The heights of a group of boys and girls at a local middle school are shown on the dot plots below.

When comparing the shapes of the two sets of data, what conclusion can someone draw?
A) The shortest boy is taller than the shortest girl.
B) The range for the girls is greater than the range for the boys.
C) There is an outlier in the data for the boys, but not for the girls.
D) The girls are generally taller than the boys.

The Heights Of A Group Of Boys And Girls At A Local Middle School Are Shown On The Dot Plots Below. When

Answers

Answer 1

Answer:

The most appropriate answer option is D) The girls are generally taller than the boys.

Step-by-step explanation:

A) The shortest boy is taller than the shortest girl:

The shortest guy is not taller than the girl so its false.

B) The range for the girls is greater than the range for the boys:

Range for girls = 56 - 44 = 12

Range for boys = 54 - 41 = 13

C) There is an outlier in the data for the boys, but not for the girls:

It is present in both.

D) The girls are generally taller than the boys:

Average height of boys = [tex]\frac{(41)+(44\times3)+(46\times3)+(48\times2)+(50\times3)+(52\times)+(54\times4)}{20}[/tex] = 49.05

Average height of girls = [tex]\frac{(44\times2)+(46\times2)+(48)+(50\times3)+(52\times4)+(54\times3)+(56\times4)}{20}[/tex] = 50.9

Therefore, the correct answer option is D) The girls are generally taller than the boys.

Answer 2

Answer:

D) The girls are generally taller than the boys.

Step-by-step explanation:

The heights of a group of boys and girls at a local middle school are shown on the dot plots. When comparing the shapes of the two sets of data, the girls are generally taller than the boys.


Related Questions

Use special right triangles to solve for the exact value of x.
A- 7
B- 7sqrt2
C- sqrt of 14
(couldn't copy image so ill describe)
Right triangle with X, Y, 7 being side lengths... and 45 degrees for an angle

Answers

Answer:

Option B  7sqrt2

Step-by-step explanation:

I assume that in the right triangle y and 7 are the legs and x is the hypotenuse

so

we know that

In the right triangle

cos(45)=7/x ----> the cosine of angle of 45 degrees is equal to divide the adjacent side to angle of 45 degrees by the hypotenuse

In this problem y=7 because is a 45-90-45 triangle

Remember that

cos(45)=√2/2

equate the equations

√2/2=7/x

x=14/√2

x=14/√2*(√2/√2)=14√2/2=7√2 units

Please Help!
One bag contains a red cube, a yellow cube, and a

blue cube. Another bag contains an orange cube, a

green cube, and a purple cube. What is the

probability of randomly selecting a yellow cube

from the first bag and a cube that is not orange

from the second bag?

Answers

[tex]|\Omega|=3\cdot3=9\\|A|=1\cdot2=2\\\\P(A)=\dfrac{2}{9}\approx22\%[/tex]

Alas For my last 20 Point Question.
If correct = Brainliest.
===============================

Answers

The answer of this question is c) 14

MN=NO

4x-5=2x+1

2x=6

x=3

Again

MO=MN+NO

MO=4×3-5+2×3+1

MO=7+7

MO=14

A ball is dropped from a certain height. The function below represents the height f(n), in feet, to which the ball bounces at the nth bounce: f(n) = 9(0.7)n What does the number 9 in the function represent?

Answers

Answer:

Initial height or what the ball was originally bounced from a height of 9 feet

Step-by-step explanation:

9 represents the height that the ball was originally bounced from.

If you plug in 0 for [tex]n[/tex] into [tex]f(n)=9(0.7)^n[/tex], you get:

[tex]f(0)=9(0.7)^0=9(1)=9[/tex].

9 feet is the initial height since that is what happens at time zero.

Answer:

Initial height or what the ball was originally bounced from a height of 9 feet

Step-by-step explanation:

9 represents the height that the ball was originally bounced from.

If you plug in 0 for  into , you get:

.

9 feet is the initial height since that is what happens at time zero.

One end of a ladder 32 feet long is placed 10 feet from the outer wall of a building that stands on the ground level. How far up the building to the nearest foot will the ladder reach?

Answers

Answer:

30 ft

Step-by-step explanation:

This is a classic right triangle problem, where the length of the ladder represents the hypotenuse, where the ladder is lengthwise from the building is the base of the triangle, and what we are looking for is the height of the triangle.  Pythagorean's Theorem will help us find this length.

[tex]32^2-10^2=y^2[/tex] so

1024 - 100 = y^2 and

y = 30.4 so 30 feet

Final answer:

Using the Pythagorean theorem, it is determined that the ladder reaches approximately 30 feet up the building when one end is placed 10 feet from the wall.

Explanation:

To determine how far up the building the ladder will reach, we can use the Pythagorean theorem, which applies to right-angled triangles. The ladder forms the hypotenuse, the distance from the wall to the base of the ladder forms one leg, and the height the ladder reaches up the wall forms the other leg of the triangle.

