The figure shows two similar triangles:
Which two sets of angles are corresponding angles?

The Figure Shows Two Similar Triangles:Which Two Sets Of Angles Are Corresponding Angles?

Answers

Answer 1
V and Y, W and X: The second option. If you look at your congruency markings the one with the one mark will match with the one with one mark. The one with two marks will match with the one with two marks. The one with three marks corresponds to the one with three marks.

Related Questions


Write the function , √(x^3+6)/√(x^3-9) as a composition of three or more non-identity functions.

Answers

Answer:

[tex]h \circ m \circ n \text{ where } h(x)=\sqrt{x} \text{ and } m(x)=1+\frac{15}{n} \text{ and } n(x)=x^3-9[/tex]

Step-by-step explanation:

Ok so I see a square root is on the whole thing.

I'm going to let the very outside function by [tex]h(x)=sqrt(x)[/tex].

Now I'm can't just let the inside function by one function [tex]g(x)=\frac{x^3+6}{x^3-9}[/tex] because we need three functions.

So I'm going to play with [tex]g(x)=\frac{x^3+6}{x^3-9}[/tex] a little to simplify it.

You could do long division. I'm just going to rewrite the top as

[tex]x^3+6=x^3-9+15[/tex].

[tex]g(x)=\frac{x^3-9+15}{x^3-9}=1+\frac{15}{x^3-9}[/tex].

So I'm going to let the next inside function after h be [tex]m(x)=1 + \frac{15}{x}[/tex].

Now my last function will be [tex]n(x)=x^3-9[/tex].

So my order is h(m(n(x))).

Let's check it:

[tex]h(m(x^3-9))[/tex]

[tex]h(1+\frac{15}{x^3-9})[/tex]

[tex]h(\frac{x^3-9+15}{x^3-9})[/tex]

[tex]h(\frac{x^3+6}{x^3-9})[/tex]

[tex]\sqrt{ \frac{x^3+6}{x^3-9}}[/tex]

Final answer:

To express the function √(x^3+6)/√(x^3-9) as a composition of non-identity functions, we can rewrite it in terms of exponential and logarithmic functions.

Explanation:

To express the function √(x^3+6)/√(x^3-9) as a composition of three or more non-identity functions, we can start by rewriting √(x^3+6) and √(x^3-9) as powers:

√(x^3+6) = (x^3+6)^(1/2)

√(x^3-9) = (x^3-9)^(1/2)

Next, we can express (x^3+6)^(1/2) and (x^3-9)^(1/2) in terms of powers of its components. Let's denote a = x^3+6 and b = x^3-9:

(x^3+6)^(1/2) = (a)^(1/2)

(x^3-9)^(1/2) = (b)^(1/2)

Finally, we can express these in terms of exponential and logarithmic functions:

(a)^(1/2) = e^(0.5⁢ln(a))

(b)^(1/2) = e^(0.5⁢ln(b))

Therefore, the function √(x^3+6)/√(x^3-9) can be expressed as a composition of three non-identity functions:

√(x^3+6)/√(x^3-9) = e^(0.5⁢ln(a))/e^(0.5⁢ln(b))

Write an equation for a circle with a diameter that has endpoints at (–4, –7) and (–2, –5). Round to the nearest tenth if necessary. Question 9 options: (x + 3)2 + (y + 6)2 = 2 (x + 3)2 + (y + 6)2 = 8 (x – 3)2 + (y – 6)2 = 2 (x – 3)2 + (y – 6)2 = 8

Answers

since we know the endpoints of the circle, we know then that distance from one to another is really the diameter, and half of that is its radius.

we can also find the midpoint of those two endpoints and we'll be landing right on the center of the circle.

[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-2-(-4)]^2+[-5-(-7)]^2}\implies d=\sqrt{(-2+4)^2+(-5+7)^2} \\\\\\ d=\sqrt{2^2+2^2}\implies d=\sqrt{2\cdot 2^2}\implies d=2\sqrt{2}~\hfill \stackrel{~\hfill radius}{\cfrac{2\sqrt{2}}{2}\implies\boxed{ \sqrt{2}}} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{-2}~,~\stackrel{y_2}{-5})\qquad \qquad \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left( \cfrac{-2-4}{2}~~,~~\cfrac{-5-7}{2} \right)\implies \left( \cfrac{-6}{2}~,~\cfrac{-12}{2} \right)\implies \stackrel{center}{\boxed{(-3,-6)}} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-3}{ h},\stackrel{-6}{ k})\qquad \qquad radius=\stackrel{\sqrt{2}}{ r} \\[2em] [x-(-3)]^2+[y-(-6)]^2=(\sqrt{2})^2\implies (x+3)^2+(y+6)^2=2[/tex]

Answer:

FIRST OPTION: [tex](x+3)^2+ (y+6)^2 =2[/tex]

Step-by-step explanation:

The equation of the circle in center-radius form is:

[tex](x- h)^2 + (y- k)^2 = r^2[/tex]

Where the center is at the point (h, k) and the radius is "r".

We know that the endpoints of the diameter of this circle are (-4, -7) and (-2, -5), so we can find the radius and the center of the circle.

