The equation for a parabola has the form y = ax^2 + bz + c, where a, b, and c are constants and aメ0. Find an equation for the parabola that passes through the points (-1,14), (2,-7), and (5, 8) Answer: y-

Answers

Answer 1

Answer:

a = 2, b = -9, c = 3

Step-by-step explanation:

Replacing x, y values of the points in the equation y = a*x^2 + b*x +c give the following:  

(-1,14)

14 = a*(-1)^2 + b*(-1) + c  

(2,-7)

-7 = a*2^2 + b*2 + c  

(5, 8)  

8 = a*5^2 + b*5 + c  

Rearranging:

a - b + c = 14  

4*a + 2*b + c = -7

25*a + 5*b + c = 8

This is a linear system of equations with 3 equations and 3 unknows. In matrix notation the system is A*x = b whith:

A =

1    -1  1

4    2  1

25  5  1

x =

a  

b

c

b =

14

-7

8

Solving A*x = b gives x = Inv(A)*b, where Inv(A) is the inverse matrix of A. From calculation software (I used Excel) you get:

inv(A) =  

0.055555556 -0.111111111   0.055555556

-0.388888889 0.444444444   -0.055555556

0.555555556 0.555555556 -0.111111111

inv(A)*b

2

-9

3

So, a = 2, b = -9, c = 3


Related Questions

a company owner has 20 employees, and plans to give bonuses to 6 of them. How many different sets of employees could receive bonuses?

Answers

Answer: 38760

Step-by-step explanation:

Given : The number of employees in the company = 20

The number of employees will be selected by company owner to give bonus = 6

We know that the combination of n things taking r at a time is given by :-

[tex]^nC_r=\dfrac{n!}{r!(n-r)!}[/tex]

Then, the number of different sets of employees could receive bonuses is given by :-

[tex]^{20}C_6=\dfrac{20!}{6!(20-6)!}\\\\=\dfrac{20\times29\times18\times17\times16\times15\times14!}{(720)14!}=38760[/tex]

Hence, the number of different sets of employees could receive bonuses is  38760.


solve the following exact ordinary differential equation:

(2tz^3 + ze^(tz) - 4) dt + (3t^2z^2 + te^(tz) + 2) dz = 0

^3 = to the power of 3

Answers

Answer:

The level curves F(t,z) = C for any constant C in the real numbers

where

[tex]F(t,z)=z^3t^2+e^{tz}-4t+2z[/tex]

Step-by-step explanation:

Let's call

[tex]M(t,z)=2tz^3+ze^{tz}-4[/tex]

[tex]N(t,z)=3t^2z^2+te^{tz}+2[/tex]

Then our differential equation can be written in the form

1) M(t,z)dt+N(t,z)dz = 0

To see that is an exact differential equation, we have to show that

2) [tex]\frac{\partial M}{\partial z}=\frac{\partial N}{\partial t}[/tex]

But

[tex]\frac{\partial M}{\partial z}=\frac{\partial (2tz^3+ze^{tz}-4)}{\partial z}=6tz^2+e^{tz}+zte^{tz}[/tex]

In this case we are considering t as a constant.

Similarly, now considering z as a constant, we obtain

[tex]\frac{\partial N}{\partial t}=\frac{\partial (3t^2z^2+te^{tz}+2)}{\partial t}=6tz^2+e^{tz}+zte^{tz}[/tex]

So, equation 2) holds and then, the differential equation 1) is exact.

Now, we know that there exists a function F(t,z) such that

3) [tex]\frac{\partial F}{\partial t}=M(t,z)[/tex]  

AND

4) [tex]\frac{\partial F}{\partial z}=N(t,z)[/tex]

We have then,

[tex]\frac{\partial F}{\partial t}=2tz^3+ze^{tz}-4[/tex]

Integrating on both sides

[tex]F(t,z)=\int (2tz^3+ze^{tz}-4)dt=2z^3\int tdt+z\int e^{tz}dt-4\int dt+g(z)[/tex]

where g(z) is a function that does not depend on t

so,

[tex]F(t,z)=\frac{2z^3t^2}{2}+z\frac{e^{tz}}{z}-4t+g(z)=z^3t^2+e^{tz}-4t+g(z)[/tex]

Taking the derivative of F with respect to z, we get

[tex]\frac{\partial F}{\partial z}=3z^2t^2+te^{tz}+g'(z)[/tex]

Using equation 4)

[tex]3z^2t^2+te^{tz}+g'(z)=3z^2t^2+te^{tz}+2[/tex]

Hence

[tex]g'(z)=2\Rightarrow g(z)=2z[/tex]

The function F(t,z) we were looking for is then

[tex]F(t,z)=z^3t^2+e^{tz}-4t+2z[/tex]

The level curves of this function F and not the function F itself (which is a surface in the space) represent  the solutions of the equation 1) given in an implicit form.

That is to say,

The solutions of equation 1) are the curves F(t,z) = C for any constant C in the real numbers.

Attached, there are represented several solutions (for c = 1, 5 and 10)

What is the slope of the line whose Run is 6 and Rise is 1?

Answers

Answer:

1/6

Step-by-step explanation:

Slope is [tex]\frac{\text{rise}}{\text{run}}=\frac{1}{6}[/tex].

