The exhaust steam from a power station turbine is condensed in a condenser operating at 0.0738 bar(abs). The surface of the heat transfer surface is held at 20°C. What percentage change does the inclusion of the sensible heat correction term make to the estimated heat transfer condensing film coefficient?

Answers

Answer 1

Answer:

Percentage change 5.75 %.

Explanation:Given ;

Given

 Pressure of condenser =0.0738 bar

Surface temperature=20°C

Now from steam table

Properties of steam at 0.0738 bar  

Saturation temperature corresponding to saturation pressure =40°C      

 [tex]h_f= 167.5\frac{KJ}{Kg},h_g= 2573.5\frac{KJ}{Kg}[/tex]

So Δh=2573.5-167.5=2406 KJ/kg

Enthalpy of condensation=2406 KJ/kg

So total heat=Sensible heat of liquid+Enthalpy of condensation

[tex]Total\ heat\ =C_p\Delta T+\Delta h[/tex]

Total heat =4.2(40-20)+2406

Total heat=2,544 KJ/kg

Now film coefficient before inclusion of sensible heat

  [tex]h_1=\dfrac{\Delta h}{\Delta T}[/tex]

  [tex]h_1=\dfrac{2406}{20}[/tex]

[tex]h_1=120.3\frac{KJ}{kg-m^2K}[/tex]

Now film coefficient after inclusion of sensible heat

 [tex]h_2=\dfrac{total\ heat}{\Delta T}[/tex]

 [tex]h_2=\dfrac{2,544}{20}[/tex]

[tex]h_2=127.2\frac{KJ}{kg-m^2K}[/tex]

[tex]So\ Percentage\ change=\dfrac{h_2-h_1}{h_1}\times 100[/tex]

             [tex]=\dfrac{127.2-120.3}{120.3}\times 100[/tex]

                   =5.75 %

So Percentage change 5.75 %.


Related Questions

The universe is sometimes described as an isolated system. Why?

Answers

Answer and Explanation :The universe means it includes everything, even the things which we can not see is an isolated system because universe has no surroundings. an isolated system does not exchange energy or matter with its surroundings.Sometime universe is treated as isolated system because it obtains lots of energy from the sun but the exchange of matter or energy with outside is almost zero.

the total energy of an isolated system is always constant means total energy of universe is also constant there is no exchange of matter or energy in an isolated system

A reciprocating engine of 750mm stroke runs at 240 rpm. If the length of the connecting rod is 1500mm find the piston speed and acceleration when the crank is 45 past the top dead center position.

Answers

Answer:

speed = 16.44 m/s

Acceleration = 71.36 m/s²

Explanation:

Given data

Speed ( N) = 240 rpm

angle  = 45°

stoke length(L)  = 750 mm

length of rod ( l )  = 1500 mm

To find out

the piston speed and acceleration

Solution

we find speed by this formula

speed = r ω (sin(θ) + (sin2(θ)/ 2n))  ...................1

here we have find  r and ω

ω = 2[tex]\pi[/tex] N / 60

so ω = 2[tex]\pi[/tex] × 240 / 60

ω =  25.132 rad/s

n = l/r =  1500/750 = 2

we know  L = 2r

so r = L/2 = 750/2 = 375 mm

put these value in equation 1

speed = 375 × 25.132 (sin(45) + (sin2(45)/ 2×2))  

speed = 16444.811823 mm/s = 16.44 m/s

Acceleration = r ω² (cos(θ) + (cos2(θ)/ n))  ...................2

put the value  r, ω and n in equation 2

Acceleration = r ω² (cos(θ) + (cos2(θ)/ n))

Acceleration  = 375 × (25.132)² (cos(45) + (cos2(45)/2))  

Acceleration = 71361.363659 = 71.36 m/sec²

What is entropy? how is it related to the environment? Also, what is the increase of entropy principle? Brief answer please (Not too lengthy and not too short)

Answers

Answer:

1). Entropy can be defined as a measure of sytem's thermal energy per unit temperature unavailable for ding useful work.

In other words, we can say that its a measure of the degree of randomness of a defined system.

Entropy-Environment relation:

Entropy is the fundamental concept that applies to the environment, humans or the entire universe.

The Second law  of thermodynamics explains the environmental impact of entropy. Reversing a process requires work, so reversing environmental process takes energy. Environmental impacts are higher at higher entropies and harder to reverse. Entropic flows and entropy measures can be used to prioritize the impacts which need action.