In order to find the radius, we need to find the diameter. To do this, we need to use the formula for calculate the distance between two points:

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Then, substituting the coordinates of the endpoints of the diameter into this formula, we get:

[tex]d=\sqrt{(-4-(-2))^2+(-7-(-5))^2}=2\sqrt{2}[/tex]

Since the radius is half the diameter, this is:

[tex]r=\frac{2\sqrt{2}}{2}=\sqrt{2}[/tex]

To find the center, given the endpoints of the diameter, we need to find the midpoint with this formula:

[tex]M=(\frac{x_2+x_1}{2},\frac{y_2+y_1}{2})[/tex]

This is:

[tex]M=(\frac{-4-2}{2},\frac{-7-5}{2})=(-3,-6)[/tex]

Then:

[tex]h=-3\\k=-6[/tex]

Finally, substituting values  into  [tex](x- h)^2 + (y- k)^2 = r^2[/tex], we get the following equation:

 [tex](x- (-3))^2 + (y- (-6))^2 = (\sqrt{2})^2[/tex]

[tex](x+3)^2+ (y+6)^2 =2[/tex]

Vanessa kicked a soccer ball laying on the ground. It was in the air for 4 seconds before it hit the ground. While the soccer ball was in the air it reached a height of approximately 20 feet. Assuming that the soccer ball’s height (in feet) is a function of time (in seconds), what is the domain in the context of this problem?

Answers

Final answer:

The domain in this context, which represents the possible values for time from when the soccer ball was kicked until it landed, is the set of all real numbers from 0 to 4.

Explanation:

In the context of this problem, the domain refers to the possible values for time, from when Vanessa kicked the soccer ball until when it landed again. We know from the problem that the ball was in the air for 4 seconds. Therefore, the domain consists of all real numbers from 0 to 4 (both inclusive). Since time cannot be negative in this context, we start the domain at 0, and end at 4 because that's when the ball hit the ground again. Also, time, which is a continuous quantity, can take any value within this period, therefore it's the set of all real numbers between 0 and 4.

Learn more about Domain here:

https://brainly.com/question/30133157

#SPJ12

Final answer:

The domain of the function, which represents the soccer ball's flight, is the time interval it was in the air. Therefore, the domain is from 0 to 4 seconds, written as [0,4].

Explanation:

In the problem, Vanessa kicked a soccer ball and it was in the air for 4 seconds before hitting the ground. In this scenario, the height of the soccer ball is considered to be a function of time. As such, the domain of the function, which represents all possible input values for the function, would be the amount of time the ball is in the air. Therefore, the domain for this function would be the interval from 0 to 4 seconds, often written as [0,4].

It's important to understand that in situations involving time, the domain value cannot be negative, as negative time values have no physical meaning. Therefore, the lower limit of the domain is 0, when Vanessa initially kicked the ball. The upper limit is the time the soccer ball spent in the air, or 4 seconds.

Learn more about Domain of a Function here:

https://brainly.com/question/28599653

#SPJ12

through: (2,-4), parallel to y=3x+24)

Answers

Answer:

y = 3x - 10

Step-by-step explanation:

Assuming you require the equation of the parallel line through (2, - 4)

The equation of a line in slope- intercept form is

y = mx + c ( m is the slope and c the y- intercept )

y = 3x + 24 ← is in slope- intercept form

with slope m = 3

• Parallel lines have equal slopes, hence

y = 3x + c ← is the partial equation of the parallel line

To find c substitute (2, - 4) into the partial equation

- 4 = 6 + c ⇒ c = - 4 - 6 = - 10

y = 3x - 10 ← equation of parallel line

What is the circumference of a circle, radius 8cm

Answers

Answer: C≈50.27cm

if u want the solution then here u go

C=2πr=2·π·8≈50.26548cm

help with inverse please​

Answers

as you already know, to get the inverse of any expression we start off by doing a quick switcheroo on the variables, and then solve for "y".

[tex]\bf y = 4x^2-8\implies \stackrel{\textit{quick switcheroo}}{\underline{x} = 4\underline{y}^2-8}\implies x+8=4y^2\implies \cfrac{x+8}{4}=y^2 \\\\\\ \sqrt{\cfrac{x+8}{4}}=y\implies \cfrac{\sqrt{x+8}}{\sqrt{4}}=y\implies \cfrac{\sqrt{x+8}}{2}=\stackrel{f^{-1}(x)}{y}[/tex]

Drag the tiles to the correct boxes to complete the pairs.
Match each division expression to its quotient.

Answers

16/-8=-2

Whenever dividing a -negative number and +positive number= number will be always -

3  3/7 / 1  1/7= 24/7 *7/8= 3 ( Cross out 7 and 7, divide by 1). Cross out 8 and 24 and divide by 8) ( Also always flip over the second fraction only when dividing)

3 3/7= 24/7 because multiply the denominator and whole number. 3*7=21

Add 21 with the numerator (3)= 21+3=24

-12.2 / (-6.1)=2

Whenever dividing two - negative numbers= + positive number

-2 2/5 / 4/5= -12/5*5/4=-3 Cross out 5 and 5- divide by 5. Cross out 4 and -12, divide by 4

Answers:

- 2 = 16/-8=-2

3= 3  3/7 /( dividing )1 1/7= 3

2= -12.2 / (-6.1)=2

-3=-2 2/5 / ( dividing) 4/5=-3

Answer:

