy a particular product. Match the vocabulary word with its corresponding example. The 380 randomly selected people who are observed to see if they will buy the product The proportion of the 380 observed people who buy the product fAll people in the marketing company's region The list of the 380 Yes or No answers to whether the person bought the product The proportion of all people in the company's region who buy the product Purchase: Yes or No whether a person bought the product a. Statistic b. Data Sample d. Variable e. Parameter f. Population Points possible: 6 License

Answers

The matching is as follow:

a -> Statistic

b -> Data Sample

d -> Variable

e -> Parameter

f -> Population

a. Statistic: The proportion of the 380 observed people who buy the product

b. Data Sample: The 380 randomly selected people who are observed to see if they will buy the product

d. Variable: Purchase - Yes or No whether a person bought the product

e. Parameter: The proportion of all people in the company's region who buy the product

f. Population: All people in the marketing company's region

Learn more about Statistic here:

https://brainly.com/question/31577270

#SPJ6

Final answer:

The 380 randomly selected people are the 'Data Sample', the proportion of these who buy is a 'Statistic', all people in the region are the 'Population', the list of 380 Yes/No answers is the 'Variable', proportion of all people in the region who buy the product is 'Parameter', and yes/no answer for each person's purchase is also deemed a 'Variable'.

Explanation:

In this question, we are dealing with terms related to statistic studies. The 380 randomly selected people who are observed to see if they will buy the product represent the Data Sample. The proportion of the 380 observed people who buy the product is considered a Statistic. All people in the marketing company's region is the Population. The list of the 380 Yes or No answers to whether the person bought the product constitutes the Variable. The proportion of all people in the company's region who buy the product is an example of a Parameter. Lastly, the Purchase: Yes or No whether a person bought the product is the Variable.

Learn more about Statistics Terms here:

https://brainly.com/question/34594419

#SPJ2

For the Data Set below, calculate the Variance to the nearest hundredth decimal place. (Do not use a coma in your answer) 175 349 234 512 638 549 500 611

Answers

Answer:

The variance of the data is 29966.3.

Step-by-step explanation:

The given data set is

175, 349, 234, 512, 638, 549, 500, 611

We need to find the variance to the nearest hundredth decimal place.

Mean of the data

[tex]Mean=\dfrac{\sum x}{n}[/tex]

where, n is number of observation.

[tex]Mean=\dfrac{3568}{8}=446[/tex]

The mean of the data is 446.

[tex]Variance=\dfrac{\sum (x-mean)^2}{n-1}[/tex]

[tex]Variance=\dfrac{(175-446)^2+(349-446)^2+(234-446)^2+(512-446)^2+(638-446)^2+(549-446)^2+(500-446)^2+(611-446)^2}{8-1}[/tex]

[tex]Variance=\dfrac{209764}{7}[/tex]

[tex]Variance=29966.2857[/tex]

[tex]Variance\approx 29966.3[/tex]

Therefore, the variance of the data is 29966.3.

Final answer:

The variance of the given data set is calculated by finding the mean, squaring the differences from the mean, summing these squares, and dividing by the count minus one. It results in a variance of 12790.54 when rounded to the nearest hundredth decimal place.

Explanation:

To calculate the variance of the data set, follow these steps:

First, find the mean (average) of the data set by adding all the numbers together and dividing by the total count.

Next, subtract the mean from each data point and square the result to get the squared differences.

Then, add up all of the squared differences.

Finally, divide the sum of the squared differences by the total number of data points minus one to get the variance (since this is a sample variance).

Data Set: 175, 349, 234, 512, 638, 549, 500, 611

Mean = (175 + 349 + 234 + 512 + 638 + 549 + 500 + 611) / 8 = 3793 / 8 = 474.125

Squared differences = (175 - 474.125)^2 + (349 - 474.125)^2 + (234 - 474.125)^2 + (512 - 474.125)^2 + (638 - 474.125)^2 + (549 - 474.125)^2 + (500 - 474.125)^2 + (611 - 474.125)^2

Sum of squared differences = 89533.78125

Variance = 89533.78125 / (8 - 1) = 12790.54

Therefore, the variance of the data set, to the nearest hundredth decimal place, is 12790.54.

If n is a positive integer, which of following statement is individually sufficient to prove whether 289 is a factor of n?a. The greatest common divisor of n and 344 is 86. b. Least common multiple of n and 272 is 4624. c. The least common multiple of n and 289 is 289n.