Increase of Entropy Principle:

This principle states that the total change in entropy of a system with its enclosed adiabatic surrounding is always positive i.e., greater than or equal to zero.

Convert the temperature of 451 degree Fahrenheit to the units requested: a. Rankine b. Kelvin c. Celsius

Answers

Answer:

(a) 910.67°R (b) 505.9277 (c) 232.777

Explanation:

FAHRENHIET TO RANKINE: T(R°)=T(F°)+459.67

we have to change 451°F

T(R°)=451+459.67

=910.67°R

FAHRENHET TO KELVIN: T(K)=(T(F°)+459.67) ×[tex]\frac{5}{9}[/tex]

we have to convert 451°F

T(K)=(451+459.67)×[tex]\frac{5}{9}[/tex]

=505.9277

FAHRENHET TO CELSIUS: T(C°)=[tex]\frac{F-32}{9}[/tex]×5

we have to convert 451°F

T(C°)=[tex]\frac{451-32}{9}[/tex]×5

=232.777

What are the three elementary parts of a vibrating system?

Answers

Answer:

the three part are mass, spring, damping

Explanation:

vibrating system consist of three elementary system namely

1) Mass - it is a rigid body due to which system experience vibration and kinetic energy due to vibration is directly proportional to velocity of the body.

2) Spring -  the part that has elasticity and help to hold mass

3) Damping - this part considered to have zero mass and  zero elasticity.

A structural steel shaft with an outer diameter of 1.9 inches and an applied torque of 82.7 ft*lbs. Find: The maximum torsional shear stress in the shaft. Select one: a)- 736.88 ksi b)- 61.41 psi c)- 1473.76 ksi d)- 736.88 psi e)- 368.44 psi

Answers

Answer:

Answer is part d -736.88  psi

Explanation:

We know that for a bar subjected to pure torsion the shear stresses that are generated can be calculated using the following equation

[tex]\frac{T}{I_{P} } =\frac{t}{r}[/tex]....................(i)

Where

T is applied Torque

[tex]I_{P}[/tex] is the polar moment of inertia of the shaft

t is the shear stress at a distance 'r' from the center

r is the radial distance

Now in our case it is given in the question T =82.7 ft*lbs

converting T into inch*lbs we have T = 82.7 x 12 inch*lbs =992.4 inch*lbs

We also know that for a circular shaft polar moment of inertia is given by

[tex]I_{P}=\frac{\pi D^{4} }{32}[/tex]

[tex]I_{P}= \frac{\pi\ 1.9^{4} }{32} =1.2794 inch^{4}[/tex]

Since we are asked the maximum value of shearing stresses they occur at the surface thus r = D/2

Applying all these values in equation  i we get

[tex]\frac{992.4 inch*lbs}{1.2794 inch^{4} } \frac{1.9 inches}{2}[/tex] = t

Thus t = 736.88 psi

 

Describe the process that you would use to hot forge an automotive connecting rod, indicating why each of the steps is used.

Answers

Answer:

Hot forging is a process which is carried at a temperature that is higher than the recrystalization temperature.

Explanation:

A connecting rod is used in a reciprocating engine which links the piston to the crankshaft. Connecting rods are made of steel which are hot forged.

The various steps that are used to hot forged a connecting rod are :

1. Rods are made to cut in the required size from the billet by billet shearing machine or saw band.

2. Heating of the billets in the furnace upto its recrystalization temperature.

3. Placing the billets in both upper and lower dies and doing the forging operation.

4. Rolling forging : it is important for the quality of the forged component.

5. Finishing and trimming : finishing is done to improve the surface quality and provide a smooth finish.

6. Inspection : Visual inspection is done for any defects.

What is the difference between pump and turbine? Write the first law of thermodynamics for both (pump & turbine)?

Answers

Answer:

Pumps converts mechanical energy into hydraulic energy while turbines convert hydraulic energy into mechanical energy.

Explanation:

The machines which converts and transfers mechanical energy in the form of torque on the shaft into hydraulic energy in the form of water under pressure are called pumps whereas those machines which converts water pressure or hydraulic energy into mechanical energy that is further converted into electrical energy are called turbines.

   The pump impeller rotates in the opposite direction to the turbine runner.

A turbine delivers work as output whereas a pump consumes work.