1). -2 = 16 ÷ (-8)

2) 3 = [tex]3\frac{3}{7}[/tex] ÷ [tex]1\frac{1}{7}[/tex]

3). 2 = (-12.2) ÷ (-6.1)

4). -3 = -[tex]2\frac{2}{5}[/tex] ÷ [tex]\frac{4}{5}[/tex]

Step-by-step explanation:

1). 16 ÷ (-8) = -[tex]\frac{16}{8}=-2[/tex]

2). [tex]3\frac{3}{7}[/tex] ÷ [tex]1\frac{1}{7}[/tex]

   = [tex]\frac{24}{7}[/tex] ÷ [tex]\frac{8}{7}[/tex]

   = [tex]\frac{24}{7}\times \frac{7}{8}[/tex]

   = 3

3). (-12.2) ÷ (-6.1)

   = [tex]\frac{12.2}{6.1}[/tex]

   = 2

4). -[tex]2\frac{2}{5}[/tex] ÷ [tex]\frac{4}{5}[/tex]

   = -[tex]\frac{12}{5}[/tex] ÷ [tex]\frac{4}{5}[/tex]

   = -[tex]\frac{12}{5}[/tex] × [tex]\frac{5}{4}[/tex]

   = -3

A new movie is released each year for 10 years to go along with a popular book series. Each movie is 4 minutes longer than the last to go along with a plot twist. The first movie is 60 minutes long. Use an arithmetic series formula to determine the total length of all 10 movies.

Answers

The sum of the length of all the ten movies is [tex]\fbox{\begin\\\ 780\text{ minutes}\\\end{minispace}}[/tex].

Step-by-step explanation:

It is given that a new movie is released each year for [tex]10[/tex] consecutive years so there are total number of [tex]10[/tex] movies released in [tex]10[/tex] years.

The movie released in first year is [tex]60\text{ minutes}[/tex] long and each movie released in the successive year is [tex]4\text{ minutes}[/tex] longer than the movie released in the last year.

So, as per the above statement movie released in first year is [tex]60[/tex] minutes long, movie released in second year is [tex]64[/tex] minutes long, movie released in third year is [tex]68[/tex] minutes long and so on.

The sequence of the length of the movie formed is as follows:

[tex]\fbox{\begin\\\ 60,64,68,72...\\\end{minispace}}[/tex]

The sequence formed above is an arithmetic sequence.

An arithmetic sequence is a sequence in which the difference between the each successive term and the previous term is always constant or fixed throughout the sequence.

The general term of an arithmetic sequence is given as

[tex]\fbox{\begin\\\math{a_{n} =a+(n-1)d}\\\end{minispace}}[/tex]

The sequence formed for the length of the movie is an arithmetic sequence in which the first term is [tex]60[/tex] and the common difference is [tex]4[/tex].

The arithmetic series corresponding to the arithmetic sequence of length of the movie is as follows:

[tex]\fbox{\begin\\\ 60+64+68+72+...\\\end{minispace}}[/tex]

The arithmetic series formula to obtain the sum of the above series is as follows:

[tex]\fbox{\begin\\\math{S_{n} =(n/2)(2a+(n-1)d)}\\\end{minispace}}[/tex]

In the above equation  [tex]n[/tex] denotes the total number of terms, a denotes the first term, d denotes the common difference and Sn denotes the sum of n terms of the series.

Substitute [tex]\fbox{\begin\\\math{a}=60\\\end{minispace}}[/tex],[tex]\fbox{\begin\\\math{n}=10\\\end{minispace}}[/tex] and [tex]\fbox{\begin\\\math{d}=4\\\end{minispace}}[/tex] in the equation [tex]\fbox{\begin\\\math{S_{n} =(n/2)(2a+(n-1)d)}\\\end{minispace}}[/tex]

[tex]S_{10} =(10/2)(120+36) \\S_{10} =780[/tex]

Therefore, the length of the all [tex]10[/tex] movies as calculated above is [tex]\fbox{\begin\\\ 780\text{ minutes}\\\end{minispace}}[/tex]

Learn more:

A problem to complete the square of quadratic function brainly.com/question/12992613A problem to determine the slope intercept form of a line brainly.com/question/1473992Inverse function brainly.com/question/1632445  

Answer details

Grade: Middle school

Subject: Mathematics  

Chapter: Arithemetic preogression  

Keywords: Sequence, series, arithmetic , arithmetic sequence, arithmetic series, common difference, sum of series, pattern, arithmetic pattern, progression, arithmetic progression, successive terms.

Answer:  

The total length of all 10 movies is 780 minutes.  

Further Explanation:  

Arithmetic Sequence: A sequence of numbers in which difference of two successive numbers is constant.  

The sum of n terms of an arithmetic sequence is given by the formula,  

[tex]S_n=\dfrac{n}{2}[2a+(n-1)d][/tex]

Where,  

a is the first term of the sequence.  d is a common difference.n is number of terms[tex]S_n[/tex] is sum of n terms of the sequence.

The first movie is 60 minutes long. This would be the first term of the sequence.  

Thus, First term, a= 60 minutes

A new movie is released each year for 10 years. In 10 years total 10 movies will released.  

Thus, Number of terms, n=10

Each movie is 4 minutes longer than the last released movie. It means the difference of length of two successive movie is 4 minutes.