Using the given lengths:

Ladder (hypotenuse) = 32 feet

Distance from the wall (adjacent) = 10 feet

Let height up the wall (opposite) be represented by y.

The Pythagorean theorem states that:

a^2 + b^2 = c^2

Where a and b are the legs of the triangle and c is the hypotenuse. Plugging in the values:

10^2 + y^2 = 32^2

100 + y^2 = 1024

y^2 = 1024 - 100

y^2 = 924

y = √924

y ≈ 30.4 feet

To the nearest foot, the ladder reaches approximately 30 feet up the wall.

If students’ scores were normally distributed and the mean was 200 with a standard deviation of 40, then what is the probability, in percentages, that it is below 240?

Answers

Answer:

  84%

Step-by-step explanation:

The empirical rule tells you that 68% of the standard normal distribution is within 1 standard deviation of the mean. The distribution is symmetrical, so the amount in the lower tail is (1 -68%)/2 = 16%.

Since the number you're interested in, 240, is one standard deviation above the mean (200 +40), the percentage of interest is the sum of the area of the central part of the distribution along with the lower tail:

  68% + 16% = 84%.

A security light is being installed outside a loading dock. The light must be placed at a 65° angle so that it illuminates a parking lot. If the distance from the end of the parking lot to the loading dock is 125 feet, the height of the security light is 113.29 feet.

Answers

Answer: False

Step-by-step explanation: I believe it would be false. Using the law of sines with the side lengths of 113.29 feet and 125 feet, and the corresponding angels of 25 and 65 degrees, the angle of the light is about 58.29. I believe this would make it false as the angle is incorrect.

Heather has $45.71 in her savings account. She bought six packs of markers to donate to her school. If each pack of markers cost $3.99, how much money does she have in her bank account after the donation?

Answers

Answer:

21.77 After the donation

Step-by-step explanation:

3.99 Multiplied by 6 is 23.94

So 45.71 - 23.94 = 21.77

Quadrilaterals are similar if their corresponding sides are proportional. true or false

Answers

Answer:

The given statement is true.

Step-by-step explanation:

Quadrilaterals are similar if their corresponding sides are proportional.

This statement is true.

Quadrilaterals are similar when

a) corresponding angles are equal

b) the corresponding sides are proportional i,e the ratios of corresponding sides are equal

So, the given statement is true.

Answer:

  FALSE

Step-by-step explanation:

Corresponding angles must also be congruent for the figures to be similar. Proportional sides is not a sufficient condition.

I REALLY NEED HELP!!!
The diagram shows a telescope fitted with parabolic, hyperbolic, and elliptical mirrors. The focus of the parabola coincides with one of the foci of the hyperbola. The second focus of the hyperbola coincides with one of the foci of the ellipse, and the other focus of the ellipse is located at the eyepiece. A ray of light parallel to the parabolic axis enters the telescope, as shown, and hits the parabolic surface.

Draw lines on the diagram to show how the light ray will be reflected by each conic surface.

Answers

Answer:

  see below

Step-by-step explanation:

Each reflection is along a line through the other focus of the conic. The two foci of the parabola are the one shown and the one at infinity (the source of light rays).

Final answer:

The light ray in the telescope will be reflected by each conic surface in a specific manner: converging at the parabolic mirror, diverging at the hyperbolic mirror, and converging again at the elliptical mirror.

Explanation:

The diagram shows a telescope fitted with different types of mirror surfaces, including parabolic, hyperbolic, and elliptical mirrors. When a ray of light parallel to the parabolic axis enters the telescope, it will be reflected by each conic surface in a certain way.

The light ray will be reflected by the parabolic mirror surface and converge to a single point called the focus. This is due to the property of the parabola that all incoming parallel rays are reflected to a common focal point.

The reflected ray will then strike the hyperbolic mirror surface, where it will be reflected in such a way that it diverges outwards. Hyperbolic mirrors have a property that makes them reflect incoming parallel rays into diverging rays.

Finally, the diverging ray from the hyperbolic mirror will enter the elliptical mirror surface. The elliptical mirror will reflect the ray in such a way that it converges to a point located at the eyepiece of the telescope. Elliptical mirrors have a property that makes them reflect incoming parallel rays to a focal point.

In summary, the light ray will be reflected by the parabolic mirror surface, then the hyperbolic mirror surface, and finally, the elliptical mirror surface, converging and diverging in different ways along the way.

Learn more about Reflecting Light Rays here:

https://brainly.com/question/32184600

#SPJ11

What is the circumference and area of a circle with a radius of 4 meters? Round your answer to the nearest tenth. Circumference: m Area: m2 (Use 3.14 for Pi.)