1/6 is the answer good luck

Without computing each sum, find which is greater, O or E, and by how much -3+5 7+9.105 E 4+6+8+10+ 106 by□ (Sinplify your answer )

Answers

The sum E (4 + 6 + 8 + 10 + 106) is greater than the sum O (-3 + 5 + 7 + 9 + 105) by 11. E equals 134 and O equals 123.

To compare the sums O and E without computing each sum directly, let's analyze each expression:

For O: -3 + 5 + 7 + 9 + 105
For E: 4 + 6 + 8 + 10 + 106

Group the pairs of numbers for simplicity:

O: (-3 + 5) + (7 + 9) + 105 = 2 + 16 + 105 = 123E: (4 + 6) + (8 + 10) + 106 = 10 + 18 + 106 = 134

Comparing the two:

E is greater than O by: 134 - 123 = 11.

Therefore, the sum E is greater than the sum O by 11.

55% of 3,650.00= ____

Answers

Convert 55% to a decimal by moving the decimal point two places to the left:

55% = 0.55

Now multiply:

3650.00 x 0.55 = 2,007.50

What is statistics?

A. Statistics is the science of​ manipulating, reorganizing, and editing information to produce the desired results. In​ addition, statistics is about providing the required answer with the desired level of confidence.

B. Statistics encompasses all scientific disciplines in which random occurrences are analyzed. In​ addition, statistics references any random occurrence which is reported using percentages or proportions.

C. Statistics encompasses all scientific disciplines in which percentages are​ used, data are​ analyzed, and probabilities are found. In​ addition, statistics references any mathematical model which is reported using percentages or proportions.

D. Statistics is the science of​ collecting, organizing,​ summarizing, and analyzing information to draw a conclusion and answer questions. In​ addition, statistics is about providing a measure of confidence in any conclusions.

Answers

Answer:

The correct definition of statistics is D.

Step-by-step explanation:

The field of statistics is divided into descriptive and inferential statistics. This description "Statistics is the science of​ collecting, organizing,​ summarizing, and analyzing information to draw a conclusion and answer questions." corresponds to the description of Descriptive statistics and this part "In​ addition, statistics is about providing a measure of confidence in any conclusions."  is the description of Inferential statistics.

How much more would you earn in the first investment than in the second investment? $22,000 invested for 40 years at 14% compounded annually $22,000 invested for 40 years at 7% compounded annually You would earn $ more on the first investment than in the second investment

Answers

Final answer:

To calculate the difference in earnings between the two investments, we can use the compound interest formula to find the future value of each investment. The first investment would earn $2,353,121.65 more than the second investment.

Explanation:

To calculate the difference in earnings between the two investments, we need to calculate the future value of each investment. For the first investment, we have $22,000 invested for 40 years at an annual interest rate of 14%. Using the compound interest formula:

FV = PV * (1 + r)^n

FV = $22,000 * (1 + 0.14)^40 = $2,889,032.39

For the second investment, we have $22,000 invested for 40 years at an annual interest rate of 7%. Using the compound interest formula:

FV = PV * (1 + r)^n

FV = $22,000 * (1 + 0.07)^40 = $535,910.74

The difference in earnings between the two investments is:

$2,889,032.39 - $535,910.74 = $2,353,121.65

What does relative frequency refer to as it pertains to a relative frequency histogram? а. Proportion b. Count C. Mean d. Variance

Answers

Answer:

PROPORTION.

Step-by-step explanation:

The relative frequency in a relative frequency histogram refers to                                  PROPORTION.

A relative frequency histogram uses the same information as a frequency histogram but compares each class interval with the number of items. The difference between frequency and relative frequency histogram is that the vertical axes uses the relative or proportional frequency rather than simple frequency

A student needed to prepare 500mL of 1X TAE buffer to run a QC gel. The stock solution in the lab is 5X TAE. What volumes of stock TAE and water are needed to prepare the 1X working TAE buffer?

Answers

Answer:

you need 100ml of 5X TAE and 400ml of water.

Step-by-step explanation:

You need to use a rule of three:

[tex]C_1V_1=C_2V_2[/tex]

where:

[tex]\left \{ {{C_1= 5X} \atop {C_2=1X}} \right.[/tex]

and

[tex]\left \{ {{V_1 = V_{TAE}} \atop {V_2=500ml}} \right.[/tex]

Therefore:

[tex]V_{TAE} = \frac{V_2*C_2}{C_1}[/tex]

[tex]V_{TAE} = 100ml[/tex]

Then just rest the TAE volume to the final Volume and you get the amount of water that you need to reduce the concentration.

Answer:

Step-by-step explanation:

It shall be 100xl times the number of 1x tae

Explain why division by zero is not allowed in our number system.

Answers

Step-by-step explanation:

Consider the provided information.

Division by zero is not defined in our number system.

You can understand this if you think about how division and multiplication are related.

For example:

4 divided by 2 is 2 because  2 times 2 is 4

Now 4 divided by 0 is x would mean that  0 times x = 4

But there is no value for x so that 0 times x =4. Because 0 times a number is 0.  

Or

4/0 means Into how many groups of zero could you separate  four blocks?

It doesn't matter how many zero groups you have, as they'd never add up to four.

0+0+0+0=0.

You can add zero billions time still add up to zero.

That the reason behind "division by zero is not allowed in our number system."