Thus, Common difference, d=4

Using the sum of arithmetic sequence formula, the total length of all 10 movies is,

[tex]S_{10}=\dfrac{10}{2}[2\cdot 60+(10-1)\cdot 4][/tex]

[tex]S_{10}=\dfrac{10}{2}[2\cdot 60+9\cdot 4][/tex]                          [tex][\because 10-1=9][/tex]

[tex]S_{10}=\dfrac{10}{2}[120+36][/tex]                                  [tex][\because 2\cdot 60=120\text{ and }9\cdot 4=36][/tex]

[tex]S_{10}=\dfrac{10}{2}\times 156[/tex]                                      [tex][\because 120+36=156][/tex]

[tex]S_{10}=5\times 156[/tex]                                         [tex][\because 10\div 2=5][/tex]

[tex]S_{10}=780[/tex]                                                  [tex][\because 5\times 156=780][/tex]

Therefore, The total length of all 10 movies is 780 minutes

Learn more:  

Find nth term of series: https://brainly.com/question/11705914

Find sum: https://brainly.com/question/11741302

Find sum of series: https://brainly.com/question/12327525

Keywords:  

Arithmetic sequence, Arithmetic Series, Common difference, First term, AP progression, successive number, sum of natural number.

Can someone helpppppp

Answers

Answer:

13.7

Step-by-step explanation:

We know that sin(thetha) = BC/AB

In this case, thetha = 41, BC = 9in

→ AB = BC/sin(thetha)

→ AB = 9in/sin(41)

→ AB = 13.7

Therefore, the result is 13.7

Answer:

The correct answer is third option

13.8 in

Step-by-step explanation:

From the figure we can see a right angled triangle ABC, right angled at C,

m<A = 41°, and BC = 9 in

Points to remember

Sin θ = Opposite side/Hypotenuse

To find the value of AB

Sin 41 =  Opposite side/Hypotenuse

 = BC/AB

 = 9/AB

AB = 9/Sin(41)

 =13.8 in

The correct answer is third option

13.8 in

Ms. Nichols rated her theater students' singing and dancing skills using a scale of 0 through 10. What relationship does the scatter plot BEST reveal about dancing skills and singing skills?

Answers

Answer:

There is no scatter plot provided, but I can tell you how to solve this. You will look at the plot. It should be numbered somewhere 0-10 and tell you that is the point system, the other side should be the students. So, now you will look at the points on the plot and determine where most of them are. If they are low, you would say that she thinks that they are bad. If it's mostly middle, you would say they need improvement, but aren't terrible. If they are high, you would say she thinks that they are very good.

if g(x) = x^2+3 find g(4)
A .11
B. 19
C. 16
D. 8​

Answers

Answer:

B. 19

Step-by-step explanation:

g(x) = x^2+3

Let x=4

g(4) = 4^2 +3

       = 16+3

       =19

Answer:

b

Step-by-step explanation:

all work is shown and pictured

Alex purchased a new suit
discounted by 65%.
He paid $35.80 for the suit.
What was its original price?
HELP

Answers

Answer:

$102.29 is the original price of the suit.

Explanation:

$x ------- 100% price (full price)

$35.80 --------------- 35% of the original price (100%-65%=35%).

To find x, use cross-products.

x=(35.80×100)/35 =3580/35 = approximately $102.29.

Answer:

The original price of the suit was $102.29.

Step-by-step explanation:

Alex purchased a new suit discounted by 65%.

He paid $35.80 for the suit.

Let the original price (100% price) be x.

After discount the price is given = 100% - 65% = 35%

35% of x = 35.80

0.35x = 35.80

x = [tex]\frac{35.80}{0.35}[/tex]

x = 102.2857 rounded to $102.29

The original price of the suit was $102.29.

What is the y-intercept of the line given by the equation y=5x-21
O A. (0.21)
O B. (0,5)
O C. (0, -21)
O D. (0,-5)​

Answers

Answer: C.( 0,-21)

Step-by-step explanation: Use the slope-intercept form to find the slope and y-intercept.

Final answer:

The y-intercept of the given line y = 5x - 21 is -21, which means the line crosses the y-axis at the point (0, -21), corresponding to option C.

Explanation:

The y-intercept of a line represented by the equation y = mx + b is the value at which the line crosses the y-axis. To find the y-intercept, one must look at the value of b, which is the constant in the equation. Given the equation y = 5x - 21, the y-intercept would be -21.

Therefore, when x is 0, the value of y would be -21, meaning that the line crosses the y-axis at the point (0, -21). This corresponds to the option C: (0, -21).

What is the slope of a line that is perpendicular to the line x = –3? –3 0 1/3 undefined


I know the answer is 0, but I would love it if someone could give an explanation of why...thanks!

Answers

Answer:

slope = 0

Step-by-step explanation:

The line with equation x = - 3 is a vertical line parallel to the y- axis

A perpendicular line is therefore a horizontal line parallel to the x- axis

The slope of the x- axis is zero, hence the slope of the horizontal line is

slope = 0

which of the following is equivalent to
6(2y - 4) + p

A. p+ 12y - 24
B. 6y + p - 24
C. p - 6(2y - 4)
D. 24 + 12y + p

Plz explain or show work on how you got the answer :)​

Answers

A, because the 6 is distributed to both the 2y and the -4, making it 12y-24+p. Answer A is that equation but in a different order. The order doesn’t matter as long as the negatives and positives are the same as the original question.
Final answer:

The expression equivalent to 6(2y - 4) + p is p + 12y - 24, according to the distributive property of multiplication over subtraction.