Answers

Answer:

Circumference = 25m

Area = 50 m2

Step-by-step explanation:

formula for circumference of a circle is π(d)

when radius is 4m, diameter is 8m

3.14(8)= 25.13

nearest tenth = 25m

formula for area of circle is 2πr or π(r)(r)

when radius is 4m

3.14(4)(4)=50.27 m2

nearest tenth =50m

Answer: circumference of the circle is 25.12 m  and the area of the circle is 50.2 m²

Step-by-step explanation:

To find the circumference of the circle of radius  4 meters, we simply use the formula;

area of a circumference = 2πr

                      π is given to be 3.14 and radius r=4 meter, we will substitute this variable into the formula

area of a circumference = 2πr

                                          = 2 × 3.14 × 4

                                          =25.12

                                           ≈25.1  to the nearest tenth

Therefore, the circumference of the circle is is 25.1 meters

To find the area of the circle, we simply use the formula:

area of circle = π[tex]r^{2}[/tex]

                     =  3.14 × (4)²

                      =3.14 × 16

                        =50.24

                        ≈50.2   to the nearest tenth

Therefore, the area of the circle is 50.2 m²

                     

Which of the following shows the division problem below in synthetic division form?

Answers

Answer:

     -------------------------------------

-4  |  3     -10       7

Step-by-step explanation:

Take the coefficients of the numerator inside the division bar

Take the opposite of the number in the denominator

     -------------------------------------

-4  |  3     -10       7

Answer:

The correct option is B.

Step-by-step explanation:

The given expression is

[tex]\frac{3x^2-10x+7}{x+4}[/tex]

Here the numerator is

[tex]3x^2-10x+7[/tex]

So, the coefficients of numerator are 3, -10 and 7.

If the denominator of an expression is (x+c), then in synthetic division form -c is written on outside and coefficients of numerator are written under the sign of division(descending order of degree of terms).

The denominator of the expression is (x+4), so -4 is written outside the sign of division.

[tex]-4\overline{|3\quad -10\quad 7}[/tex]

Therefore the correct option is B.

Match each description when z = 9 + 3i. 1. Real part of z, 3 2. Imaginary part of z, 9 - 3i 3. Complex conjugate of z, 3i 4. 3i - z -3i 5. Z - 9, -9 6. 9 - z, 9

Answers

Answer:

see below

Step-by-step explanation:

z = 9 + 3i

This is in the form a+bi   where a is the real part and b is the imaginary part

1.The real part is 9

2. The imaginary part is 3

The complex conjugate is a-bi

3. complex conjugate 9-3i

4. 3i - z = 3i - (9+3i) = 3i -9 - 3i = -9

5. z-9 = 9+3i - 9 = 3i

6.  9-z = 9- (9+3i) = 9-9-3i = -3i

Find the number of possible outcomes.
A die is rolled 8 times.

Answers

Answer:

48

Step-by-step explanation:

8×6=48 a dice has six faces

Answer:

There are 1,679,616 possibles outcomes

Step-by-step explanation:

This can be calculated using a rule of multiplication as:

     6    *      6   *      6    *    6       *      6    *      6     *      6     *      6     =  1,679,616

1st Roll      2nd       3rd       4th          5th        6th       7th          8th

Because the die is rolled 8 times and every roll has 6 possibilities.

Then, if the order matter, there are 1,679,616 possible outcomes.

Find b in the triangle shown.

2

3

4

5

Answers

Answer:

4.97485 (approximately)

Step-by-step explanation:

You have the information SAS given.

This is a case for law of cosines.

[tex]b^2=a^2+c^2-2ac*cos(B)[/tex]

[tex]b^2=12^2+10^2-2(12)(10)*cos(24)[/tex]

[tex]b^2=144+100-240cos(24)[/tex]

[tex]b^2=244-240cos(24)[/tex]

Take the square root

[tex]b=\sqrt{244-240cos(24)}[/tex]

I was saving rounding to the end that is why I didn't put 240*cos(24) in my calculator.

So now I'm going to put sqrt(244-240*cos(24)) in my calculator. Make sure your calculator says deg (for degrees).

4.97485 (approximately)

Hasan is painting a spherical model of a human cell for his science class. He uses 100π square inches of paint (in one coat) to evenly cover the outside of the cell. What is the diameter of Hasan’s cell model?

A) 2.5 in.
B) 5.0 in.
C) 10.0 in.
D) 25.0 in.
E) 50.0 in.

Answers

Answer:

10 in

Step-by-step explanation:

So we want to consider the surface area of this sphere.

The formula for surface area of a sphere is [tex]A=4 \pi r^2[/tex].

So we have that the surface area is [tex]100 \pi[/tex].

So I'm going to replace [tex]A[/tex] in [tex]A=4 \pi r^2[/tex] with  [tex]100 \pi[/tex].

[tex]100\pi=4\pi r^2[/tex]

Now our main objective here is to solve for [tex]r[/tex]:

Divide both sides by [tex]4 \pi[/tex]:

[tex]\frac{100\pi}{4 \pi}=\frac{4\pi r^2}{4 \pi}[/tex]

This gets us [tex]r^2[/tex] by itself:

[tex]25=r^2[/tex]

What number squared gives you 25? If you don't know, just take the square root of both sides giving you:

[tex]\sqrt{25}=r[/tex]

Now you can just put [tex]\sqrt{25}[/tex] in your calculator.  You should get 5.