Applicants for temporary office work at Carter Temporary Help Agency who have successfully completed an administrative assistant course are then placed in suitable positions by Nancy Dwyer and Darla Newberg. Employers who hire temporary help through the agency return a card indicating satisfaction or dissatisfaction with the work performance of those hired. From past experience it is known that 80% of the employees placed by Nancy are rated as satisfactory, and 65% of those placed by Darla are rated as satisfactory. Darla places 55% of the temporary office help at the agency, and Nancy places the remaining 45%. If a Carter office worker is rated unsatisfactory, what is the probability that he or she was placed by Darla? (Round your answer to three decimal places.)

Answers

Answer:

0.681

Step-by-step explanation:

Let's define the following events:

S: a Carter office worker is rated satisfactory

U : a Carter office worker is rated unsatisfactory

ND: a Carter office worker is placed by Nancy Dwyer

DN: a Carter office worker is placed by Darla Newberg

We have from the original text that

P(S | ND) = 0.8, this implies that P(U | ND) = 0.2.

P(S | DN) = 0.65, this implies that P(U | DN) = 0.35. Besides

P(DN) =  0.55 and P(ND) = 0.45, then we are looking for

P(DN | U), using the Bayes' formula we have

P(DN | U) = [tex]\frac{P(U | DN)P(DN)}{P(U | DN)P(DN) + P(U | ND)P(ND)}[/tex] = [tex]\frac{(0.35)(0.55)}{(0.35)(0.55)+(0.2)(0.45)}[/tex]=0.681

Final answer:

The probability that a Carter office worker rated unsatisfactory was placed by Darla is approximately 0.346.

Explanation:

To find the probability that a Carter office worker rated unsatisfactory was placed by Darla, we can use Bayes' theorem. Let's denote the event that the worker is placed by Darla as D and the event that the worker is rated unsatisfactory as U. We are given the following probabilities:

P(Darla places) = 55% = 0.55

P(Nancy places) = 45% = 0.45

P(Satisfactory | Nancy places) = 80% = 0.80

P(Satisfactory | Darla places) = 65% = 0.65

We want to find P(D | Unsatisfactory), which is the probability that the worker was placed by Darla given that they are rated unsatisfactory. Using Bayes' theorem, we have:

P(D | U) = (P(D) * P(U | D)) / (P(D) * P(U | D) + P(N) * P(U | N))

Substituting the given probabilities, we get:

P(D | U) = (0.55 * (1 - 0.65)) / (0.55 * (1 - 0.65) + 0.45 * (1 - 0.80))

P(D | U) ≈ 0.346

Therefore, the probability that a Carter office worker rated unsatisfactory was placed by Darla is approximately 0.346.

what mass of water at 15 degrees celcius can be cooled 1 degree celcius by heat necessary to melt 185 grams of ice at 0 degrees celcius?

Answers

Answer:

1052.944 g

Step-by-step explanation:

Given:

Initial temperature of water = 15° C

Final temperature of water = 1° C

Mass of ice = 185 grams

Now,

Heat of fusion of ice = 333.55 J/g

Thus,

The heat required to melt ice = Mass of ice × Heat of fusion

or

The heat required to melt ice = 185 × 333.55 = 61706.75 J

Now,

for water the specific heat capacity= 4.186 J/g.°C

Heat provided = mass × specific heat capacity × Change in temperature

or

61706.75 = mass × 4.186 × (15 - 1)

or

61706.75 = mass × 58.604

or

mass = 1052.944 g

Hence, the mass that can be heated 1052.944 g

Show how the perfect numbers 6 and 28 were generated. Show the aliquot parts of 6 and 28

Answers

Step-by-step explanation:

Perfect number is the positive integer which is equal to sum of proper divisors of the number.

Aliquot part is also called as proper divisor which means any divisor of the number which isn't equal to number itself.

Number : 6

Perfect divisors / Aliquot part = 1, 2, 3

Sum of the divisors = 1 + 2 + 3 = 6

Thus, 6 is a perfect number.

Number : 28

Perfect divisors / Aliquot part = 1, 2, 4, 7, 14

Sum of the divisors = 1 + 2 + 4 + 7 + 14 = 28

Thus, 28 is a perfect number.

Solve the following system of linear equations: 3x1+6x2+6x3 = -9 -2x1–3x2-3x3 = 3 If the system has infinitely many solutions, your answer may use expressions involving the parameters r, s, and t. O The system has at least one solution x1 = 0 x2 = 0 X3 = 0 O O

Answers

Answer:

The set of solutions is [tex]\{\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}12\\-7-r\\r\end{array}\right]: \text{r is a real number}  \}[/tex]

Step-by-step explanation:

The augmented matrix of the system is [tex]\left[\begin{array}{ccccc}3&6&6&-9\\-2&-3&-3&3\end{array}\right][/tex].

We will use rows operations for find the echelon form of the matrix.

In row 2 we subtract [tex]\frac{2}{3}[/tex] from row 1. (R2- 2/3R1) and we obtain the matrix [tex]\left[\begin{array}{cccc}3&6&6&-9\\0&1&1&-7\end{array}\right][/tex]We multiply the row 1 by [tex]\frac{1}{3}[/tex].

Now we solve for the unknown variables:

[tex]x_2+x_3=-7[/tex], [tex]x_2=-7-x_3[/tex][tex]x_1+2x_2+2x_3=-2[/tex], [tex]x_1+2(-7-x_3)+2x_3=-2[/tex] then [tex]x_1=12[/tex]

The system has a free variable, the the system has infinite solutions and the set of solutions is [tex]\{\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}12\\-7-r\\r\end{array}\right]: \text{r is a real number}  \}[/tex]

A yogurt stand gave out 120 free samples of frozen yogurt, one free sample per person. The three sample choices were vanilla, chocolate, or chocolate & vanilla twist. 97 people tasted the vanilla and 72 people tasted the chocolate, some of those people tasted both because they chose the chocolate and vanilla twist. How many people chose chocolate and vanilla twist?