Answers

Answer:

The statement b) is individually sufficient to prove than 289 is a factor of n

Step-by-step explanation:

The least common multiple of n and 272 is the smallest number that is a multiple of n and a multiple of 272. Therefore:

272 x X = 4624 ⇒ X = 17 but 272 = 17 · 16 and 289 = 17 · 17

Therefore 17·17 must be a factor of n. That means 289 is a factor of n

2. I Using the example { 2/3+4/3 X, explain why we add fractions the way we do. What is the logic behind the procedure? Make math drawings to support your explanation

Answers

Answer:

The procedure emphasizes the idea of the summation of one physical quantity. In this case, X.

Step-by-step explanation:

1. When we add fractions like these we do it simply by rewriting a new one, the summation of the numerators over the same denominator:

[tex]\frac{2}{3}X+\frac{4}{3})X=\frac{6}{3}X= 2X[/tex]

The procedure emphasizes the idea of the summation of one physical quantity, in this case, X.

2) This physical quantity x could be miles, oranges, gallons, etc.

Tyler has a baseball bat that weighs 28 ounces. Find this weight in kilograms and in grams. (Note 1 kilogram=35 ounces)

Answers

Answer:0.8 kilograms

800 grams

Step-by-step explanation:

The weight of Tyler's baseball bat is 28 ounces. We would convert the weight in ounces to kilogram and grams.

Let x represent the number of kilograms that is equal to 28 ounces. Therefore

1 kilogram = 35 ounces

x kilogram = 28 ounces

Cross multiplying, it becomes

35 × x = 28 × 1

35x = 28

x = 28/35 = 0.8 kilograms

We would convert 0.8 kilograms to grams

Let y represent the number of grams that is equal to 0.8 kilograms. Therefore,

1000 grams = 1 kilogram

y grams = 0.8 kilograms

Cross multiplying,

y × 1 = 0.8 × 1000

y = 800 grams

Answer:

0.2

Step-by-step explanation:

In order to determine whether or not there is a significant difference between the hourly wages of two companies, the following data have been accumulated.
Company 1 Company 2 n1 = 80 n2 = 60 x̄1 = $10.80 x̄2 = $10.00 σ1 = $2.00 σ2 = $1.50 Refer to Exhibit 10-13. The point estimate of the difference between the means (Company 1 – Company 2) is _____.

a. .8
b. –20
c. .50
d. 20

Answers

Answer:

a. .8

Step-by-step explanation:

The point estimate of the difference between the means of Company 1 and Company 2 can be calculated as:

point estimate = mu1 - mu2 where

mu1 is the sample mean hourly wage of Company 1mu2 is the sample mean hourly wage of Company 2

Therefore point estimate = $10.80- $10 =$ .8

company manufactures and sells x cellphones per week. The weekly​ price-demand and cost equations are given below. p equals 500 minus 0.5 xp=500−0.5x and Upper C (x )equals 25 comma 000 plus 140 xC(x)=25,000+140x ​(A) What price should the company charge for the​ phones, and how many phones should be produced to maximize the weekly​ revenue

Answers

Answer:

The number of cellphones to be produced per week is 500.

The cost of each cell phone is $250.

The maximum revenue is $1,25,000

Step-by-step explanation:

We are given the following information in the question:

The weekly​ price-demand equation:

[tex]p(x)=500-0.5x[/tex]

The cost equation:

[tex]C(x) = 25000+140x[/tex]

The revenue equation can be written as:

[tex]R(x) = p(x)\times x\\= (500-0.5x)x\\= 500x - 0.5x^2[/tex]

To find the maximum value of revenue, we first differentiate the revenue function:

[tex]\displaystyle\frac{dR(x)}{dx} = \frac{d}{dx}(500x - 0.5x^2) = 500-x[/tex]

Equating the first derivative to zero,

[tex]\displaystyle\frac{dR(x)}{dx} = 0\\\\500-x = 0\\x = 500[/tex]

Again differentiating the revenue function:

[tex]\displaystyle\frac{dR^2(x)}{dx^2} = \frac{d}{dx}(500 - x) = -1[/tex]

At x = 500,

[tex]\displaystyle\frac{dR^2(x)}{dx^2} < 0[/tex]

Thus, by double derivative test, R(x) has the maximum value at x = 500.

So, the number of cellphones to be produced per week is 500, in order to maximize the revenue.