5 is the radius

The diameter is twice the radius.

So 2(5) is 10, so the diameter is 10 in.

Answer:

C) 10.0 in.

Step-by-step explanation:

If Hasan is painting a spherical model of a human cell for his science class and uses 100π square inches of paint (in one coat) to evenly cover the outside of the cell, the diameter of Hasan’s cell model is 10.0 inches.

Radius = 5

Diameter = Radius x 2

Therefore 5 x 2 = 10

The diameter is 10 in.

Drag the tiles to the correct boxes to complete the pairs.
Match each division problem to its quotient.

Answers

Answer:

Part 1) [tex]-1.25[/tex] -------> [tex]2.75/(-2.2)[/tex]

Part 2) [tex]-4\frac{1}{3}[/tex] --------> [tex](-2\frac{3}{5}) / (\frac{3}{5})[/tex]

Part 3) [tex]\frac{2}{3}[/tex] ------> [tex](-\frac{10}{17}) / (-\frac{15}{17})[/tex]

Part 4) [tex]3[/tex] ------> [tex](2\frac{1}{4}) / (\frac{3}{4})[/tex]

Step-by-step explanation:

Part 1) we have

[tex]2.75/(-2.2)[/tex]

To calculate the division problem convert the decimal number to fraction number

[tex]2.75=275/100\\ -2.2=-22/10[/tex]      

so

[tex](275/100)/(-22/10)[/tex]

Remember that

Since division is the opposite of multiplication, you can turn this division problem into a multiplication problem by multiplying the top fraction by the reciprocal of the bottom fraction

[tex](275/100)/(-22/10)=(275/100)*(-10/22)=-(275*10)/(22*100)=-(275)/(220)[/tex]

Simplify

Divide by 22 both numerator and denominator

[tex]-(275)/(220)=-125/100=-1.25[/tex]

Part 2) we have

[tex](-2\frac{3}{5}) / (\frac{3}{5})[/tex]

To calculate the division problem convert the mixed number to an improper fraction  

[tex](-2\frac{3}{5})=-\frac{2*5+3}{5}=-\frac{13}{5}[/tex]

so

[tex](-\frac{13}{5}) / (\frac{3}{5})[/tex]

Since division is the opposite of multiplication, you can turn this division problem into a multiplication problem by multiplying the top fraction by the reciprocal of the bottom fraction

[tex](-\frac{13}{5}) / (\frac{3}{5})=(-\frac{13}{5})*(\frac{5}{3})=-\frac{13*5}{5*3}=-\frac{13}{3}[/tex]

Convert to mixed number

[tex]-\frac{13}{3}=-(\frac{12}{3}+\frac{1}{3})=-4\frac{1}{3}[/tex]

Part 3) we have

[tex](-\frac{10}{17}) / (-\frac{15}{17})[/tex]

Since division is the opposite of multiplication, you can turn this division problem into a multiplication problem by multiplying the top fraction by the reciprocal of the bottom fraction

[tex](-\frac{10}{17}) / (-\frac{15}{17})=(-\frac{10}{17})*(-\frac{17}{15})=\frac{10*17}{17*15}=\frac{10}{15}[/tex]

Simplify

Divide by 5 both numerator and denominator

[tex]\frac{10}{15}=\frac{2}{3}[/tex]

Part 4) we have

[tex](2\frac{1}{4}) / (\frac{3}{4})[/tex]

To calculate the division problem convert the mixed number to an improper fraction  

[tex](2\frac{1}{4})=\frac{2*4+1}{4}=\frac{9}{4}[/tex]

so

[tex](\frac{9}{4}) / (\frac{3}{4})[/tex]

Since division is the opposite of multiplication, you can turn this division problem into a multiplication problem by multiplying the top fraction by the reciprocal of the bottom fraction

[tex](\frac{9}{4}) / (\frac{3}{4})=(\frac{9}{4})*(\frac{4}{3})=\frac{9*4}{4*3}=\frac{9}{3}=3[/tex]

To match each division problem to its quotient, you'll need to perform each division and then see which of the given quotients corresponds to the result of each division. Let's go through the steps for each division problem you might have:
1. Start with the first division problem. For example, if it's `45 / 5`, you'd perform the division by determining how many times 5 goes into 45.
2. To solve `45 / 5`, you can count by fives until you reach 45, or recognize that 5 times 9 is 45. Hence, the quotient for `45 / 5` is 9.
3. Look at the potential quotients given to you and match the result. If one of the choices is 9, match `45 / 5` with that quotient.
4. Repeat the process for the next division problem, say `30 / 6`. Divide 30 by 6 to get the quotient. Since 6 times 5 is 30, the quotient here is 5.
5. Again, look at your potential quotients. If there is a 5 among them, this is incorrect since 5 is not a choice in our example set of potential quotients. Instead, you would expect to see a 6, as that is the typical mistake that such a setup might be aiming to identify.
6. Move on to the next division problem, for instance, `18 / 3`. To find the quotient, you divide 18 by 3, which gives you 6 because 3 times 6 is 18.
7. Match `18 / 3` with the correct quotient from your list of choices, which in this case would be 6.
Remember, these are hypothetical examples. In your actual matching exercise, you would perform the division for each problem you've been given and then find the corresponding quotient from the choices available to you. The key is to perform each division accurately and then pair it with the right answer. If you perform all the divisions and none of the quotients match the results you have obtained, there might be an error in the given quotients or the division problems.