Answers

Answer:

There were 49 people that chose chocolate and vanilla twist.

Step-by-step explanation:

This problem can be solved by building a Venn diagram of this set, where:

-A is the number of the people that tasted the vanilla

-B is the number of the people that tasted the chocolate.

The most important information in this problem is that some of those people tasted both. It means that [tex]A \cap B = x[/tex], and x is the value we want to find.

The problem states that 97 people tasted the vanilla sample of frozen yogurt.  This includes the people that tasted both samples. It means that x people tasted the chocolate and vanilla twist and 97-x people tasted only the vanilla twist.

72 people tasted the chocolate, also including the people that tasted both samples. It means that x people that tasted the chocolate and vanilla twist and 72-x that tasted only the chocolate twist.

So, recapitulating, there are 120 people, and

97-x  tasted only the vanilla twist.

72 - x tasted only the chocolate twist

x people tasted both

So

97 - x + 72 - x + x = 120

-x = 120 - 72 - 97

-x = -49 *(-1)

x = 49

There were 49 people that chose chocolate and vanilla twist.

Final answer:

To find out how many people chose the chocolate and vanilla twist, we need to subtract the number of people who tasted only vanilla and only chocolate from the total number of people who tasted the frozen yogurt.

Explanation:

To find out how many people chose the chocolate and vanilla twist, we need to subtract the number of people who tasted only vanilla and only chocolate from the total number of people who tasted the frozen yogurt. We know that 97 people tasted vanilla and 72 people tasted chocolate. However, some people chose the chocolate and vanilla twist, so we need to subtract the overlapping cases.

To calculate the number of people who chose the chocolate and vanilla twist, we can use the principle of inclusion-exclusion. We add the number of people who tasted only vanilla and the number of people who tasted only chocolate, and then subtract the total number of people who tasted the frozen yogurt.

Using the formula:

(# of people who tasted vanilla) + (# of people who tasted chocolate) - (# of people who tasted both) = Total # of people who tasted the frozen yogurt

97 + 72 - X = 120

X = 97 + 72 - 120

X = 169 - 120

X = 49

Therefore, 49 people chose the chocolate and vanilla twist.

Learn more about Calculating Overlapping Cases here:

https://brainly.com/question/34384741

#SPJ3

Columba has two dozen each of n different colored beads. If
she can select 20 beads (with repetions of colors allowed)
in230,230 ways, what is the value of n?

Answers

Final answer:

To find the value of n, we can use the concept of combinations. By setting up and solving an equation using the combination formula, we find that the value of n is 6.

Explanation:

To find the value of n, we can use the concept of combinations. Since Columba has 2 dozen (24) each of n different colored beads, the total number of beads she has is 24n. If she can select 20 beads with repetitions allowed in 230,230 ways, we can set up the equation:

24n choose 20 = 230,230

To solve this equation, we need to use the concept of combinations. The formula for combinations is given by nCr = n! / (r!(n-r)!), where n is the total number of items, r is the number of items being selected, and ! represents the factorial function.

Plugging in the values, we have:

24n! / (20!(24n-20)!) = 230,230

Simplifying the equation, we get:

n! / (20!(n-20)!) = 10

To find the value of n, we can try different values of n and calculate the factorial on both sides of the equation. Starting with n = 2, we have:

2! / (20!(2-20)!) = 1 / (20!(18)!) = 1 / (20!(18!)) = 1 / (20 * 19) = 1 / 380 = 0.00263

Since this value is smaller than 10, we need to try a larger value of n. By trying different values, we find that when n = 6, the equation holds:

6! / (20!(6-20)!) = 6! / (20!(14)!) = 720 / (20 * 19 * 18 * 17 * 16 * 15 * 14!) = 720 / (20 * 19 * 9 * 17 * 16 * 15) = 720 / 9909000 = 0.00007

Therefore, the value of n is 6.

A golfer rides in a golf cart at an average speed of 3.10 m/s for 28.0 s. She then gets out of the cart and starts walking at an average speed of 1.30 m/s. For how long (in seconds) must she walk: if her average speed for the entire trip, riding and walking, is 1.80 m/s?

Answers

Answer: she must walk for 72.8 s

Hi!

Lets say that with the cart she rides a time T1 (28 s) for a distance D1, then the average speed in the cart is V1 = D1 / T1 =  3.10 m/s. We can calculate D1 = (28 s )* (3.10 m/s) = 86.8 m

She then walks a time T2 for a distance D2, with average speed

V2 = D2 / T2 = 1.30 m/s

For the entire trip, we have average speed:

V3 = (D1 + D2) / (T1 + T2) = 1.80 m/s

We can solve for T2:

(1.8 m/s) *( 28s + T2) = 86.8 m  +  D2 = 86.8 m + (1.3 ms) * T2

Doing the algebra we get: T2 = 72,8 m/s

Final answer:

This question involves an application of the concept of average speed. Knowing that the average speed for the entire trip was 1.80 m/s, we first determined the distance covered while riding the golf cart. Using this, we set up an equation that allowed us to solve for the time spent walking to maintain the given average speed.