First law of thermodynamics for a pump :

W = ( H₁-H₂) +Q  , where H₁ > H₂

First law of thermodynamics for a turbines :

W = ( H₂-H₁) +Q  , where H₁ < H₂

Tool life testing on a lathe under dry cutting conditions gauge 'n' and 'C' of Taylor tool life equation as 0.12 and 130 m/min. respectively. When a coolant was used, 'C' increased by 10%. The increased tool life with the use of coolant at a cutting speed of 90 m/min is

Answers

Answer:

So % increment in tool life is equal to 4640 %.

Explanation:

Initially n=0.12 ,V=130 m/min

Finally  C increased by 10% , V=90 m/min

Let's take the tool life initial condition is [tex]T_1[/tex] and when C is increased it become [tex]T_2[/tex].

As we know that tool life equation for tool

[tex]VT^n=C[/tex]

At initial condition [tex]130\times (T_1)^{0.12}=C[/tex]------(1)

At final condition [tex]90\times (T_2)^{0.12}=1.1C[/tex]-----(2)

From above equation

[tex]\dfrac{130\times (T_1)^{0.12}}{90\times (T_2)^{0.12}}=\dfrac{1}{1.1}[/tex]

[tex]T_2=47.4T_1[/tex]

So increment in tool life =[tex]\dfrac{T_2-T_1}{T_1}[/tex]

                                           =[tex]\dfrac{47.4T_1-T_1}{T_1}[/tex]

So % increment in tool life is equal to 4640 %.

1kg of air (R 287 J/kgK) fills a weighted piston-cylinder device at 50kPa and 100°C. The device is cooled until the temperature is 0°C. Determine the work done during this cooling.

Answers

Answer:

the work done during this cooling is −28.7 kJ

Explanation:

Given data

mass (m) = 1 kg

r = 287 J/kg-K

pressure ( p) = 50 kPa

temperature (T) = 100°C = ( 100 +273 ) = 373 K

to find out

the work done during this cooling

Solution

we know the first law of thermodynamics

pv = mRT     ....................1

here put value of p, m R and T and get volume v(a) when it initial stage in equation 1

50 v(a) = 1 × 0.287  × 373

v(a) = 107.051 / 50

v(a) = 2.1410 m³    .......................2

now we find out volume when temperature is  0°C

so put  put value of p, m R and T and get volume v(b) when temperature is cooled in equation 1

50 v(b) = 1 × 0.287  × 273

v(a) = 78.351 / 50

v(a) = 1.5670 m³    .......................3

by equation 2 and 3 we find out work done to integrate the p with respect to v i.e.

work done = [tex]\int\limits^a_b {p} \, dv[/tex]

integrate it and we get

work done = p ( v(b) - v(a)  ) ................4

put the value p and v(a) and v(b) in equation 4 and we get

work done = p ( v(b) - v(a)  )

work done = 50 ( 1.5670 - 2.1410 )

work done = 50 ( 1.5670 - 2.1410 )

work done = 50 (−0.574)

work done = −28.7 kJ

here we can see work done is negative so its mean work done opposite in direction of inside air

'

A finished, tapered workpiece has an included angle of 70 degrees. If the taper is nade vith the compound, how many degrees should tha setting be on the swivel base? A. 70 B. 140 C. 20 D. 35

Answers

Answer:

Tapering is basically the process of thinning or reducing a work piece according to the set standards. and the final product after tapering is known as tapered workpiece.

Solution:

Included angle = 70 degrees

setting on the swivel base is given by:

2α = 70°

α = 35°

Therefore, the setting on the swivel base should be 35°

A 350 gal air storage tank is initially at 100 psig. For how long can the tank supply 30 cfm of air to a machine that requires at least 80 psig to operate?

Answers

Answer:

93.8 sec

Explanation:

it is given that tab has 350 gallon

we know that 1 gallon = 0.134 cubic foot

350 gallon = 350×0.134=46.9 cubic foot

the delivery pressure is 100 psi which is greater than 80 psi to operate machine

it is given that supply volume is 30 cubic foot per minute

=   [tex]\frac{30}{60}=0.5[/tex] [tex]ft^{3}/sec[/tex]

[tex]time\ required\ =\frac{tab\ air }{supply\ volume}[/tex]

[tex]time\ required\=  [tex]\frac{46.9}{0.5}[/tex]

=93.8 sec

The process in which the system pressure remain constant is called a)-isobaric b)-isochoric c)-isolated d)-isothermal

Answers

Answer:

Isobaric process

Explanation:

The process in which the system pressure remain constant is called is called isobaric process. The word "iso"means same and baric means pressure.