Price of phone:

[tex]p(500)=500-0.5(500) = 250[/tex]

The cost of each cell phone is $250.

Maximum Revenue =

[tex]R(500) = 500(500) - 0.5(500)^2 = 125000[/tex]

Thus, the maximum revenue is $1,25,000

In the following sequence, each number (except the first two) is the sum of the previous two numbers: 0, 1, 1, 2, 3, 5, 8, 13, .... This sequence is known as the Fibonacci sequence. We speak of the i'th element of the sequence (starting at 0)-- thus the 0th element is 0, the 1st element is 1, the 2nd element is 1, the 3rd element is 2 and so on. Given the positive integer n, associate the nth value of the fibonacci sequence with the variable result. For example, if n is associated with the value 8 then result would be associated with 21.

Answers

Final answer:

To find the nth Fibonacci number, dynamic programming stores previously calculated values in an array, which allows for efficient linear time computation by summing the two previous numbers to obtain the nth value.

Explanation:

The Fibonacci sequence is defined such that each number in the sequence is the sum of the two preceding ones, starting from 0 and 1. To calculate the nth Fibonacci number, denoted as Fib(n), we start by setting Fib(0) and Fib(1) equal to 0 and 1, respectively. For n ≥ 2, Fib(n) is defined recursively as Fib(n) = Fib(n - 1) + Fib(n - 2). A naive recursive algorithm could be inefficient due to repeated calculations. Using dynamic programming or memoization improves efficiency by storing intermediate results, thus avoiding unnecessary recalculations.

Computing Fibonacci Numbers Using Dynamic Programming

To compute the nth Fibonacci number using dynamic programming, we create an array or list to save previously computed Fibonacci numbers. The nth value, for instance Fib(8) = 21, is then easily found by summing up the n-1th and n-2th values from the array, which are already computed and stored. This approach leads to a time complexity that is linear, i.e., O(n), instead of exponential.

If SSXY = −16.32 and SSX = 40.00 for a set of data points, then what is the value of the slope for the best-fitting linear equation? a. −0.41 b. −2.45 c. positive d. There is not enough information; you would also need to know the value of SSY.

Answers

Answer: a. −0.41

Step-by-step explanation:

The slope for the best-fitting linear equation is given by :-

[tex]b=\dfrac{SS_{xy}}{SS_x}[/tex]

where , [tex]SS_x[/tex] =sum of squared deviations from the mean of X.

[tex]SS_{xy}[/tex] = correlation between y and x in terms of the corrected sum of products.

As per given , we have

[tex]SS_x=10.00[/tex]

[tex]SS_{xy}=-16.32[/tex]

Then, the value of the slope for the best-fitting linear equation will be

[tex]b=\dfrac{-16.32}{40.00}=-0.408\approx -0.41[/tex]

Hence, the value of the slope for the best-fitting linear equation= -0.41

So the correct answer is a. −0.41 .

The value of the slope for the best-fitting linear equation is -0.41

The given parameters are:

[tex]SS_{xy} = -16.32[/tex] --- the correlation between y and x

[tex]SS_{x} = 40.00[/tex] --- the sum of squared deviations from the mean of X.

The slope (b) is calculated using the following formula

[tex]b = \frac{SS_{xy}}{SS_x}[/tex]

Substitute values for SSxy and SSx

[tex]b = \frac{-16.32}{40.00}[/tex]

Divide -16.32 by 40.00

[tex]b = -0.408[/tex]

Approximate

[tex]b = -0.41[/tex]

Hence, the value of the slope for the best-fitting linear equation is -0.41

Read more about regressions at:

https://brainly.com/question/4074386

The weight of people on a college campus are normally distributed with mean 185 pounds and standard deviation 20 pounds. What's the probability that a person weighs more than 200 pounds? (round your answer to the nearest hundredth)

Answers

Answer:

0.23.

Step-by-step explanation:

We have been given that the weight of people on a college campus are normally distributed with mean 185 pounds and standard deviation 20 pounds.

First of all, we will find the z-score corresponding to sample score 200 using z-score formula.

[tex]z=\frac{x-\mu}{\sigma}[/tex], where,

[tex]z=[/tex] Z-score,

[tex]x=[/tex] Sample score,

[tex]\mu=[/tex] Mean,

[tex]\sigma=[/tex] Standard deviation.