Someone please be awesome and help me please :(

Answers

Answer:

[tex](x+\frac{b}{2a})^2+(\frac{4ac}{4a^2}-\frac{b^2}{4a^2})=0[/tex]

[tex](x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2}[/tex]

[tex]x=\frac{-b}{2a} \pm \frac{\sqrt{b^2-4ac}}{2a}[/tex]

Step-by-step explanation:

[tex]x^2+\frac{b}{a}x+\frac{c}{a}=0[/tex]

They wanted to complete the square so they took the thing in front of x and divided by 2 then squared.  Whatever you add in, you must take out.

[tex]x^2+\frac{b}{a}x+(\frac{b}{2a})^2+\frac{c}{a}-(\frac{b}{2a})^2=0[/tex]

Now we are read to write that one part (the first three terms together) as a square:

[tex](x+\frac{b}{2a})^2+\frac{c}{a}-(\frac{b}{2a})^2=0[/tex]

I don't see this but what happens if we find a common denominator for those 2 terms after the square.  (b/2a)^2=b^2/4a^2 so we need to multiply that one fraction by 4a/4a.

[tex](x+\frac{b}{2a})^2+\frac{4ac}{4a^2}-\frac{b^2}{4a^2}=0[/tex]

They put it in ( )

[tex](x+\frac{b}{2a})^2+(\frac{4ac}{4a^2}-\frac{b^2}{4a^2})=0[/tex]

I'm going to go ahead and combine those fractions now:

[tex](x+\frac{b}{2a})^2+(\frac{-b^2+4ac}{4a^2})=0[/tex]

I'm going to factor out a -1 in the second term ( the one in the second ( ) ):

[tex](x+\frac{b}{2a})^2-(\frac{b^2-4ac}{4a^2})=0[/tex]

Now I'm going to add (b^2-4ac)/(4a^2) on both sides:

[tex](x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2}[/tex]

I'm going to square root both sides to rid of the square on the x+b/(2a) part:

[tex]x+\frac{b}{2a}=\pm \sqrt{\frac{b^2-4ac}{4a^2}}[/tex]

[tex]x+\frac{b}{2a}=\pm \frac{\sqrt{b^2-4ac}}{2a}[/tex]

Now subtract b/(2a) on both sides:

[tex]x=\frac{-b}{2a} \pm \frac{\sqrt{b^2-4ac}}{2a}[/tex]

Combine the fractions (they have the same denominator):

[tex]x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]

Proportions in Triangles (2)

Answers

Answer:

  x = 6

Step-by-step explanation:

An angle bisector divides the segments on either side of it so they are proportional. That is ...

  x/12 = 5/10

  x = 12(5/10) = 6 . . . . . multiply by 12

Frank buys 10 magazines and 25 newspapers. The magazines cost $5 each and the newspapers cost $2.50 each. Suppose that his MU from the final magazine is 10 utils while his MU from the final newspaper is also 10 utils. According to the utility-maximizing rule, Frank should:

Answers

Answer:

Let Frank spends x amount in purchasing the magazines and newspapers.(though this is not used here)

MU is marginal utility where a customer can decide a particular way to allocate his income.

This allocation is done in a way, that the last dollar spent on purchasing a product will yield the same amount of extra marginal utility.

MU from the final magazine is 10 units while his MU from the final newspaper is also 10 units.

MU per dollar spent on magazines = [tex]\frac{10}{5}=2[/tex]

MU per dollar spent on newspapers = [tex]\frac{10}{2.5}=4[/tex]

We can see the MU per dollar spent on magazine is less than newspapers.

Therefore, according to the utility-maximizing rule, Frank should re-allocate spending from magazines to newspapers.

Answer:

He should investing more money on newspaper

Step-by-step explanation:

Given:

magazines cost per item: $5newspapers cost per item $2.50

His MU from the final magazine and final newspaper is 10 utils, so we have:

magazine = $5 / 10 utils = $0.50 per util

newspaper = $2.50 / 10 utils = $0.25 per util

He should investing more money on newspaper  because twice the amount obtained from each dollar spent on newspapers than magazines as we can see above,

Hope it will find you well.

Find the equation of the line perpendicular to y=-4x+3 that also intersects the point (8,1)

Answers

Answer:

-1

Step-by-step explanation:

They already did the opposite reciprocal for you.