Explanation:

In order to solve this problem, we'll have to apply the formula for average speed, which is total distance covered (d) divided by the total time (t) taken.

Firstly, let's determine the distance covered while riding the golf cart. The golfer rides at an average speed of 3.10 m/s for 28.0 s. Therefore, she covers a distance of (average speed)x(time) = (3.1 m/s)(28.0 s) = 86.8 m.

Let's denote the time she walks as 't2'. The total time of the trip equals the sum of the time spent in the cart and the time spent walking: 28.0 s + t2.

Similarly, the total distance covered equals distance covered with the cart plus distance covered walking, which is 86.8 m + 1.30 m/s * t2.

Given the average speed for the entire trip is 1.80 m/s, we can write:

1.80 m/s = (total distance) / (total time)

1.80 m/s = (86.8 m + 1.30 m/s * t2) / (28.0 s + t2).

This equation could be solved for t2 to calculate how long the golfer needs to walk.

Learn more about Average Speed here:

https://brainly.com/question/12322912

#SPJ12

A project has a 60% of super success earning $50,000, a 15% chance of mediocre success earning $20,000, and a 25% probability of failure losing $30,000. What is the EMV of the project?

Answers

Answer:

The EMV of the project is $25,500.

Step-by-step explanation:

The EMV of the project is the Expected Money Value of the Project.

This value is given by the sum of each expected earning multiplied by each probability

So, in our problem

[tex]EMV = P_{1} + P_{2} + P_{3}[/tex]

The problem states that the project has a 60% of super success earning $50,000. So

[tex]P_{1} = 0.6*50,000 = 30,000[/tex]

The project has a 15% chance of mediocre success earning $20,000. So

[tex]P_{2} = 0.15 * 20,000 = 3,000[/tex]

The project has a 25% probability of failure losing $30,000. So

[tex]P_{3} = 0.25*(-30,000) = -7,500[/tex]

[tex]EMV = P_{1} + P_{2} + P_{3} = 30,000 + 3,000 - 7,500 = 25,500[/tex]

The EMV of the project is $40,500.

The route used by a certain motorist in commuting to workcontains two intersections with traffic signals. The probabilitythat he must stop at the first signal is .4, the analogousprobability for the second signal is .5, and the probability thathe must stop at least one of the two signals is .6. What is theprobability that he must stop.

a.) At both signals?

b.) At the first signal but not at the second one?

c.) At exactly on signal?

Answers

Answer:

a) 0.2

b) 0.2

c) 0.5

Step-by-step explanation:

Let [tex]S[/tex] be the event "the car stops at the signal.

In the attached figure you can see a tree describing all possible scenarios.

For the first question the red path describes stopping at the first light but not stopping at the second. We can determine the probability of this path happening by multiplying the probabilities on the branches of the tree, thus

[tex]P(a)=0.4\times0.5=0.2[/tex]

For the second one the blue path describes the situation

[tex]P(b)=0.4\times 0.5=0.2[/tex]

For the las situation the sum of the two green path will give us the answer

[tex]P(c)=0.6\times 0.5 + 0.4\times 0.5=0.3+0.2=0.5[/tex]

Answer:

a) 0.3

b) 0.1

c) 0.3

Step-by-step explanation:

Lets call:

a = stop at first signal,  b = stop at second signal

The data we are given is P(a) = 0.4, and P(b)=0.5

Stoping at least at one is the event (a or b) = a ∪ b

P(a U b) = 0.6 is the other data we are given

a) Stoping at both signals is the event (a and b = a ∩ b)

The laws of probability say that:

P(a ∪ b)= P(a) + P(b) - P( a ∩ b) = 0.4 + 0.5  - P( a ∩ b) = 0.6

Then we get P( a ∩ b) = 0.3

b) The event is (a and not b) = a ∩(¬b).

P( a ∩(¬b) ) = P(a) - P( a ∩ b) = 0.1

c) The event is (a or b) without the cases in which (a and b)

P(a ∪ b) - P( a ∩ b) = 0.3

The Venn diagram can help you understand how the events are related to each other

Simplify. 2−4÷2+23 −5 2 7 8

Answers

Answer:

See below.

Step-by-step explanation:

2−4÷2+23 =

= 2 - 2 + 23

= 0 + 23

= 23

This is the answer of the problem you posted, where 23 is the number twenty-three. 23 is not an answer choice, so perhaps 23 is not the number twenty-three, but rather 2 to the 3rd power, 2^3.

2−4÷2+2^3 =

= 2 - 2 + 8

= 0 + 8

= 8

8 is one of the choices.

Answer:

2-4÷2+23-5278 -2÷25-5278-2÷-52532÷52530.000380734818

What is 0.001 percent of 4/3?

Answers

Answer: The required value would be 0.000013.

Step-by-step explanation:

Since we have given that

0.001 % of [tex]\dfrac{4}{3}[/tex]

As we know that

To remove the % sign we should divide it by 100.

Mathematically, it would be expressed as

[tex]\dfrac{0.001}{100}\times \dfrac{4}{3}\\\\=\dfrac{0.004}{300}\\\\=0.000013[/tex]

Hence, the required value would be 0.000013.

Please help find the linear pair

Answers

Linear pair makes a straight line.

A. are vertical angles.

B. are vertical angles

C. make a right angle

D. makes a straight line of TR

The answer is D.