[tex]z=\frac{200-185}{20}[/tex]

[tex]z=\frac{15}{20}[/tex]

[tex]z=0.75[/tex]

Now, we need to find [tex]P(z>0.75)[/tex]. Using formula  [tex]P(z>a)=1-P(z<a)[/tex], we will get:

[tex]P(z>0.75)=1-P(z<0.75)[/tex]

Using normal distribution table, we will get:

[tex]P(z>0.75)=1-0.77337 [/tex]

[tex]P(z>0.75)=0.22663 [/tex]

Round to nearest hundredth:

[tex]P(z>0.75)\approx 0.23[/tex]

Therefore, the probability that a person weighs more than 200 pounds is approximately 0.23.

Answer:the probability that a person weighs more than 200 pounds is 0.23

Step-by-step explanation:

Since the weight of people on a college campus are normally distributed, we would apply the formula for normal distribution which is expressed as

z = (x - u)/s

Where

x = weight of people on a college campus

u = mean weight

s = standard deviation

From the information given,

u = 185

s = 20

We want to find the probability that a person weighs more than 200 pounds. It is expressed as

P(x greater than 200) = P(x greater than 200) = 1 - P(x lesser than lesser than or equal to 200).

For x = 200,

z = (200 - 185)/20 = 0.75

Looking at the normal distribution table, the probability corresponding to the z score is 0.7735

P(x greater than 200) = 1 - 0.7735 = 0.23

A box contains the following numbered tickets: 1,1,5,9,9
a) If I draw two tickets with replacement, what is the chance that the sum of the two tickets is greater than or equal to 10?
b) Drawing three tickets without replacement, what is the chance the first two tickets are not 5's, and the last ticket is a 5?
c) Calculate b) if the draws are made with replacement.
d) If I repeat the procedure in a) 8 times (ie draw 2 tickets and find their sum, and do this 8 times), what is the chance that I get a sum greater than or equal to 10 exactly 6 of the 8 times?

Answers

Answer:

Step-by-step explanation:

Feel free to ask if anything is unclear

A researcher developing scanners to search for hidden weapons at airports has concluded that a new scanner is significantly better than the current scanner. He made his decision based on a test using alpha equals 0.025 . Would he have made the same decision at alpha equals 0.10 question mark How about alpha equals 0.005 question mark Explain.

Answers

Step-by-step explanation:

Since the decision is made on the test based on the use of alpha equals 0.025, the p-value of the test would have been higher than the level of significance provided that is 0.025 since the test is not important.

p > 0.025

Now if we know that p > 0.025, this would not necessarily mean that p > 0.1 also, therefore we do not know with the given information that he would have made the same decision for 0.1 level of significance, ( we are not sure about his decision in that case ).

Now for the level of significance of 0.005, we would be sure that p > 0.005 as it is greater than 0.025, therefore the test is not significant at this level of significance as well. Therefore he would have made the same decision for 0.005 level of significance.

Identify the sampling technique used. In a recent television survey, participants were asked to answer "yes" or "no" to the question "Are you in favor of the death penalty?" Six thousand five hundred responded "yes" while 51 00 responded "no". There was a fifty- cent charge for the call.

Answers

Answer:

Convenience sampling. See explanation below.

Step-by-step explanation:

For this case they not use random sampling since all the individuals for the population are not included on the sampling frame, some individuals have probability of inclusion 0, because they are just using a charge for the call and some people would not answer the call.

Is not stratified sampling since we don't have strata clearly defined on this case, and other important thing is that in order to apply this method we need homogeneous strata groups and that's not satisfied on this case.

Is not systematic sampling since they not use a random number or a random starting point, and is not mentioned, they just use a call that is charge with 50 cents.

Is not cluster sampling since we don't have clusters clearly defined, and again in order to apply this method we need homogeneous characteristics on the clusters and an equal chance of being a part of the sample, and that's not satisfid again with the call charge used.

So then the only method that can be possible for this case is convenience sampling because they use a non probability sampling with some members of the potential population with probability of inclusion 0.

Final answer:

The sampling technique used in the given scenario is voluntary response sampling, where participants decide whether to take part in the survey. In this technique, participants chose to respond to the television survey by making a call. This method can be biased as the responses could lean towards those who hold strong views on the topic.

Explanation:

The sampling technique used in this scenario is referred as voluntary response sampling or self-selection sampling. In this method, participants themselves decide to participate or not, usually by responding to a call for participants. This often happens when surveys are disseminated widely such as through television or online. Since there was a call to answer "yes" or "no" for the question with a charge, individuals chose to participate by making a call. It is important to note that the main drawback of this technique is that it tends to be biased, as the sample could be skewed in favor of those who felt strongly about the topic.