They have it in the form [tex]y=\frac{1}{4}x+b[/tex] now.

To find b you just enter (x,y)=(8,1).

Let's do that.

[tex]1=\frac{1}{4}(8)+b[/tex]

[tex]1=2+b[/tex]

Subtract 2 on both sides:

[tex]-1=b[/tex]

b=-1

Hey there! :)

Perp. to y = -4x + 3 ; intersects (8, 1)

Slope-intercept form is : y=mx+b where m = slope, b = y-intercept

So, our slope of the given equation is -4. However, our new slope is 1/4 because it is the negative reciprocal of -4. We have to use the negative reciprocal because our new line is perpendicular to our given one.

Now, using (8, 1) and our new slope (1/4), simply plug everything in to the point-slope form.

Point-slope : y-y1 = m(x - x1)

y - 1 = 1/4(x - 8)

Simplify.

y - 1 = 1/4x - 2

Add 1 to both sides.

y = 1/4x - 1 ⇒ our new equation.

Therefore, the number that fits in the question mark is -1.

~Hope I helped!~

If cosine theta equals one over six, what are the values of sin θ and tan θ?

Answers

Answer:

sin θ = (√35)/6tan θ = √35

Step-by-step explanation:

The trig identities are helpful for this.

  sin² θ = 1 - cos² θ = 1 -(1/6)² = 35/36

  sin θ = (√35)/6 . . . . . . take the square root

__

  tan² θ = sec² θ -1 = (1/cos² θ) -1 = 6² -1 = 35

  tan θ = √35 . . . . . . . . . take the square root

The number of corn stalks in each row of field can be modeled by arithmetic sequence.The 5th row in this field has 36 corn stalks. The 12th row in the field has 64 stalks. Write an explicit rule for an arithmetic sequence that models the number of stalks s in the nth row of the field. show your work

Answers

Answer:

a_{n}=20+4(n-1)

Step-by-step explanation:

It is given that the number of corn stalks in rows of the field can be modeled by an arithmetic sequence.

The 5th row has 36 corn stalks. This means 5th term of the sequence is 36. i.e.

[tex]a_{5}=36[/tex]

The 12th row has 64 stalks. So,

[tex]a_{12}=64[/tex]

In order to write the explicit rule we need to find the first term(a1) and common difference(d) of the sequence.

The explicit rule for the arithmetic sequence is of the form:

[tex]a_{n}=a_{1}+(n-1)d[/tex]

Writing the 5th and 12th term in this way, we get:

[tex]a_{5}=a_{1}+4d[/tex]

[tex]a_{1}+4d=36[/tex]                                                     Equation 1

Similarly for 12th term, we can write:

[tex]a_{1}+11d=64[/tex]                                                     Equation 2

Subtracting Equation 1 from Equation 2, we get:

7d = 28

d = 4

Using the value of d in Equation 1, we get:

[tex]a_{1}+4(4)=36\\\\ a_{1}=20[/tex]

Thus, for the given sequence first term is 20 and common difference is 4. Using these values in the general explicit rule, we get:

[tex]a_{n}=20+4(n-1)[/tex]

Alexa pays 7/20 of a dollar for each minute she uses her pay-as-you-go phone for a call, and 2/5 of a dollar for each minute of data she uses. This month, she used a total of 85 minutes and the bill was $31. Which statements are true? Check all that apply.
The system of equations is x + y = 31 and 7/20x+2/5y=85
The system of equations is x + y = 85 and 7/20x+2/5y=31
To eliminate the y-variable from the equations, you can multiply the equation with the fractions by 5 and leave the other equation as it is.
To eliminate the x-variable from the equations, you can multiply the equation with the fractions by 20 and multiply the other equation by -7.
A-She used 25 minutes for calling and 60 minutes for data.
B-She used 60 minutes for calling and 25 minutes for data.
C-She used 20 minutes for calling and 11 minutes for data.
D-She used 11 minutes for calling and 20 minutes for data.

Answers

Answer:

The system of equations is x + y = 85 and 7/20x+2/5y=31To eliminate the x-variable from the equations, you can multiply the equation with the fractions by 20 and multiply the other equation by -7.B-She used 60 minutes for calling and 25 minutes for data.

Step-by-step explanation:

It is always a good idea to start by defining variables in such a problem. Here, we can let x represent the number of calling minutes, and y represent the number of data minutes. The the total number of minutes used is ...

  x + y = 85

The total of charges is the sum of the products of charge per minute and minutes used:

  7/20x + 2/5y = 31.00

We can eliminate the x-variable in these equations by multiplying the first by -7 and the second by 20, then adding the result.

  -7(x +y) +20(7/20x +2/5y) = -7(85) +20(31)

  -7x -7y +7x +8y = -595 +620 . . . . eliminate parentheses

  y = 25 . . . . . . . . simplify

Then the value of x is

  x = 85 -y = 85 -25

  x = 60

Answer:

The second, fourth and B option are correct.