At constant pressure, the work done is given by :

[tex]W=p\times \Delta V[/tex]

Where

W is the work done by the system

p is the constant pressure

[tex]\Delta V[/tex] is the change in volume

So, the correct option is (c) " isobaric process ".

What are the mechanisms of energy transfer in an open system?

Answers

Answer:

mechanism of energy transfer in system is depend on Heat and Work:

Explanation:

Heat :Heat is described as the type of energy transmitted by a temperature difference between two structures (or a system and its environment).

Work:it is  is an interaction of energy between a system and its environment. In the form of  work   it can cross the boundaries of a closed system. if energy crossing boundary of the system is not heat then it must be work..

A centrifugal pump provides a flow rate of 0.03 m/s when operating at 1750 rpm against 60 m head. Determine the pump's flow rate and developed head if the pump speed is increased to 3500 rpm.

Answers

Answer:240m

[tex]Q=0.06m^3/s[/tex]

Explanation:

Given rpm increases from 1750 rpm to 3500 rpm

initial head 60 m and flow rate=[tex]0.03 m^{3}/s[/tex]

Since unit speed remains same

therefore

[tex]N_u=\frac{N}{\sqrt{H}}[/tex]

[tex]\frac{1750}{\sqrt{60}}[/tex]=[tex]\frac{3500}{\sqrt{H}}[/tex]

H=240m

Also unit Flow remains same

[tex]\frac{Q}{\sqrt{H}}[/tex]=[tex]\frac{Q}{\sqrt{H}}[/tex]

[tex]\frac{0.03}{\sqrt{60}}[/tex]=[tex]\frac{Q}{\sqrt{240}}[/tex]

[tex]Q=0.06m^3/s[/tex]

How much power is needed to operate a Carnot heat pump if the pump receives heat 10°C and delivers 50 kW of heat at 40°C? at A) 5.30 kw B) 151 kw C) 37.5 kW D) 4.79 kw

Answers

Answer:

Power needed to pump=4.79 KW.

Explanation:

Given that:[tex]T_{1}=283K,T_{2}=313K,Q_{H}=50KW[/tex]

We know that coefficient of performance of heat pump

 COP=[tex]\dfrac{T_{H}}{T_{H}-T_{L}}[/tex]

So COP=[tex]\dfrac{313}{313-283}[/tex]

      COP=10.43

COP=[tex]\frac{Q_{H}}{W_{in}}[/tex]

      10.43 =[tex]\frac{50}{W_{in}}[/tex]

[tex]W_{in}[/tex]=4.79 KW

So power needed to pump=4.79 KW.

An object whose mass is 251 kg is located at an elevation of 24 m above the surface of the earth. For g-9.78 ms, determine the gravitational potential energy of the object, in kJ, relative to the surface of the earth.

Answers

Answer:

Gravitational Potential =58.914 KJ

Explanation:

We know that

[tex]Gravitational Potential Energy = mass\times g\times Height[/tex]

Given mass = 251 kg

Height= 24 m

g is acceleration due to gravity = [tex]9.78m/s^{2}[/tex]

Applying values in the equation we get

[tex]Gravitational Potential Energy=251X9.78X24 Joules[/tex]

[tex]Gravitational Potential Energy=58914.72 Joules[/tex]

[tex]Gravitational Potential Energy =\frac{58914.72}{1000}KJ= 58.914KJ[/tex]

_______On what basis composites are classified a)- shape of dispersed phase b)-matrix materials c)-chemistry of dispersed phase d)-a & b

Answers

Answer: d) a & b

Explanation: Composite materials are made up of two or more different types of phases which include dispersed phase and matrix phase as most important phases.

Matrix phase is a types of continuous phase which is responsible for holding of the dispersed phase.It shows good property of ductility.Dispersed phase is also known as the secondary phase which is harder in nature than matrix phase.

Which of the following are all desirable properties of a hydraulic fluid? a. good heat transfer capability, low viscosity, high density b. good lubricity, high viscosity, low density c. chemically stable, compatible with system materials, good heat insulative capability d, readily available, high density, large bulk modulus e. fire resistant, inexpensive, non-toxic.

Answers

Answer:

e.Fire resistance,Inexpensive,Non-toxic.

