The index of refraction for red light in a certain liquid is 1.303; the index of refraction for violet light in the same liquid is 1.326. part a find the dispersion θv−θr for red and violet light when both are incident on the flat surface of the liquid at an angle of 45.00 ∘ to the normal.

Answers

Answer 1
Snell's law states: n1/n2 = Sin Ф2/Sin Ф1

But n2/n1 = 1.303 and 1.326 for red light and violet light respectively (for this case) and Ф1 = 45

Therefore,
Фr = Sin ^-1{1/1.303 *Sin 45} = 32.87°
Фv = Sin ^-1 {1/1.326* Sin 45} = 32.23°

Then,
Dispersion, Фv - Фr = 32.23 - 32.87 = -0.64°

Related Questions

What are three benefits of being assertive and what are three tips to help you develop an assertive style of communication? (Site 1)

                 

Answers

1. The benefits of been assertive include the following:
a. It improve one self image: When you choose to be assertive, you adopt  a self realistic image.
b. It enhance how we understand others: Been assertive helps you to see others in a more realistic context.
c. Promote self awareness and self confidence: Been assertive helps you to develop a greater respect for your own points of view when dealing with issues. 
d. Been assertive is a less stressful way of communicating.

2. The three steps needed to develop assertive communication, include:
a. Learn to 'no' more often: refuse to please everyone and do not behave according to people expectations of you. Be yourself.
b. Your tone must be properly turned when talking: Do not raise your voice or rush a communication. Be calm and cool when talking.
c. Be open to communication: Be willing to discuss issues until a suitable solution is found.
d. Pay attention to non-verbal communication of others: Keep eye contact when communicating and pay attention to other body gestures. 

How does natural selection result in adaptations in a species

Answers

An organism's "fitness" is measured by its ability to live long enough to reproduce and pass down traits to their offspring. In sexually reproducing organisms, those who are most fit are most likely to survive often have a specialized trait that gave them the advantage in doing so. The organism with the traits that allowed them to survive and reproduce passes the trait to it's offspring. Assuming that the environment doesn't overly change, those offspring have a greater chance to survive and reproduce themselves. Thus, this trait becomes a specialized adaption for the environment and allows the species as a whole to survive longer.

What real-world examples show no work begin done? Can you think of examples other than resisting the force of gravity?

Answers

Oh my gosh !  Resisting the force of gravity always DOES involve doing work.
If no work is being done, then you're NOT resisting the force of gravity.

Example:

-- ball rolling on the floor . . . no work
-- ball rolling up a ramp . . . work being done
-- ball rolling down a ramp . . . work being done, BY gravity

Answer:

Explanation:

The work done is defined as the product of force in the direction of displacement and the displacement.

Work done = force x displacement x Cos Ф

Where, Ф be the angle between force and the displacement vectors.

Work may be positive, negative or zero depending on the values of angle Ф.

The work done is zero when force is zero or displacement is zero or angle Ф is 90 degree.

So, when we apply a force on a body and body does not displace, then the work done is zero.

How many photons per second are emitted by the antenna of a microwave oven if its power output is 1.00 kw at a frequency of 2515 mhz?

Answers

Final answer:

To determine the number of photons emitted per second by the antenna of a microwave oven, we need to use the formulas for energy per photon and number of photons.

Explanation:

The number of photons emitted by the antenna of a microwave oven can be calculated using the formula:

Number of photons = (Power output / Energy per photon) x frequency

To find the energy per photon, we can use the formula:

Energy per photon = Planck's constant x frequency

Given that the power output is 1.00 kW and the frequency is 2560 MHz, we can convert these values to SI units and calculate the number of photons emitted per second.

Learn more about microwave oven photons here:

https://brainly.com/question/1593533

#SPJ3

Approximately 6.01 x 10²⁶ photons per second are emitted by the antenna of the microwave oven.