Step-by-step explanation:

In order to solve this problem, we are going to define the following variables :

[tex]X:[/tex] ''Minutes she used her pay-as-you-go phone for a call''

[tex]Y:[/tex] ''Minutes of data she used''

Then, we are going to make a linear system of equations to find the values of [tex]X[/tex] and [tex]Y[/tex].

''This month, she used a total of 85 minutes'' ⇒

[tex]X+Y=85[/tex]  (I)

(I) is the first equation of the system.

''The bill was $31'' ⇒

[tex](\frac{7}{20})X+(\frac{2}{5})Y=31[/tex] (II)

(II) is the second equation of the system.

The system of equations will be :

[tex]\left \{ {{X+Y=85} \atop {(\frac{7}{20})X+(\frac{2}{5})Y=31}} \right.[/tex]

The second option ''The system of equations is [tex]X+Y=85[/tex] and [tex](\frac{7}{20})X+(\frac{2}{5})Y=31[/tex] .'' is correct

Now, to solve the system, we can eliminate the x-variable from the equations by multiplying the equation with the fractions by 20 and multiplying the other equation by -7. Then, we can sum them to obtain the value of [tex]Y[/tex] :

[tex]X+Y=85[/tex] (I)

[tex](\frac{7}{20})X+(\frac{2}{5})Y=31[/tex] (II) ⇒

[tex](-7)X+(-7)Y=-595[/tex] (I)'

[tex]7X+8Y=620[/tex] (II)'

If we sum (I)' and (II)' ⇒

[tex](-7)X+(-7)Y+7X+8Y=-595+620[/tex] ⇒ [tex]Y=25[/tex]

If we replace this value of [tex]Y[/tex] in (I) ⇒

[tex]X+Y=85\\X+25=85\\X=60[/tex]

The fourth option ''To eliminate the x-varible from the equations, you can multiply the equation with the fractions by 20 and multiply the other equation by -7'' is correct.

With the solution of the system :

[tex]\left \{ {{X=60} \atop {Y=25}} \right.[/tex]

We answer that the option ''B-She used 60 minutes for calling and 25 minutes for data'' is correct.

Type 11//5 in the simplest form

Answers

Answer:

Exact Form:

11/  5

Decimal Form:

2.2

Mixed Number Form:

2  1/ 5

Step-by-step explanation:

For the decimal, divide 11 by 5.

To get the Mixed number form, find out how many times 5 goes into 11, then then what is left over. Put the number left over the number that was dividing. 5 goes into 11 2 times, then 1 is left over, put the 1 over 5.

Give the coordinates of a point on the line whose equation in point-slope form is.

Answers

Answer:

  (4, -2)

Step-by-step explanation:

The point-slope form of the equation for a line is ...

  y -k = m(x -h)

for a line with slope m through point (h, k).

Comparing this to the equation you're given, you can see that the point that was used is (h, k) = (4, -2).

_____

You can find other points on the line, but this one is the easiest to find, since it can be read directly from the equation.

Amina sees a discount of 5% on a laptop. She can calculate the amount she has to pay for the laptop using the expression where b is the price of the laptop before the discount. If the price after discount is $494, which number from the set {500, 505, 510, 520, 525} is the value of b?

Answers

Answer:

$520

Step-by-step explanation:

Since this is a 5% discount, you must subtract 5 from 100% which is 95%.

This will be written as 0.95.

Expression: [tex]x*0.95=494\\\\0.95x=494\\\\\frac{0.95x}{0.95} =\frac{494}{0.95}[/tex]

The answer will be $520.

Answer:

[tex]\boxed{520}[/tex]

Step-by-step explanation:

[tex]\begin{array}{rcl}\text{ Price before discount - discount} & = & \text{sale price}\\b-0.05b & = & 494\\0.95b & = & 494\\\\b & = & \dfrac{494 }{0.95}\\\\& = & \mathbf{520}\\\end{array}\\\text{The number from the set that matches } b \text{ is }\boxed{\mathbf{520}}[/tex]

Select the correct answer from the drop-down menu.
Consider the absolute value function /x)=-+2-2.
The vertex of the function is
Reset
Next

Answers

Answer:

  (-2, -2)

Step-by-step explanation:

Compare the two functions ...

  f(x) = -|x +2| -2

  f(x) = a·g(x -h) +k

where f(x) is a translation and scaling of function g(x). Here, you have ...

  g(x) = |x|

The scale factor is a = -1.

The horizontal shift is h = -2.

The vertical shift is k = -2.

_____

The original vertex at (0, 0) has been shifted by (h, k) to ...

  (0, 0) + (h, k) = (0, 0) + (-2, -2) = (-2, -2).

Answer:

(-2,-2)

Step-by-step explanation:

I took a test and got it right

Complete the square and then find the center and radius from the circle equation
x^2+y^2-4x+8y-5=0

Answers

Answer:

  center: (2, -4); radius: 5

Step-by-step explanation:

Group x-terms and y-terms. Add the squares of half the coefficient of the linear term in each group. It can be convenient to subtract the constant, too.