Explanation:

Desirable hydraulic property of fluid as follows

1. Good chemical and environment stability

2. Low density

3. Ideal viscosity

4. Fire resistance

5. Better heat dissipation

6. Low flammability

7. Good lubrication capability

8. Low volatility

9. Foam resistance

10. Non-toxic

11. Inexpensive

12. Demulsibility

13. Incompressibility

So our option e is right.

All bodies at a temperature above absolute zero emit thermal radiation. a)-True b)-False

Answers

Answer:

a). TRUE

Explanation:

Absolute zero temperature is the lowest possible temperature that can be achieved where no heat energy remains in the body. Absolute zero temperature is 0 k in the Kelvin scale and -273.16 degree Celsius in Centigrade scale.

             All bodies with temperature greater than absolute zero emits energy in the form of electro magnetic radiation. Two laws namely Stefan Boltzmann law and Wein's law gives the basis of the fact that bodies with temperature greater than absolute zero temperature emits electromagnetic radiation.

Stefan Boltzmann law : It states the relationship between temperature of the body and radiations that it can emit.

                         E = σ. [tex]T^{4}[/tex]

where E = radiation emissions

           σ =  Stefans Boltzmann constant

           t is temperature

Wein's Law : It states the temperature of the object and the wavelength at which the body emits maximum radiations.

[tex]\lambda _{max} = \frac{b}{T}[/tex]

where λ is wavelength

           b  is a constant

           T is temperature

Name three major heat transfer mechanisms giving one example of each from day-to-day life. Also explain the physical mechanism behind these modes of heat transfer.

Answers

Answer:

The major heat transfer mechanisms are:

Conduction: When a body at higher temperature comes in direct contact with  a body at lower temperature flow of heat takes place from higher temperature to lower temperature due to the Kinetic energy of particles in motion and this motion continues till equilibrium is reached. Heat transfer by this method is called conduction. For example: When a hot metal comes in direct contact with a cold metal, heat is transferred by conduction.Convection: This method of heat transfer applies to fluid motion of particles. Here, the heat transfer is due to thermal energy of the fluid particles. Due to the differences in their density the liquid over hot surface expands and rises up and heat flows from high to low temperatures. For example: When earth's surface is heated by the sun, the warm air comes up and cool air comes in Radiation: Thermal radiations are generated by electromagnetic waves. These are the result of motion of random molecules in the matter which carry the energy from the emitting body and provides motion to the charge particles of EM waves. At high temperature, shorter wavelength is produced and vice-versa. For example: visible light, UV, IR, etc

What is a rotary actuator and give an example of how it is used?

Answers

Answer Explanation:

ROTARY ACTUATOR: A rotary actuator is an actuator that produces a rotary motion. An actuator requires a control signal and a source of energy.the linear motion in one direction gives rise to rotation.

EXAMPLE OF ROTARY ACTUATOR: the most used rotary actuators are rack and pinion, vane and helical

HOW IT IS USED: an actuator requires a control signal and its energy sources are current, fluid pressure when it receives a control signal it responds by converting signal energy into mechanical motion

Name 3 types of hydraulic cylinder mountings.

Answers

Answer:

Flanges MountingTrunnions MountingClevises Mounting

Answer:

1.Flange mounting:

2.Foot mounting:

3.Mounting on end joint:

extra.4. Trunnion mounting

In a gas turbine, air (kinematic viscosity of 1x104-5 m 2/s) flows over a 2 cm long turbine blade at 100 m/s. How long should the blade be in my lab's wind tunnel (air, kinematic viscosity of 1.5x10A-5 mA2/s, velocity of 10 m/s), to match the Reynolds number of the gas turbine? a)-2cm b)-30cm c)-0.3cm

Answers

Answer:

30 cm

Explanation:

For  Reynold's number similarity between model and prototype we should  have

[tex]R_{e}  _{model} =R_{_{e prototype}}  \\\\\frac{V_{model} L_{model} }{kinematic viscosity in model} =\frac{V_{proto}L_{proto}  }{kinematic viscosity in prototype}[/tex]

Given L(prototype)= 2cm

V(prototype) = 100m/s

V(model) = 10m/s

 Thus applying values in the above equation we get

[tex]\frac{100m/s^{} X2cm^{}  }{1X10^{-5}m^{2}/s  } =\frac{L_{M}X10m/s }{1.5X10^{-5}m^{2}/s }[/tex]

Solving for Lmodel we get Lm = 30cm

Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow rate is 5.5 kg/s, and the power developed is 1120 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Determine
(a) The temperature of the air at the turbine exit, in K.
(b) The isentropic turbine efficiency.