Learn more about Voluntary Response Sampling here:

https://brainly.com/question/32578801

#SPJ3

Which of the following is used to determine the significance of predictions made by a best fitting linear equation?A. correlational analysisB. analysis of varianceC. analysis of regressionD. method of least squares

Answers

Answer:

D. method of least squares

Step-by-step explanation:

The Least Squares Method (LSM) is a mathematical method used to solve various problems, based on minimizing the sum of the squared deviations of some functions from the desired variables. It can be used to “solve”                  over-determined systems of equations (when the number of equations exceeds the number of unknowns), to find a solution in the case of ordinary (not redefined) linear or nonlinear systems of equations, to approximate the point values ​​of a function. OLS is one of the basic regression analysis methods for estimating the unknown parameters of regression models from sample data.

Correlation analysis is a statistical method used to assess the strength of the relationship between two quantitative variables. A high correlation means that two or more variables have a strong relationship with each other, while a weak correlation means that the variables are hardly related. In other words, it is a process of studying the strength of this relationship with available statistics.

Analysis of Variance (or ANOVA) is a collection of statistical models used to analyze group averages and related processes (such as intra- and inter-group variation) in statistical science. When using Variance Analysis, the observed variance of a specified variable is divided into the variance component that can be based on different sources of change. In its simplest form, "Analysis of Variance" is a inferential statistical test to test whether the averages of several groups are equal or not, and this test generalizes the t-test test for two-groups to multiple-groups. If multiple two-sample-t-tests are desired for multivariate analysis, it is clear that this results in increased probability of type I error. Therefore, the variance analysis would be more useful to compare the statistical significance of three or more means (for groups or for variables) with the test.

Regression analysis is an analysis method used to measure the relationship between two or more variables. If analysis is performed using a single variable, it is called univariate regression, and if more than one variable is used, it is called multivariate regression analysis. With the regression analysis, the existence of the relationship between the variables, if there is a relationship between the strength of the information can be obtained. The logic here is that the variable to the left of the equation is affected by the variables to the right. The variables on the right are not affected by other variables. Not being influenced here means that when we put these variables into a linear equation in mathematical sense, it has an effect. Multiple linearity, sequential dependency problems are not meant.

Over the past semester, you've collected the following data on the time it takes you to get to school by bus and by car:

• Bus:(15,10,7,13,14,9,8,12,15,10,13,13,8,10,12,11,14,11,9,12) • Car:(5,8,7,6,9,12,11,10,9,6,8,10,13,12,9,11,10,7)

You want to know if there's a difference in the time it takes you to get to school by bus and by car.

A. What test would you use to look for a difference in the two data sets, and what are the conditions for this test? Do the data meet these conditions? Use sketches of modified box-and-whisker plots to support your decision.
B. What are the degrees of freedom (k) for this test using the conservative method? (Hint: Don't pool and don't use your calculator.)
C. What are the sample statistics for this test? Consider the data you collected for bus times to be sample one and the data for car times to be sample two.D. Compute a 99% confidence interval for the difference between the time it takes you to get to school on the bus and the time it takes to go by car. Draw a conclusion about this difference based on this confidence interval using

E. Constructthesameconfidenceintervalyoudidinpartd,thistimeusingyour graphing calculator. Show what you do on your calculator, and what you put into your calculator, and give the confidence interval and degrees of freedom. (Hint: Go back to previous study materials for this unit if you need to review how to do this.)

F. How is the interval computed on a calculator different from the interval computed by hand? Why is it different? In this case, would you come to a different conclusion for the hypothesis confidence interval generated by the calculator?

Answers

Answer:

Step-by-step explanation:

Hello!

You have two study variables

X₁: Time it takes to get to school by bus.

X₂: Time it takes to get to school by car.

Data:

Sample 1

Bus:(15,10,7,13,14,9,8,12,15,10,13,13,8,10,12,11,14,11,9,12)

n₁= 20

Mean X[bar]₁= 11.30

S₁= 2.39

Sample 2

Car:(5,8,7,6,9,12,11,10,9,6,8,10,13,12,9,11,10,7)

n₂= 18

Mean X[bar]₂= 9.06

S₂= 2.29

A.

To test if there is any difference between the times it takes to get to school using the bus or a car you need to compare the means of each population.