Your answer is D
Hope that helps

using the slope intercept form graph the equation y = -5/2 +3

Answers

Answer:

It is a straight horizontal line where the line is only on 0.5.

Step-by-step explanation:

On a coordinate plane, rhombus W X Y Z is shown. Point W is at (7, 2), point X is at (5, negative 1), point Y is at (3, 2), and point Z is at (5, 5). What is the perimeter of rhombus WXYZ? StartRoot 13 EndRoot units 12 units StartRoot 13 EndRoot units D)>20 units

Answers

Answer:

Shown in the explanation

Step-by-step explanation:

A Rhombus is a quadrilateral having four sides of equal length each. Here, we know that the vertices of this shape are:

[tex]W(7,2) \\ \\ X(5,-1) \\ \\ Y(3,2) \\ \\ Z(5,5)[/tex]

So the rhombus is named as WXYZ. To find its perimeter (P), we just need to find the length of one side and multiply that value by 4. By using the distance formula, we know that:

[tex]\overline{WX}=\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2} \\ \\ W(7,2)=W(x_{1},y_{1}) \\ \\ X(5,-1)=X(x_{2},y_{2}) \\ \\ \\ \overline{WX}=\sqrt{(7-5)^2+(2-(-1))^2} \\ \\  \overline{WX}=\sqrt{(2)^2+(3)^2} \\ \\ \overline{WX}=\sqrt{4+9} \\ \\ \overline{WX}=\sqrt{13}[/tex]

Finally, the Perimeter (P) is:

[tex]P=4(\sqrt{13}) \\ \\ \boxed{P=4\sqrt{13}\ units}[/tex]

Answer:

4 13

Step-by-step explanation:

You have 4 identical gifts (teddy bears) and 7 nieces. In how many different ways could you give the 4 teddy bears to 4 of the 7 nieces, where no niece gets more tharn one teddy bear?

Answers

Answer:

840

Step-by-step explanation:

Total number of gifts (teddy bears)= 4

Total number of nieces = 7

We need to find the number of ways to give the 4 teddy bears to 4 of the 7 nieces, where no niece gets more than one teddy bear.

Number of possible ways to give first teddy = 7

It is given that no niece gets more than one teddy bear.

The remaining nieces are = 7 - 1 = 6

Number of possible ways to give second teddy = 6

Now, the remaining nieces are = 6 - 1 = 5

Similarly,

Number of possible ways to give third teddy = 5

Number of possible ways to give fourth teddy = 4

Total number of possible ways to distribute 4 teddy bears is

[tex]Total=7\times 6\times 5\times 4=840[/tex]

Therefore total possible ways to distribute 4 teddy bears are 840.

Final answer:

There are 35 different ways to give 4 identical teddy bears to 4 of the 7 nieces where no niece receives more than one teddy bear. The calculation is done using combinations formula C(7, 4).

Explanation:

To determine the number of different ways the 4 teddy bears can be given to 4 out of 7 nieces where each niece gets only one teddy bear, we use combinations. Combinations are a way of selecting items from a group, where the order does not matter. In mathematics, this is denoted as C(n, k), which represents the number of combinations of n items taken k at a time.

In this case, we want to find C(7, 4), because we have 7 nieces (n=7) and we are choosing 4 of them (k=4) to each receive one teddy bear. This is calculated by:

C(7, 4) = 7! / (4! * (7-4)!) => C(7, 4) = (7 * 6 * 5 * 4!) / (4! * 3!). Since 4! in the numerator and denominator cancel each other out, it simplifies to:

C(7, 4) = 7 * 6 * 5 / (3 * 2 * 1) = 35

Therefore, there are 35 different ways to give the 4 identical teddy bears to 4 of the 7 nieces when no niece gets more than one teddy bear.

An airplane heading due east has a velocity of 210 miles per hour. A wind is blowing from the north at 38 miles per hour. What is the resultant velocity of the airplane? (Assume that east lies in the direction of the positive x-axis and north in the direction of the positive y-axis.)

Answers

Answer:

The resultant velocity of the airplane is 213.41 m/s.

Step-by-step explanation:

Given that,

Velocity of an airplane in east direction, [tex]v_1=210\ mph[/tex]

Velocity of wind from the north, [tex]v_2=38\ mph[/tex]

Let east lies in the direction of the positive x-axis and north in the direction of the positive y-axis.

We need to find the resultant velocity of the airplane. Let v is the resultant velocity. It can be calculated as :

[tex]v=\sqrt{v_1^2+v_2^2}[/tex]

[tex]v=\sqrt{(210)^2+(38)^2}[/tex]

v = 213.41 m/s

So, the resultant velocity of the airplane is 213.41 m/s. Hence, this is the required solution.

Final answer:

The resultant velocity of the airplane, combining its eastward direction and the northward wind, is approximately 213.4 miles per hour at an angle of 10.3 degrees north of east.

Explanation:

The student's question relates to the concept of resultant velocity, which is a fundamental topic in Physics. When two velocities are combined, such as an airplane's velocity and wind velocity, the outcome is a vector known as the resultant velocity. To calculate this, one must use vector addition.

The airplane has a velocity of 210 miles per hour due east, which can be represented as a vector pointing along the positive x-axis. The wind has a velocity of 38 miles per hour from the north, represented as a vector along the positive y-axis. To find the resultant velocity, these two vectors must be combined using vector addition.