Explanation:

The task is to find which of the following is equivalent to 6(2y - 4) + p. The first step is to apply the distributive property of multiplication over subtraction to the term 6(2y - 4). This gives us 12y - 24. If we add p to this term, we get our equivalent expression: p + 12y - 24. So, option A. p+ 12y - 24 is equivalent to 6(2y - 4) + p.

Learn more about Distributive Property here:

https://brainly.com/question/37341329

#SPJ11

Determine two pairs of polar coordinates for the point (3, -3) with 0°≤ θ < 360°

Answers

Answer:

[tex]\left ( 3\sqrt{2},135^{\circ} \right )\,,\,\left ( 3\sqrt{2},315^{\circ} \right )[/tex]

Step-by-step explanation:

Let (x,y) be the rectangular coordinates of the point.

Here, [tex](x,y)=(3,-3)[/tex]

Let polar coordinates be [tex](r,\theta )[/tex] such that [tex]r=\sqrt{x^2+y^2}\,,\,\theta =\arctan \left ( \frac{y}{x} \right )[/tex]

[tex]r=\sqrt{3^2+(-3)^2}=\sqrt{18}=3\sqrt{2}[/tex]

[tex]\theta =\arctan \left ( \frac{-3}{3} \right )= \arctan (-1)[/tex]

We know that tan is negative in first and fourth quadrant, we get

[tex]\theta =\pi-\frac{\pi}{4}=\frac{3\pi}{4}=135^{\circ}\\\theta =2\pi-\frac{\pi}{4}=\frac{7\pi}{4}=315^{\circ}[/tex]

So, polar coordinates are [tex]\left ( 3\sqrt{2},135^{\circ} \right )\,,\,\left ( 3\sqrt{2},315^{\circ} \right )[/tex]

what is the measure of ACE shown in the diagram below

Answers

Answer:

D

Step-by-step explanation:

∠ACE is a secant- secant angle and is measured as half the difference of the intersecting arcs, that is

∠ACE = 0.5(m AE - m BD )

          = 0.5 (106 - 48)° = 0.5 × 58° = 29° → D

Answer: D. [tex]29^{\circ}[/tex]

Step-by-step explanation:

The secant angle is exactly half of the difference between the measure of the two arcs formed by it .            (1)

In the given picture , we can see that the ∠ ACE is an Secant angle.

Two arcs =  arcBD and arcAE

Now , by considering (1) , we have

[tex]\angle{ACE}=\dfrac{1}{2}(\overarc{AC}-\overarc{BD})\\\\\Rightarrow\ \angle{ACE}=\dfrac{1}{2}(106^{\circ}-48^{\circ})\\\\\Rightarrow\ \angle{ACE}=\dfrac{1}{2}(58^{\circ}))\\\\\Rightarrow\ \angle{ACE}=29^{\circ}[/tex]

Hence, the measure of [tex]\angle{ACE}=29^{\circ}[/tex]

hence, the correct answer is D. [tex]29^{\circ}[/tex]

I Need The Answer Plz Geometry Is Hard!!

Answers

x = 6 , y = 9

Since diagonals on a parallelogram bisect each other (meaning both sides of the diagonal are equal) you can set up these two equations:

2x = y + 3
3x = 2y

The way I solved this was by the substitution method.

I subtracted 3 on both sides and changed the first equation into:

2x - 3 = y

I then substituted that value into the “y” in the second equation:

3x = 2(2x - 3)

Distribute

3x = 4x - 6

Subtract 4x from both sides

-x = -6

Divide both sides by -1

x = 6

Then you substitute that value back into one of the original equations to find the value of y

3(6) = 2y
18 = 2y
9 =y

~~hope this helps~~

Answer:

x = 6, y = 9

Step-by-step explanation:

One of the properties of a parallelogram is that the diagonals bisect each other, thus

y + 3 = 2x → (1)

2y = 3x → (2)

Subtract 3 from both sides in (1)

y = 2x - 3 → (3)

Substitute y = 2x - 3 into (2)

2(2x - 3) = 3x ← distribute left side

4x - 6 = 3x ( subtract 3x from both sides )

x - 6 = 0 ( add 6 to both sides )

x = 6

Substitute x = 6 in (3) for value of y

y = (2 × 6 ) - 3 = 12 - 3 = 9

Hence x = 6 and y = 9

How much money should be invested today in an account that earns 3.5%, compound daily, in order to accumulate $75000 in 10 years (assume n=365)

Answers

[tex]\bf ~~~~~~ \textit{Continuously Compounding Interest Earned Amount} \\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\dotfill &\$75000\\ P=\textit{original amount deposited}\\ r=rate\to 3.5\%\to \frac{3.5}{100}\dotfill &0.035\\ t=years\dotfill &10 \end{cases} \\\\\\ 75000=Pe^{0.035\cdot 10}\implies 75000=Pe^{0.35}\implies \cfrac{75000}{e^{0.35}}=P \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill 52851.61\approx P~\hfill[/tex]