To determine the number of photons emitted per second by a microwave oven, we can use the formula:

Number of Photons per Second (N) = Power Output (P) / Energy per Photon (E)

Given:

Power Output (P) = 1.00 kW (or 1000 W)Frequency (f) = 2515 MHz (or 2.515 x 10⁹ Hz)

First, find the energy per photon (E) using the equation:

E = h * f

where h is Planck's constant (6.626 x 10⁻³⁴ Js) and f is the frequency.

Substitute the values:

E = 6.626 x 10⁻³⁴ Js * 2.515 x 10⁹ Hz

E = 1.665 x 10⁻²⁴ J

Next, calculate the number of photons per second:

N = P / E

N = 1000 W / 1.665 x 10⁻²⁴ J

N ≈ 6.01 x 10²⁶ photons per second

Therefore, the antenna of the microwave oven emits approximately 6.01 x 10²⁶ photons per second.

An elephant can hear sound with a frequency of 15 hz. what is the wavelength of this wave if the speed of sound in air is 343 m/s?

Answers

Final answer:

The wavelength of a sound wave with a frequency of 15 Hz and a speed of sound in air of 343 m/s is approximately 22.87 meters.

Explanation:

To calculate the wavelength of the sound wave, we can use the formula:

Speed of sound (v) = wavelength (λ) x frequency (f)

Given that the frequency of the sound wave is 15 Hz and the speed of sound in air is 343 m/s, we can substitute these values into the formula to solve for the wavelength:

343 m/s = λ x 15 Hz

Dividing both sides of the equation by 15 Hz, we get:

λ = 343 m/s / 15 Hz = 22.87 meters (rounded to two decimal places)

Therefore, the wavelength of the sound wave is approximately 22.87 meters.

Learn more about wavelength of sound wave here:

https://brainly.com/question/29359431

#SPJ12

which formula represents Snell's law


Answers

Its B. n1sin01=n2sin02

Snell's law is used for refraction of light

it is used to find the relation between refractive index of two medium and angle of incidence and angle of refraction.

As per this formula

[tex]n_1 sin\theta_i = n_2 sin\theta_r[/tex]

here [tex]n_1[/tex] = refractive index of first medium

[tex]n_2[/tex] = refractive index of second medium where light go after refraction

[tex]\theta_i[/tex] = angle of incidence

[tex]\theta_r[/tex] = angle of refraction


A cyclist is going in the positive x-direction at 9m/s. A car initially at rest, accelerates for the first 10 seconds, then it goes with a constant velocity. If the car reaches the cyclist after 15 seconds from the moment the car started moving, find: (a) The acceleration of the car during the first 10 seconds, (b) The velocity of the cyclist with respect to the car when the car reaches the cyclist

Answers

1) The car is initially at rest, and it accelerates for the first 10 seconds with acceleration a, so the distance it covers in these first 10 seconds is (in meters)
[tex]d_1 = \frac{1}{2}at^2 = \frac{1}{2}a(10 s)^2 = 50 a [/tex]
The velocity the car has reached after these 10 seconds is
[tex]v=at = a (10 s)=10 a[/tex] (3)
Then the car moves for other 5 seconds with this constant velocity (v=10 a) before reaching the cyclist. During this time, the distance it covers is
[tex]d_2 = v t = 10 a \cdot (5 s) =50 a[/tex]
So the total distance covered by the car is
[tex]d=d_1 + d_2 = 50 a + 50 a =100 a[/tex] (1)

The cyclist is moving at constant speed of [tex]v=9m/s[/tex], so the distance it covered during the 15 seconds is
[tex]d=vt=(9m/s)(15 s)=135 m[/tex] (2)

And since the car covered the same distance during this time, we can use (1) and (2) to find the acceleration of the car during the first 10 seconds:
[tex]a= \frac{d}{100}= \frac{135}{100} = 1.35 m/s^2 [/tex]


2) The velocity of the car when it reaches the cyclist is given by (3):
[tex]v_1= 10 a= (10 s)(1.35 m/s^2) = 13.5 m/s[/tex]
The velocity of the cyclist is [tex]v_2 = 9m/s[/tex], therefore the velocity of the car relative to the cyclist is
[tex]v' = v_1 - v_2 = 13.5 m/s - 9m/s=4.5 m/s[/tex]

The intensity of the sun's radiation incident upon the earth is about i=1.4kw/m2. suppose this is the value for the intensity of sunlight incident upon the satellite's solar panels. what is the total solar power p absorbed by the panels?