Mathematically, the resultant vector [tex]\\(R)[/tex] can be found using the Pythagorean theorem if the vectors are perpendicular, as in this case:
[tex]\[ R = \sqrt{V_{plane}^2 + V_{wind}^2} \][/tex]

Where \\(V_{plane}\\) is the velocity of the airplane and [tex]\(V_{wind}\)[/tex] is the velocity of the wind.

The direction of the resultant vector can be determined by calculating the angle [tex]\(\theta\)[/tex] it makes with the positive x-axis using trigonometry, specifically the tangent function:
[tex]\[ \theta = \arctan\left(\frac{V_{wind}}{V_{plane}}\right) \][/tex]

By substituting the given values:

[tex]\(V_{plane} = 210 mph\)[/tex][tex]\(V_{wind} = 38 mph\)[/tex]

The resultant velocity (magnitude) is then calculated by:

[tex]\[ R = \sqrt{(210)^2 + (38)^2} = \sqrt{44100 + 1444} = \sqrt{45544} \][/tex]

This yields a resultant speed of approximately 213.4 miles per hour.

The direction \\(\theta\\) will be:

[tex]\[ \theta = \arctan\left(\frac{38}{210}\right) \][/tex]

Using a calculator, one finds that [tex]\(\theta\)[/tex] is approximately 10.3 degrees north of east.

The supplement of an angle Y measures 10x + 4 and the complement of the angle measures 4x. What is the measure of the angle?

Answers

Answer:

Y=32.67°

Step-by-step explanation:

Supplement condition:

Y+(10x+4°)=180°     (1)

Complement condition:

Y+4x=90°      (2)

5*(2)-2*(1):

5Y +20x - 2Y -20x -8° =450°-360°

3Y=98°

Y=32.67°

A basic cellular phone plan costs $4 per month for 70 calling minutes. Additional time costs $0.10 per minute. The formula C= 4+0.10(x-70) gives the monthly cost for this plan, C, for x calling minutes, where x>70. How many calling minutes are possible for a monthly cost of at least $7 and at most $8?

Answers

Answer:

For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.

Step-by-step explanation:

The problem states that the monthly cost of a celular plan is modeled by the following function:

[tex]C(x) = 4 + 0.10(x-70)[/tex]

In which C(x) is the monthly cost and x is the number of calling minutes.

How many calling minutes are needed for a monthly cost of at least $7?

This can be solved by the following inequality:

[tex]C(x) \geq 7[/tex]

[tex]4 + 0.10(x - 70) \geq 7[/tex]

[tex]4 + 0.10x - 7 \geq 7[/tex]

[tex]0.10x \geq 10[/tex]

[tex]x \geq \frac{10}{0.1}[/tex]

[tex]x \geq 100[/tex]

For a monthly cost of at least $7, you need to have at least 100 calling minutes.

How many calling minutes are needed for a monthly cost of at most 8:

[tex]C(x) \leq 8[/tex]

[tex]4 + 0.10(x - 70) \leq 8[/tex]

[tex]4 + 0.10x - 7 \leq 8[/tex]

[tex]0.10x \leq 11[/tex]

[tex]x \leq \frac{11}{0.1}[/tex]

[tex]x \leq 110[/tex]

For a monthly cost of at most $8, you need to have at most 110 calling minutes.

For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.

An effervescent tablet has the following formula: acetaminophen 325 mg, calcium carbonate 280 mg, citric acid 900 mg, potassium bicarbonate 300 mg, and sodium bicarbonate 465 mg. a. Calculate the total weight, in grams, of the ingredients in each tablet. b. How many tablets could be made with a supply of 5 kg of acetaminophen?

Answers

Answer:  a)   2.27 g     and     b)  15384

Step-by-step explanation:

Given : An effervescent tablet has the following formula:

acetaminophen 325 mg,

calcium carbonate 280 mg,

citric acid 900 mg,

potassium bicarbonate 300 mg, and

sodium bicarbonate 465 mg.

a) When we add all quantities together , we get

The total weight of the ingredients in each tablet = [tex]325 +280+900+300+465=2270[/tex]

Since, 1 gram = 1000 mg

Then, [tex]1\ mg=\dfrac{1}{1000}\ g[/tex]

Now, [tex]2270\ mg=\dfrac{2270}{1000}\ g=2.27\ g[/tex]

∴ The total weight of the ingredients in each tablet = 2.27 g

b. 1 kg = 1000g and 1 g = 1000 mg

Then, 1 kg = [tex]1000\times1000=1000,000\ mg[/tex]

⇒ 5 kg = 5000,000 mg

Now, The number of  tablets could be made with a supply of 5 kg of acetaminophen will be :

[tex]\dfrac{5000000}{325}=15384.6153846\approx15384[/tex]

Hence, the number of  tablets could be made with a supply of 5 kg of acetaminophen= 15384

Final answer:

The total weight of the ingredients in the effervescent tablet is 2.27 g. With a supply of 5 kg of acetaminophen, you could produce approximately 15,385 tablets.

Explanation:

To answer the student's questions, we start by calculating the total weight of the tablet:
acetaminophen: 325 mg, calcium carbonate: 280 mg, citric acid: 900 mg, potassium bicarbonate: 300 mg, and sodium bicarbonate: 465 mg.
Adding all these quantities together gives a total of 2270 mg or 2.27 g per tablet.