Given point (-6, -3) and a slope of 4, write an equation in point-slope form. a. y - 3 = 4(x - 6) c. y + 3 = 4(x + 6) b. y + 3 = 4(x - 6) d. y - 3 = 4(x + 6) Please select the best answer from the choices provided A B C D

Answers

For this case we have that by definition, the point-slope equation of a line is given by:

[tex]y-y_ {0} = m (x-x_ {0})[/tex]

We have as data that:

[tex](x_ {0}, y_ {0}): (- 6, -3)\\m = 4[/tex]

Substituting in the equation we have:

[tex]y - (- 3) = 4 (x - (- 6))\\y + 3 = 4 (x + 6)[/tex]

Finally, the equation is: [tex]y + 3 = 4 (x + 6)[/tex]

Answer:

[tex]y + 3 = 4 (x + 6)[/tex]

[tex]\huge{\boxed{y+3=4(x+6)}}[/tex]

Point-slope form is [tex]y-y_1=m(x-x_1)[/tex], where [tex]m[/tex] is the slope and [tex](x_1, y_1)[/tex] is a known point on the line.

Substitute in the values. [tex]y-(-3)=4(x-(-6))[/tex]

Simplify the negative subtraction. [tex]\boxed{y+3=4(x+6)}[/tex]

a man bought two calculators at rupees 1250.he sold one at a profit of 2%and next at loss of 3% find cp

Answers

Answer:

the required answer is 125/24.

Answer:

The cost price of one calculator is Rs.750.

The cost price of other calculator is Rs.500.        

Step-by-step explanation:

Cost price of 1'st calculator = x

Cost price of 2'nd calculator = 1250-x

He sold one at a profit of 2%.

The selling price of one calculator is

[tex]SP_1=CP(1+\frac{P\%}{100})[/tex]

[tex]SP_1=x(1+\frac{2}{100})[/tex]          

[tex]SP_1=x(1+0.02)[/tex]      

[tex]SP_1=1.02x[/tex]    

He sold other at a loss of 3%.

The selling price of other calculator is

[tex]SP_2=CP(1-\frac{L\%}{100})[/tex]

[tex]SP_2=(1250-x)(1-\frac{3}{100})[/tex]          

[tex]SP_2=(1250-x)(1-0.03)[/tex]      

[tex]SP_2=(1250-x)(0.97)[/tex]

[tex]SP_2=1212.5-0.97x[/tex]  

According to given condition,

[tex]SP_1+SP_2=1250[/tex]

[tex]1.02x+1212.5-0.97x=1250[/tex]

[tex]0.05x=1250-1212.5[/tex]

[tex]0.05x=37.5[/tex]

[tex]x=\frac{37.5}{0.05}[/tex]

[tex]x=750[/tex]

The cost price of one calculator is Rs.750.

The cost price of other calculator is 1250-750=Rs.500.

A student gets 68 marks n therefore gets 85 percent total marks are?

Answers

Answer:

There are 80 marks in total.

Step-by-step explanation:

Let the number of total marks be [tex]x[/tex].

The percentage score of the student can be written as the ratio

[tex]\displaystyle \frac{68}{x} = 85\%[/tex].

However,

[tex]\displaystyle 85\% = \frac{85}{100}[/tex].

Equating the two:

[tex]\displaystyle \frac{68}{x} = \frac{85}{100}[/tex].

Cross-multiply (that is: multiple both sides by [tex]100x[/tex], the product of the two denominators) to get

[tex]85x = 68\times 100[/tex].

[tex]\displaystyle x = \frac{68\times 100}{85} = 80[/tex].

In other words, there are 80 marks in total.

Which Congruence Statement Is Correct For These Triangles?

Answers

Answer:

D. ABC = DBC

Step-by-step explanation:

They are the same length and congruent.

Answer:

d) ABC ≅ DBC

Step-by-step explanation:

∠B in ΔABC and ∠B in ΔDBC is 90°. BC is a common side in both triangles which mean that both triangles have one side of the same length. Side AC in ΔABC is the same length as side DC in ΔDBC. Therefore ∠C in both ΔABC and ΔDBC are the same size. Therefore ΔDBC is a mirror image of ΔABC, which is a form of congruent triangles.

What is the median of the distribution?​

Answers

Answer:

5.

Step-by-step explanation:

There are a total of  21 items so the median is the mean of the 10th and 11th .

This lies on the highest column so the median is  5.

Prove that the segments joining the midpoint of consecutive sides of an isosceles trapezoid form a rhombus.

Find the slope of DE and FG.

Answers

Answer:

See explanation

Step-by-step explanation:

a) To prove that DEFG is a rhombus, it is sufficient to prove that:

All the sides of the rhombus are congruent:  [tex]|DG|\cong |GF| \cong |EF| \cong |DE|[/tex]The diagonals are perpendicular

Using the distance formula; [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]|DG|=\sqrt{(0-(-a-b))^2+(0-c)^2}[/tex]

[tex]\implies |DG|=\sqrt{a^2+b^2+c^2+2ab}[/tex]

[tex]|GF|=\sqrt{((a+b)-0)^2+(c-0)^2}[/tex]

[tex]\implies |GF|=\sqrt{a^2+b^2+c^2+2ab}[/tex]

[tex]|EF|=\sqrt{((a+b)-0)^2+(c-2c)^2}[/tex]

[tex]\implies |EF|=\sqrt{a^2+b^2+c^2+2ab}[/tex]

[tex]|DE|=\sqrt{(0-(-a-b))^2+(2c-c)^2}[/tex]

[tex]\implies |DE|=\sqrt{a^2+b^2+c^2+2ab}[/tex]

Using the slope formula; [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

The slope of EG is [tex]m_{EG}=\frac{2c-0}{0-0}[/tex]

[tex]\implies m_{EG}=\frac{2c}{0}[/tex]

The slope of EG is undefined hence it is a vertical line.