Answers

Intensity = power/ Area
⇒ Power absorbed = 1× A ⇒ 1.4 × 10∧3 ×(10)
= 14000 Watt = 14 kWatt
time - averaged intensity divided by speed of light in free space is the radiation pressure
P = (1.4 × 1000)/c
Force = pressure × area ⇒ ((1.4× 1000)/(10∧8)) × 10
= 0.00004666666N
0.000047N

What is a correct way to measure wavelength

Answers

The correct way to measure wavelength is from rarefaction to rarefaction for a longitudinal wave. This would be the correct answer to your question. The wavelength of a wave is the distance from any random point on one wave, to the same point on the next wave. Best way to measure is from the top of one wave, to the top of the next wave. That's a rather simple way to look at the concept.
from rarefaction to rarefaction for a longitudinal wave 

What's the pressure and temp of 6694 meters high

Answers

Applying rule of thumb: For every 1000 m, temperature drops by 2 °C. If the ground temperature is room temperature at 20 °C, then:

At 6694 m, temperature = 20 - (6694/1000*2) = 6.6°C
Now,
H= (30t+8000)*ln (C/P), where H = Altitude, t = temperature, C = ground atmospheric pressure, say 101325 Pa, P is the pressure at the altitude.

Therefore,
6694 =(30*6.6+8000) ln (C/P) => 0.8165 = ln (1013255/P) => e^0.8165 = 101325/P => 2.2627 = 101325/P => P = 101325/2.2627 = 44781.39 Pa

Light of wavelength 600 nm illuminates a diffraction grating. the second-order maximum is at angle 39.5 ∘. part a how many lines per millimeter does this grating have?

Answers

Diffraction equation applies in this case:

d*Sin x = m*wavelength, where d = spacing of lines, x = angle = 39.5°, m = order of maximum = 2

Substituting;
d* Sin 39.5 = 2*600*10^-9
d = (2*600*10^-9)/Sin 39.5 = 1.88656*10^-6 m

In 1 mm (or 0.001 m), the number of lines is given as;
Number of lines = 0.001/d = 0.001/(1.88656*10^-6) = 530.065 ≈ 530 lines

The number of lines per millimeter that the grating has is : 530 lines

Given data :

light wavelength = 600 nm

second order maximum angle ( x ) = 39.5°

order of maximum = 2

Determine the number of lines the grating will have

We will apply diffraction equation

[tex]d*sinx = m*wavelength[/tex] --- ( 1 )

where : d = spacing of lines, x =  39.5°, m = 2

Insert values into equation ( 1 ) above

d * Sin ( 39.5 ) = 2 * 600 * 10⁻⁹

therefore ; d = 1.88656 * 10⁻⁶ m

Final step : determine the number of lines per mm

Number of lines per mm

= 0.001 / d

= 0.001 / (1.88656 * 10⁻⁶ )  ≈ 530 lines

Hence we can conclude that The number of lines per millimeter that the grating has is 530 lines

Learn more about grating : https://brainly.com/question/25804706

A cello string 0.75 m long has a 220 hz fundamental frequency. find the wave speed along the vibrating string. answer in units of m/s.

Answers

For fundamental frequency of a string to occur, the length of the string has to be half the wavelength. That is,

1/2y = L, where L = length of the string, y = wavelength.