Now for the second question, to find out how many tablets you can make from 5 kg of acetaminophen, we need to determine how much acetaminophen is in a single tablet. We know that each tablet contains 325 mg of acetaminophen, so if we have 5 kg of it, we first convert the 5 kg into milligrams (since the amount in each tablet is given in milligrams).
There are 1,000,000 milligrams in a kilogram, so 5 kg = 5 x 1,000,000 = 5,000,000 mg.
We then divide this total quantity by the amount of acetaminophen in each tablet: 5,000,000 mg / 325 mg/tablet = approximately 15,385 tablets.

Learn more about Calculations involving mass of substances here:

https://brainly.com/question/37646281

#SPJ3

A Vivelle estradiol transdermal system is a round patch measuring about 4.3 cm in diameter. Convert this dimension to inches and millimeters.

Answers

Final answer:

The diameter of 4.3 cm equals 1.677 inches and 43 millimeters. This is calculated by using the conversion factors of 0.39 for inches and 10 for millimeters.

Explanation:

To convert diameter from centimeters to inches and millimeters, we use the conversion factors that 1 cm equals 0.39 inches and 1 cm equals 10 millimeters.

First, let's convert into inches. Multiply the given diameter (4.3 cm) by the conversion factor (0.39). 4.3 cm * 0.39 = 1.677 inches.

Next, let's convert into millimeters. Multiply the given diameter (4.3 cm) by the conversion factor (10) for millimeters. 4.3 cm * 10 = 43 millimeters.

Learn more about Conversion here:

https://brainly.com/question/34235911

#SPJ2

Other Questions
Which of the following is NOT a major concept involved in the study of Earth Science?a Earth's HistoryC Earth in the Solar Systemb. The Structure of the Earth Systemd. All are major conceptsPlease select the best answer from the choices provided A fish die when taken out of water while a rat kept under water dies . What availibility allows the rat and fish to sirvive in their respecrive habitat Prove that x-1 is a factor of x^n-1 for any positive integer n. How does the young scoresby compare to the others students of the class Three point charges are arranged along the x-axis. Charge q1 = +3.00 C is at the origin, and charge q2 = -5.00 C is at x = 0.200 m. Charge q3 = -8.00 C. Where is q3 located if the net force on q1 is 7.00 N in the -x-direction? Folsom Fashions sells a line of women's dresses. Folsom's performance report for November Year 1 follows.Actual : Dresses Sold: 5000, Sales 235,000, variable cost is 145,000 contribution margin is 90,000, fix cost is 84,000 and operating income is 6,000Budget: Dresses Sold: 6000, Sales 300,000, variable costs: 180000, contribution margin is 120,000, fixed costs is 80000, and operating income is 40,000The company uses a flexible budget to analyze its performance and to measure the effect on operating income of the various factors affecting the difference between budgeted and actual operating income.The variable cost flexible budget variance for November is:(A) $4,000 unfavorable.(B) $5,000 favorable.(C) $5,000 unfavorable.(D) $4,000 favorable. Solve the equation 5.3g+9=2.3g+15. What is the lenght of a diagonal of a square with sides 16feetlong ? Round to the nearest tenth. How did Robert de La Salle help extend Frances influence in the New World? He explored and established colonies in Canada. He explored Hudson Bay, the Hudson River, and the Hudson Strait. He explored the Pacific Ocean and Hawaii. He explored the Mississippi River and built trading posts on it. Cantwell Associates, a real estate developer, is planning to build a new apartment complex consisting of one-bedroom units, two-bedroom townhouses, and three-bedroom townhouses. A total of 216 units is planned. The total number of two- and three-bedroom townhouses will equal the number of one-bedroom units. If the number of one-bedroom units will be 3 times the number of three-bedroom townhouses, find how many units of each type will be in the complex. one-bedroom units units two-bedroom townhouses units three-bedroom townhouses units When Stephanies light bulb did not turn on after she wired a circuit board, she asked her brother to use the same procedure to see if he got the same results.Which important step of scientific design is being modeled?a. reevaluatingb. repetitionc. replicationd. revising Which of the following is an outcome of the growing trend to have fewer children? Women have less time for other endeavors. Institutional care is replaced by parental care. Parents are bound to have more realistic expectations for their children. Men are apt to invest a greater amount of time in fathering. 3/2x - 2/3x=2I need the answer for this, please. And with steps on how you got the answer because I dont understand it. Find the value for x LAST ONE PLS HELP Adding which of the following ordered pairs to the set {(1,-2), (0,4), (2,-3)} would make it not a function?A. (-1, -2)B. (3, 5)C. (0, 2)D. (-2, 1) If I find a newspaper or magazine article on the Web, I can use it without citing it because I found it in electronic form.True or False? Find the value of y for which a the values of 5y+3 and 36y are equalplzzzz If the gravitational force between objects of equal mass is 2.30 x 10^8 N when the objects are 10.0 m apart, what is the mass of each object? 4. Heartburn is caused bya. seepage of gastric acid into the esophagus.b. seepage of gastric acid into the cardiac muscle.c. seepage of bile into the stomach.d. seepage of salivary amylase into the stomach. A meteoroid is first observed approaching the earth when it is 402,000 km from the center of the earth with a true anomaly of 150. If the speed of the meteoroid at that time is 2.23 km/s, calculate (a) the eccentricity of the trajectory; (b) the altitude at closest approach; and (c) the speed at the closest approach. In experiment two, I measured a block to be 4.45 cm by 3.35 em by 6.15 cm and a mass of 155.147g. What is the density of this block in kg/L? 3.