The condition needed to make a test for the difference between means is that both the independent population should have a normal distribution.

The sample sizes are too small to use an approximation with the CLT. You can test if the study variables have a normal distribution using different methods, and hypothesis test, using a QQ-plot or using the Box and Whiskers plot. The graphics are attached.

As you can see both samples show symmetric distribution, the boxes are proportioned, the second quantile (median) and the mean (black square) are similar and in the center of the boxes. The whiskers have the same length and there are no outliers. Both plots show symmetry centered in the mean consistent with a normal distribution. According to the plots you can assume both variables have a normal distribution.

The next step to select the statistic to test the population means is to check whether there is other population information available.

If the population variances are known, you can use the standard normal distribution.

If the population variances are unknown, the distribution to use is a Student's test.

If the unknown population variances are equal, you can use a t-test with a pooled sample variance.

If the unknown population variances are not equal, the t-test to use is the Welch approximation.

Using an F-test for variance homogeneity the p-value is 0.43 so at a 0.01 level, you can conclude that the population variances are equal.

The statistic to use is a pooled t-test.

B.

Degrees of freedom.

For each study variable, you can use a t-test with n-1 degrees of freedom.

For X₁ ⇒ n₁-1 = 20 - 1 = 19

For X₂ ⇒ n₂-1 = 18 = 17

For X₁ + X₂ ⇒ (n₁-1) + (n₂-1)= n₁ + n₂ - 2= 20 + 18 - 2= 36

C.

See above.

D.

The formula for the 99% confidence interval is:

(X[bar]₁ - X[bar]₂) ± [tex]t_{n_1+n_2-2; 1- \alpha /2}[/tex] * [tex]Sa\sqrt{\frac{1}{n_1} + \frac{1}{n_2} }[/tex]

[tex]Sa= \sqrt{\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2} }[/tex]

[tex]Sa= \sqrt{\frac{19*(2.39)^2+17*(2.29)^2}{36} }[/tex]

Sa= 2.34

[tex]t_{n_1+n_2-2; 1- \alpha /2}[/tex]

[tex]t_{36; 0.995}[/tex] = 2.72

(11.30 - 9.06) ± 2.72 * [tex]2.34\sqrt{\frac{1}{20} + \frac{1}{18} }[/tex]

[0.17;4.31]

With a 99% confidence level you'd expect that the difference between the population means of the time that takes to get to school by bus and car is contained in the interval [0.17;4.31].

E.

Couldn't find the original lesson to see what calculator is used.

F.

Same, no calculator available.

I hope it helps!

Answer:

this is nnot the answer i was looking for

Step-by-step explanation:

Consider the number of loudspeaker announcements per day at school. Suppse thee snce of chance ofhaving 0 announcements, a 30% chance ofhaving i announcement, a 25% having 2 announcements, a 20% chance of having 3 announcements, and a \0 % chance announcements. Find the expected value of the number of announcements per day. of having A

Answers

Answer:

The expected value is 1.8

Step-by-step explanation:

Consider the provided information.

Suppose there’s a 15%  chance of having 0 announcements, a 30% chance of having 1 announcement, a 25% chance of  having 2 announcements, a 20% chance of having 3 announcements, and a 10% chance of having 4  announcements.

[tex]\text{Expected Value}=a \cdot P(a) + b \cdot P(b) + c \cdot P(c) + \cdot\cdot[/tex]

Where a is the announcements and P(a) is the probability.

[tex]\text{Expected Value}=0\cdot 15\% + 1 \cdot 30\% + 2 \cdot 25\% + 3\cdot20\%+4\cdot10[/tex]

[tex]\text{Expected Value}=1 \cdot 0.30+2 \cdot 0.25 +3 \cdot 0.2 + 4\cdot 0.10[/tex]

[tex]\text{Expected Value}=1.8[/tex]

Hence, the expected value is 1.8

Evaluate the integral Integral from nothing to nothing ∫ StartFraction 3 Over t Superscript 4 EndFraction 3 t4 sine left parenthesis StartFraction 1 Over t cubed EndFraction minus 6 right parenthesis sin 1 t3 −6dt

Answers

Answer:

[tex]\cos (\frac{1}{t^3}-6)} + c[/tex]

Step-by-step explanation:

Given  function:

[tex]\int {\frac{3}{t^4}\sin (\frac{1}{t^3}-6)} \, dt[/tex]