The slope of  DF is [tex]m_{DF}=\frac{c-c}{a+b-(-a-b)}[/tex]

[tex]\implies m_{DF}=\frac{0}{2a+2b)}=0[/tex]

The slope of DF is zero, hence it is a horizontal line.

A horizontal line meets a vertical line at 90 degrees.

Conclusion:

Since [tex]|DG|\cong |GF| \cong |EF| \cong |DE|[/tex] and [tex]DF \perp FG[/tex] , DEFG is a rhombus

b) Using the slope formula:

The slope of DE is [tex]m_{DE}=\frac{2c-c}{0-(-a-b)}[/tex]

[tex]m_{DE}=\frac{c}{a+b)}[/tex]

The slope of FG is [tex]m_{FG}=\frac{c-0}{a+b-0}[/tex]

[tex]\implies m_{FG}=\frac{c}{a+b}[/tex]

Solve for x,y, and z

Answers

Answer:

Part A) [tex]x=6[/tex]

Part B) ∠3=29°

Part C) ∠1=29°

Part D) ∠2=151°

Step-by-step explanation:

Part A) If ∠3=5x-1 and ∠5=3x+11, then x=?

we know that

∠3=∠5 ----> by alternate interior angles

so

substitute and solve for x

[tex]5x-1=3x+11[/tex]

[tex]5x-3x=11+1[/tex]

[tex]2x=12[/tex]

[tex]x=6[/tex]

Part B) If ∠3=5x-1 and ∠5=3x+11, then the measure of ∠3=?

we know that

∠3=5x-1

The value of x is

[tex]x=6[/tex]

substitute

∠3=5(6)-1=29°

Part C) If ∠3=5x-1 and ∠5=3x+11, then the measure of ∠1=?

we know that

∠1=∠3 ----> by vertical angles

we have

∠3=29°

therefore

∠1=29°

Part D) If ∠3=5x-1 and ∠5=3x+11, then the measure of ∠2=?

we know that

∠1+∠2=180° ----> by supplementary angles

we have

∠1=29°

substitute

29°+∠2=180°

∠2=180°-29°

∠2=151°

find the volume of a cylinder with a diameter of 10 inches and height of 20in

Answers

Answer:

V = 500 pi in^3

or approximately 1570 in ^3

Step-by-step explanation:

The volume of a cylinder is given by

V = pi r^2 h  where r is  the radius and h is the height

The diameter is 10. so the radius is d/2 = 10/2 =5

V = pi (5)^2 * 20

V = pi *25*20

V = 500 pi in^3

We can approximate pi by 3.14

V = 3.14 * 500

V = 1570 in ^3

Answer:

V=1570.8

Step-by-step explanation:

The volume of a cylinder with a diameter of 10 inches and height of 20 inches is 1570.8 inches.

I changed the diameter to radius to make it easier. The radius is half the diameter, making the radius 5 inches.

Formula: V=πr^2h

V=πr^2h=π·5^2·20≈1570.79633

Could some please help with this math question

Answers

y + 2 = -(x - 4)

They point that they chose to identify for point-slope form was (4, -2)

The line slopes downward so the slope is -1

~~hope this helps~~

For this case we have that the equation of a line of the point-slope form is given by:

[tex](y-y_ {0}) = m (x-x_ {0})[/tex]

To find the slope we look for two points through which the line passes:

We have to:

[tex](x1, y1) :( 0,2)\\(x2, y2) :( 4, -2)[/tex]

Thus, the slope is:

[tex]m = \frac {y2-y1} {x2-x1} = \frac {-2-2} {4-0} = \frac {-4} {4} = - 1[/tex]

Substituting a point in the equation we have:

[tex](y - (- 2)) = - 1 (x-4)\\y + 2 = - (x-4)[/tex]

Answer:

Option A

Which statement is true of the function f(x) = -3/x? Select three options.

The function is always increasing.

The function has a domain of all real numbers.

The function has a range of {yl-
The function is a reflection of y = 3.

The function passes through the point (3,-27).

Answers

Answer:

We have the following function:

[tex]f(x)=-\frac{3}{x}[/tex]

The graph of this function has been plotted below. So lets analyze each statement:

1. The function is always increasing. False

As you can see x increases from -∞ to 0 and decreases from 0 to +∞

2. The function has a domain of all real numbers. False

The function is undefined for [tex]x=0[/tex] since x is in the denominator.

3. The function has a range of {yl-

Statement is unclear but the range is the set of all real numbers except zero.