Answers

Answer:

a) [tex]T_{2}=837.2K[/tex]

b) [tex]e=91.3[/tex] %

Explanation:

A) First, let's write the energy balance:

[tex]W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})[/tex]  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 [tex]\frac{kJ}{kgK}[/tex] And its specific R constant is 0.287 [tex]\frac{kJ}{kgK}[/tex].

The only unknown from the energy balance is [tex]T_{2}[/tex], so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

[tex]T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K[/tex]

B) The isentropic efficiency (e) is defined as:

[tex]e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}[/tex]

Where [tex]{h_{2s}[/tex] is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because [tex]h_{2}-h_{1}[/tex] can be obtained from the energy balance  [tex]\frac{W}{m}=h_{2}-h_{1}[/tex]

[tex]h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}[/tex]

An entropy change for an ideal gas with  constant Cp is given by:

[tex]s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})[/tex]

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

[tex]0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})[/tex]

Applying logarithm properties:

[tex]ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}[/tex]

Then,

[tex]T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K[/tex]

So, now it is possible to calculate [tex]h_{2s}-h_{1}[/tex]:

[tex]h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}[/tex]

Finally, the efficiency can be calculated:

[tex]e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3[/tex] %

Explain the following terms; i.Water content in air ii. Relative humidity iii. Enthalpy

Answers

Answer:

Explanation:

WATER CONTENT IN AIR-the water content of the air varies from place to place and from time to time because water content in air is dependent on temperature if temperature is change then water content also change water exist in air as a solid liquid and gas

RELATIVE HUMIDITY-Relative humidity is the ratio of partial pressure of water vapor to the equilibrium vapor pressure of water at a given temperature  relative humidity depends on temperature and pressure of the system

Enthalpy-when a substance changes at constant pressure enthalpy tells how much heat and work was added or removed from the substance

enthalpy is equal to the sum of system internal energy and product of its pressure and volume.it is denoted H

Different types of steels contain different elements that alter the characteristics of the steel. For each of the following elements, explain what the element does when alloyed with steel.

Answers

Answer:

The presence of element Carbon.

Explanation:

The diagrams Steel- Carbon usually show the percent the carbon vs the phases of the steel.

In the middle you increase the carbon percent the steels are not commercial because they are no malleables ( Hardennes).  

By the other hand according the application of the steel you need to look the diagram Fe-Cr.

In general, this of the following methods yields the most conservative fatigue strength proof (a) Saderberg method (b)-Goodman method (c)-Gerber line (d)-The ASME elliptic curve.

Answers

Answer:

a). Soderberg method

Explanation:

A straight line joining the endurance limit, [tex]S_{e}[/tex] on the ordinate and to the yield strength,[tex]S_{yt}[/tex]  on the abscissa is know as Soderberg line.

   The Soderberg line is the most conservative failure criteria and in this there is no need to consider yielding point in this case.

The equation for Soderberg is given by

[tex]\frac{\sigma _{m}}{S_{yt}}+\frac{\sigma _{a}}{S_{e}}=1[/tex]

where [tex]\sigma _{m}[/tex] is mean stress

           [tex]\sigma _{a}[/tex] is amplitude stress

           

Provide main reasons for the short shot during the injection molding.

Answers

Answer:

some cause of short shot is

1) due to the restriction in the flow

2) air pockets

3) high viscosity.

Explanation:

short shot is a word defined for major defect, it is actually occur when molten material does not  fully occupy the cavities in a mold. Due to which mold remained incomplete after cooling. short shot may be because of restriction in the flow of molten material through the cavities and other main cause is present of large percentage of entrapped air.

It is appropriate to use the following yield or failure criterion for ductile materials (a) Maximum shear stress or Tresca criterion; b) Distortion energy or von Mises criterion; (c) Mohr-Coulomb criterion; (d) Any of the above

Answers

Answer:

(b)Distortion energy theory.

Explanation:

The best suitable theory for ductile material:

       (1)Maximum shear stress theory (Guest and Tresca theory)

It theory state that applied maximum shear stress should be less or equal to its maximum shear strength.

      (2)Maximum distortion energy theory(Von Mises henkey's        theory)

It states that maximum shear train energy per unit volume at any point  is equal to strain energy per unit volume under the state of uni axial stress condition.

But from these two Best theories ,suitable theory is distortion energy theory ,because it gives best suitable result for ductile material.