Now,

let [tex]\frac{1}{t^3}-6[/tex] be 'x'

Therefore,

[tex]d(\frac{1}{t^3}-6)[/tex] = dx

or

[tex]\frac{-3}{t^4}dt[/tex] = dx

on substituting the above values in the equation, we get

⇒ ∫ - sin (x) . dx

or

cos (x) + c                      [ ∵ ∫sin (x) . dx = - cos (x)]

Here,

c is the integral constant

on substituting the value of 'x' in the equation, we get

[tex]\cos (\frac{1}{t^3}-6)} + c[/tex]

Other Questions
When a mixture of silver metal and sulfur is heated, silversulfide is formed: 16Ag(s) + S8(s)--> 8Ag2S(s)a.What mass of Ag2S is produced from a mixture of2.0 g of Ag and 2.0 g of S8?b.What mass of which reactant is left unreacted? A rapid change in ocean density with change in depth is the: 1. halocline. 2. thermocline. 3. barocline. 4. isocline.5. pycnocline. Describing where this quadratic is negative involves describing a set of numbers that are simultaneously greater than the smaller root (+1) and less than the larger root (+3). Write a C++ Boolean expression that is true when the value of this quadratic is negative. Which of the following statements is false? A) The papillary layer is closest to the epidermis.B) Collagen fibers recoil when skin is stretched, returning it to its original shape.C) Fibromyalgia is overactive nerve endings in the skin. D) Both collagen and elastin fibers extend into the papillary and hypodermal layers.E) All of these statements are true. why can overproduction underproduction and production of proteins at incorrect times be a problem? Dr. Fritsch and Dr. Gupta are debating why depression is more prevalent among women than among men. "Women have fewer economic opportunities than do men, and they experience role conflicts more often," notes Dr. Fritsch. Dr. Gupta remarks that women experience fluctuations in estrogen levels, whereas men do not. Dr. Fritsch appears to take a _____ approach to depressive disorders, whereas Dr. Gupta seems to favor a _____ approach. Jessica took psychology in the fall semester and is now taking sociology. Several of the concepts are similar, and Jessica finds that she sometimes has trouble recalling some of the major psychological theorists. She keeps getting them confused with sociological theorists. Jessica's problem is most likely due to _________. What do Mayan parents have in common with parents of Eastern Kentucky according to the study by Willinger, Hoffman, Kessler, & Corwin (2003)?a. Authoritarian parenting stylesb. Authoritative parenting stylesc. An un healthy dependence of children on their parentsd. Co-sleeping How did World War I contribute to political change in Russia?A. Czar Nicholas abdicated in favor of constitutional governments due to Russias alliance with Britain and France.B.War on the western front devastated Russias army, causing Czar Nicholas to abdicate.C.Fuel and food shortages caused by losses on the eastern front led to revolutions in 1917.D.Russias victories in World War I led to Czar Nicholass abdication and retirement. During the month of March, Sunland Companys employees earned wages of $79,000. Withholdings related to these wages were $6,044 for Social Security (FICA), $9,258 for federal income tax, $3,827 for state income tax, and $494 for union dues. The company incurred no cost related to these earnings for federal unemployment tax but incurred $864 for state unemployment tax.Prepare the necessary March 31 journal entry to record salaries and wages expense and salaries and wages payable. Assume that wages earned during March will be paid during April. please help me choose the correct answer for this french question!Ecris une phrase au pass compos en utilisant le sujet et le verbe suivants: tu (voyager)a. Tu a voyagb. Tu as voyag. c. Tu a voyager. d. Tu as voyager. In paragraph 4 of The Diary of Samuel Pepys, how does Pepys's word choice create a vivid picture of the Great Fire of London?"from The Diary of Samuel Pepysby Samuel Pepys"2nd (Lord's day). Some of our mayds sitting up late last night to get things ready against our feast to-day, Jane called us up about three in the morning, to tell us of a great fire they saw in the City. So I rose and slipped on my night-gowne, and went to her window, and thought it to be on the back-side of Marke-lane at the farthest; but, being unused to such fires as followed, I thought it far enough off; and so went to bed again to sleep. About seven rose again to dress myself, and there looked out at the window and saw the fire not so much as it was and further off. So to my closett to set things to rights after yesterday's cleaning. By and by Jane comes and tells me that she hears that above 300 houses have been burned down to-night by the fire we saw, and that it is now burning down all Fish-street, by London Bridge. So I made myself ready presently, and walked to the Tower, and there got up upon one of the high places, Sir J. Robinson's little son going up with me; and there I did see the houses at the end of the bridge all on fire, and an infinite great fire on this and the other side the end of the bridge; which, among other people, did trouble me for poor little Michell and our Sarah on the bridge. So down, with my heart