4. The function is a reflection of y = 3. False

The function is a reflection in the x axis of the function [tex]g(x)=\frac{3}{x}[/tex]

5. The function passes through the point (3,-27).False

This is false since:

[tex]f(3)=-1\neq -27[/tex]

Note. As you can see those statements are false, so any of them is true, except item 3 that is unclear.

Answer:

its b and d

Step-by-step explanation:

i know

A 14-ounce can of tomato sauce costs $2.66. What is the unit rate per ounce? A. $0.16. B. $0.17. C. $0.18. D. $0.19.

Answers

Answer:

$0.19.

Step-by-step explanation:

Unit rate / ounce = 2.66 / 14

= $0.19.

Other Questions
Angela and Brian were measuring the length of each side of the same box, in order to find its volume. They both measured the sides to be 7.2, 3.5, and 8.7. Angela, to avoid mistakes in rounding, first found the volume and then rounded to the nearest whole number. Brian, on the other hand, decided to take the easy route and rounded the length of the sides to the nearest integers and then found the volume using the rounded lengths. What was the positive difference between Angela's and Brian's rounded volumes? (Note: The volume of a box is defined to be the product of its three sides.) Suppose that you and a friend are playing cards and you decide to make a friendly wager. The bet is that you will draw two cards without replacement from a standard deck. If both cards are clubs, your friend will pay you $531. Otherwise, you have to pay your friend $32. How much would you expect to win or lose? In early July, Damon Rutton purchased a $70 ticket to the December 15 game of the Sarasota Shippers. Parking for the game was expected to cost approximately $22, and Rutton would probably spend another $15 for a souvenir program and food. It is now December 14. The Shippers were having a miserable season and the temperature was expected to peak at 5 on game day. Damon is thinking about skipping the game and taking his wife to the movies and dinner, at a cost of $50. The amount of sunk cost that should influence Damons decision to spend some time with his wife is How do you do this question? We have 7 boys and 3 girls in our church choir. There is an upcoming concert in the local town hall. Unfortunately, we can only have 5 youths in this performance. This performance team of 5 has to be picked randomly from the crew of 7 boys and 3 girls. What is the probability that exactly 4 boys are picked in this team of 5? Three balls are tossed with same initial speed from a fourth floor dormitory window. Ball A is launched 45 degrees above the horizontal, Ball B is launched 45 degrees below the horizontal, and Ball C is launched horizontally. Which ball hits the ground with the greatest speed A 51-year-old female visits her health care provider for vaginal bleeding and low back pain. Her health history includes anxiety disorder, type 2 diabetes, and hypertension. She is 52 tall and weighs 224 lbs. She smoked cigarettes for 25 years but quit 8 years ago. She is post-menopausal for over a year. What is the reason for vaginal bleeding and low back pain? which function has the greater maximum value f(x)=-2x^2+4x+3 or g(x), the function in the graph? Which statement should be revised for a more formal tone?Poseidon, god of the sea, and Athena, goddess of war, fought for the city of Athens. Poseidon threw his spear, whichproduced the Spring of Acropolis.Amaltheia was kind of like a goat who fed Zeus, which Zeus was really happy about. In fact, he turned the goat's horn into thehorn of plenty.Chronos was the ancient Greek symbol of time. His appearance, a wise old man with a long beard, is similar to a currentsymbol, Father Time.Sisyphus displeased the gods by disclosing secrets. He found himself forced to roll a heavy stone uphill, only to see it rollback once it reached the peak. Which of the following represents a function? Given positive integer numInsects, write a while loop that prints that number doubled without reaching 100. Follow each number with a space. After the loop, print a newline. Ex: If numInsects = 8, print:8 16 32 64import java.util.Scanner;public class InsectGrowth {public static void main (String [] args) {int numInsects = 0; What is the solution to the equation x + 9.5 = 27.5? x = 2.9 x = 18 x = 20 x = 37 1) in the space below draw a food web representing the grand banks.14. The explorer who sailed the Fram across the Arctic Ocean was:A) Ekman B) Munk C) Franklin D) Nansen___ 12. Carbon dioxide is considered a greenhouse gas becauseA) It reflects visible light B) It absorbs backradiated infrared radiation C) It reacts with ozone to produce smog D) It doesn't occur naturally in the atmosphere___ 11. High pressure systems in the atmosphere occur where: A) The air is sinking B) There are violent storms C) Air rises along the equator D) The westerly winds blow Which of the following are core capabilities for response? A. Identity verification; interdiction and disruption; and long-term vulnerability reduction B. Fire management and suppression; fatality management services; and environmental response/health and safety C. Supply chain integrity and security; risk and disaster resilience assessment; and infrastructure systems D. Housing; forensics and attribution; and screening, search, and detection You are a math superstar and have been assigned to be a math tutor to a third grade student. Your student has a homework assignment that requires measuring angles within a parallelogram. Explain to your student how to measure the angles within the shape. What is the equation of a line that contains the point (2, 1) and is perpendicular to the line y= 3x - 4 A higher friction force means it will be easier to push the object.a. Trueb. False A cubic inch of PVC material weight 0.063 pounds per cubic inch. What's the weight of a 36 inch piece of PVC pipe with an outside diameter of 0.82 inches and an inside diameter of 0.75 inches? three civil rights leaders were murdered during a voter registration campaign in mississippi known as the a. freedom summerb. selma marchesc. march on washington d. schoolhouse stand What was the first constitution of the united states