  (x^2 -4x) +(y^2 +8y) = 5

  (x^2 -4x +4) +(y^2 +8x +16) = 5 + 4 + 16

  (x -2)^2 +(y +4)^2 = 5^2

Comparing this to the form of a circle centered at (h, k) with radius r, we can find the center and radius.

  (x -h)^2 +(y -k)^2 = r^2

  (h, k) = (2, -4) . . . . . the circle center

  r = 5 . . . . . . . . . . . . the radius

Center is 2,-4 the radius is 5

Proportions in Triangles (4)

Answers

Answer:

y = 4.8

Step-by-step explanation:

Since AM is an angle bisector then the following ratios are equal

[tex]\frac{AC}{AB}[/tex] = [tex]\frac{CM}{MB}[/tex], that is

[tex]\frac{9.6}{8}[/tex] = [tex]\frac{y}{4}[/tex] ( cross-  multiply )

8y = 38.4 ( divide both sides by 8 )

y = 4.8

Other Questions
While most people see the value in setting goals, few people routinely do it.OTrueO False At 488 mm Hg, a sample of nitrogen gas occupies 609 mL. What volume does the gas occupy if the temperature remains constant and the pressure increases to 757.8 mm Hg?Select one:a. 392b. 607c. 0.00529d. 1000 An otherwise healthy 17-year-old girl presents with a 4-month history of episodes of dj vu or unpleasant olfactory aura, followed by a period of staring, confusion, and unresponsiveness that lasts 30 to 90 seconds. She then develops headache, nausea, and extreme fatigue. More recently, the episodes are associated with depersonalization, a sinking feeling, and periods of blacking out. She has mild short-term memory deficits on examination. MRI scan of the brain is normal. Which of the following medications is most likely to improve her symptoms? g Complete the following statements. (a) A substance that conducts electricity but whose conduction is not temperature dependent is called Correct: Your answer is correct. . (b) An example of a conductor is . (c) An example of a semiconductor is . (d) An example of an insulator is . Calculate the circulation, F dr, C in two ways, directly and using Stokes' Theorem. F = y i + z j + xk and C is the boundary of S, the paraboloid z = 4 (x2 + y2), z 0 oriented upward. (Hint: Use polar coordinates.) F dr C = Suppose a tax of $3 per unit is imposed on a good. The supply curve is a typical upward-sloping straight line, and the demand curve is a typical downward-sloping straight line. The tax decreases consumer surplus by $3,900 and decreases producer surplus by $3,000. The tax generates tax revenue of $6,000. The tax decreased the equilibrium quantity of the good from A. 2,400 to 2,000. B. 2,600 to 2,000. C. 3,000 to 2,400. D. 2,000 to 1,500. PLEASE HELP ASAP Of the three functions in the tables, which represent linear relationships?A. f and hB. all three functionsc. f and gD. g and h Greta is concerned that one of the potential market segments she has identified for her dog grooming service is too small and has too little income to have sufficient buying power. Greta is concerned with whether the segment is I want to start a lemonade stand and determine how much lemonade I need to sell to break even each day. If I know I spend $5 on supplies and sell lemonade at $0.50 per glass determine the number of glasses I must sell to break even. After you find the number of glasses tell me what the x-intercept, y-intercept and slope. Represent in the function you determined What part of the Constitution mandated the census? A 32.2 g iron rod, initially at 21.9 C, is submerged into an unknown mass of water at 63.5 C. in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 59 2 C What is the mass of the water? Express your answer to two significant figures Find the 6th term in the expansion of (x + 2)9. A significant contribution to the industrialization of the United States was Henry fords development of? Calculate the magnitude of the gravitational force exerted on a 4.20 kg baby by a 100 kg father 0.200 m away at birth (he is assisting, so he is close to the child). (b) Calculate the magnitude of the force on the baby due to Jupiter if it is at its closest distance to Earth, some 6.291011 m. How many molecules of oxygen are produced for every molecule of carbon dioxide that is consumed during photosynthesis Given the triangle below, what is m White perch is a fish that is native to Atlantic coastal regions and is invasive to the Great Lakes. It feeds on native species and is thought to be the cause of decline of the Great Lakes walleye fish populations Because of its importance in summarizing your strategy, the Introduction and Overview of your business plan should beA.written before you begin your research.B.written last.C.lengthy and detailed.D.repeated in a cover letter .9 What kind of governments shares the power between the national and state governments The boiling points of some group 7A hydrides are tabulated below.gas b.p. (C)NH3 33PH3 88AsH3 62Which intermolecular force or bond is responsible for the high boiling point of NH3 relative to PH3 and AsH3?A) Dipole/induced dipole force B) Covalent bonding C) Dipole-dipole force D) Induced dipole/induced dipole force E) Hydrogen bonding