full of trouble, to the Lieutenant of the Tower, who tells me that it begun this morning in the King's baker's house in Pudding-lane, and that it hath burned St. Magnus's Church and most part of Fish-street already. So I down to the water-side, and there got a boat and through bridge, and there saw a lamentable fire. Poor Michell's house, as far as the Old Swan, already burned that way, and the fire running further, that in a very little time it got as afar as the Steele-yard, while I was there. Everybody endeavouring to remove their goods, and flinging into the river or bringing them into lighters that lay off; poor people staying in their houses as long as till the very fire touched them, and then running into boats, or clambering from one pair of stairs by the water-side to another. . . . Having seen as much as I could now, I away to White Hall by appointment, and there walked to St. James's Parke, and there met my wife and Creed and Wood and his wife, and walked to my boat; and there upon the water again, and to the fire up and down, it still encreasing, and the wind great. So near the fire as we could for smoke; and all over the Thames, with one's face in the wind, you were almost burned with a shower of fire-drops. This is very true; so as houses were burned by these drops and flakes of fire, three or four, nay, five or six houses, one from another. When we could endure no more upon the water, we to a little ale-house on the Bankside, over against the Three Cranes, and there staid till it was dark almost, and saw the fire grow; and, as it grew darker, appeared more and more, and in corners and upon steeples, and between churches and houses, as far as we could see up the hill of the City, in the most horrid malicious bloody flame, not like the fine flame of an ordinary fire. What chemicals are produced during the use of e-cigarettes In Bob Shaw's short story, "The Light of Other Days," he describes something called slow glass. In the story, a married couple buys a 4-foot-wide window of slow glass that has been out on a beautiful hillside in Ireland, collecting light for 10 years. The idea is that the light takes 10 years to pass through the glass, so if you mount the window in your house it will give a view of the Irish landscape for the next 10 years, slowly unveiling everything that happened there. You can read the full short story via the link below, if you are interested.Link to Bob Shaw's short story: The Light of Other Days.(a) In the short story, the couple buys a window that is one-quarter-inch thick, and takes light 10 years to pass through. Let's say that you were able to locate a supplier of slow glass, and you bought some glass that was 5.00 mm thick, with the light taking 7.00 years to pass through. Taking one year to be 365.24 days, calculate the index of refraction of your piece of slow glass.In 1999, Lene Hau, a physicist at Harvard University, received quite a bit of attention for getting light to travel at bicycle speed (later, she was able to temporarily stop light completely). The speed of a bicycle is a lot faster than light travels through the slow glass from the story, but it is still orders of magnitude less than the speed at which light travels through vacuum. If you're interested, you can follow this link to learn more about Lene Hau.(b) Lene Hau used something called a Bose-Einstein condensate to slow down light. If the light is traveling at a speed of 40.0 km/hr through the Bose-Einstein condensate, what is the effective index of refraction of the condensate? In January of 2015, the appropriate construction cost index had a value of $3,260. In January of 2005, the value was $1,746. In January 2010 you received a bid for a structure of 7.25 million. Another building (virtually identical) is planned for a bid opening in January 2020. Estimate the new building bid. The output of the Private Sector provides about _____ percent of the production of the nation.. In many population growth problems, there is an upper limit beyond which the population cannot grow. Many scientists agree that the earth will not support a population of more than 16 billion. There were 2 billion people on earth in 1925 and 4 billion in 1975. If is the population years after 1925, an appropriate model is the differential equationdy/dt=ky(16-y)Note that the growth rate approaches zero as the population approaches its maximum size. When the population is zero then we have the ordinary exponential growth described by y'=16ky. As the population grows it transits from exponential growth to stability.(a) Solve this differential equation.(b) The population in 2015 will be(c) The population will be 9 billion some time in the year What is the selling price of merchandise listed at $5,900 if discounts of 15%, 10%, and 4% are given? The price of the dinner for the both of them was $30. They tipped their server 20% of that amount. How much did each person pay, if they shared the price of dinner and the tip equally? Describing a topic, idea, or concept you find so engaging that it makes you lose all track of time. Why does it captivate you? What or who do you turn to when you want to learn more?