Other Questions
what specific health and wellness benefits do stretching exercises provide? Jasmine is saving to buy a bicycle. The amount she has saved is shown in the table. What is the function describes the amount A, in dollars, Jasmine has saved after t weeks?Table Weeks/Amount1 / $302 / $453 / $604 / $755 / $906 / $105 Analytical processing uses multi-levelaggregates, instead of record level access.? True? False If a 4x16 rectangle has the same area as a square what is the length of a side of the square A planet is 15 light years from earth. At which of the following speeds will the crew of a spaceship complete the trip to the planet in 8 years? A) 0.78c B) 0.85c C) 0.88c D) 0.92c If f(x) = -4x^ - 6x - 1 and g(x) = -x2 - 5x + 3, find (f - g)(x).OA. (f - g)(x) = -3x2 - 11x + 2O B. (f - g)(x) = 5x2 + x + 2O C. (f 9)(x) = -3x2 - x - 4O D. (f - g)(x) = 3x2+x+4 The depletion of ozone (O3) in the stratosphere has been a matter of great concern among scientists in recent years. It is believed that ozone can react with nitric oxide (NO) that is discharged from the high-altitude jet plane, the SST. The reaction is O3 + NO ---> O2 + NO2 If 0.827 g of O3 reacts with 0.635 g of NO, how many grams of NO2 will be produced? g NO2 Which compound is the limiting reagent? ozone (O3) nitric oxide (NO) Calculate the number of moles of the excess reagent remaining at the end of the reaction. Which equation involves a prime quadratic and cannot be solved by factoring?A. x2-x-6=0B. x2 + 5x -4 = 0C. x2 + 6x + 9 = 0D. x2 + 3x-4=0 Intensity of a wave is the. (a) Power per unit area (b) Power per unit volume (c) Power per unit time (d) All of the above How do you divide 85 by 41 with remainder Who are nymphs in greek mythology? Read this excerpt from The Land.Eventually there came the time on a late summer afternoon just before my twelfth birthday when folks came to visit and it was my mama, not my daddy, who ordered me to the kitchen. Robert was now expected to stay at my daddys table, and no amount of protest on his part changed that. My mama set a lone plate for me on the sideboard in the kitchen. That was truly the first time I felt unwanted in my daddys family. My daddy hadnt even bothered to tell me himself not to sit at his table. He had left that to my mama, and I resented not only him for it, but her too.What is the best reason why this excerpt is important to the story?It develops the characterization of Pauls mother.It addresses the minor theme dealing with loneliness.It provides specific details about the historical setting.It addresses the major theme dealing with inequality. Authorized by voters in 1991, the Texas state lottery generates a sizeable sum for the state budget. Which of the following statements regarding the Texas lottery is true? The lottery is played almost entirely by the wealthy. All Texans unanimously support the lottery. The lottery is played by large numbers of people from all social classes. The lottery is played almost entirely by poor people. What colleges dont require on campus housing? Fluctuations in Estrogen are common in women of reproductive age. What side effect do you think may occur in post-menopausal women who take estrogen supplements?a. Breast cancerb. High blood pressurec. Diarrhea Calculate the change in the enthalpy of argon, in kJ/kg, when it is cooled from 75 to 35C. If neon had under-gone this same change of temperature, would its enthalpy change have been any different? By how much is the energy stored in a Hooke's law spring increased when its stretch is increased from 7.00 cm to 15.00 cm? a) 159% b) 259% c) 359% d) 459%? On January 1, JKR Shop had $225,000 of inventory at cost. In the first quarter of the year, it purchased $795,000 of merchandise, returned $11,550, and paid freight charges of $18,800 on purchased merchandise, terms FOB shipping point. The companys gross profit averages 30%, and the store had $1,000,000 of net sales (at retail) in the first quarter of the year. Use the gross profit method to estimate its cost of inventory at the end of the first quarter. Look at these sources. Encyclopedia Britannica the unit about World War II in a history textbook a book written in 1995 about the last two months of the war a newspaper article from August 1945 about the bombing of Hiroshima A student is writing an argumentative essay taking the stance that Truman was right to use the atomic bomb against Japan during World War II. Which of the following would be most useful as an additional source for the essay? a book about the entire history of Japan the website for the Truman Library and Museum a letter from an American soldier who fought in Okinawa a magazine article from August 1945 about the Hiroshima bombing Which of the following numbers is rational? A -9B 5/8C 0D All Of Above