Therefore,
y = 2L = 2*0.75 =1.5 m

Additionally,
y = v/f Where v = wave speed, and f = ferquncy

Then,
v = y*f = 1.5*220 = 330 m/s

H e l p.. I have no idea what any of this is, what is the first step of the hydrogen fusion process

Answers

The answer to this question is the first choice. In the hydrogen fusion process, the first step involves the collision of two protons to emit an antielectron and a neutrino. Only the first choice of
                             1_1H + 1_1H →2_1H + e^+ + v + energy
reflects this process. A hydrogen ion with a mass of one and number protons of 1 means a proton.
(A) would be your answer

What is the approximate wavelength of a light whose first-order bright band forms a diffraction angle of 45.0° when it passes

Answers

** Missing info: Lines per mm = 500 **

Ans: The wavelength is =  λ = 1414.21 nm

Explanation:
The formula for diffraction grading is:

dsinθ = mλ --- (1)

Where
d = 1/lines-per-meter = (1/500)*10^-3 = 2 * 10^-6
m = order = 1
λ = wavelength
θ = 45°

Plug in the values in (1):
(1) => 2*10^-6*sin(45°) = (1)λ
=> λ = 1414.21 nm

At what speed does the classical momentum, p=mv, give an error, when compared with the relativistic momentum, of 1.35 % ?

Answers

The classical momentum is given by:
[tex]p_c=mv[/tex]
where m is the particle mass and v its velocity, while the relativistic momentum is given by:
[tex]p_r=\gamma mv[/tex]
where 
[tex]\gamma = \frac{1}{ \sqrt{1- \frac{v^2}{c^2} } } [/tex]  (1)
is the relativistic factor, with c being the speed of light.

The condition given by the problem (error of 1.35%) can be rewritten as
[tex] \frac{p_r - p_c}{p_r} = 0.0135 [/tex]
which means
[tex]p_r = \frac{p_c}{0.9865} [/tex]
and since [tex]p_r = \gamma p_c[/tex], this also means that
[tex]\gamma = \frac{1}{0.9865}=1.0137 [/tex]

Now let's re-arrange eq.(1), and we get
[tex]v=c \sqrt{1- \frac{1}{\gamma^2} } [/tex]
and if we use [tex]\gamma=1.0137[/tex] as we found before, and [tex]c=3 \cdot 10^8 m/s[/tex], we find the corresponding velocity:
[tex]v=(3 \cdot 10^8 m/s) \sqrt{1- \frac{1}{(1.0137)^2} } = 4.9 \cdot 10^7 m/s[/tex]

Final answer:

To calculate the speed at which the classical momentum gives an error compared to the relativistic momentum, we need to find the ratio of the two different momenta. This can be done by solving for the velocity using the given equations and approximations.

Explanation:

The classical momentum, p=mv, gives an error when compared with the relativistic momentum. The error can be calculated by finding the ratio of the relativistic momentum to the classical momentum. In this case, the error is 1.35%. To find the velocity at which this error occurs, we need to solve for the velocity using the given equations and approximations.

(a) Find the momentum of a 1.00 × 10⁹ kg asteroid heading towards the Earth at 30.0 km/s.

(b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that y = 1+(1/2)v²/c² at low velocities.)

Assume that you have two objects, one with a mass of 10 kg and the other with a mass of 18 kg, each with a charge of −0.027 c and separated by a distance of 9 m. what is the electric force that these objects exert on one another? answer in units of n.

Answers

ad asd asdsad as dssar wre s rw ew rtrg yy sf er

Final answer:

Using Coulomb's law, the electric force between two objects with charges of – 0.027 C each and separated by 9 m is 81 N. The force is repulsive since the charges are alike.

Explanation:

To calculate the electric force between two objects using Coulomb's law, one needs to know the charges on the objects and the distance separating them. Coulomb's law is represented by the formula F = k * |q1 * q2| / r2, where F is the force between the charges, k is Coulomb's constant (9.0 × 109 N·m2/C2), q1 and q2 are the amounts of the charges, and r is the distance between them.

In this case, with both objects having a charge of – 0.027 C and separated by a distance of 9 m, the electric force F is calculated as follows:

F = (9.0 × 109 N·m2/C2) * |(– 0.027 C) * (– 0.027 C)| / (9 m)2

Since the charges are like charges, the force will be repulsive and we can ignore the negative sign for the purposes of calculating magnitude:

F = (9.0 × 109 N·m2/C2) * (0.027 C * 0.027 C) / (81 m2) = 9.0 × 109 * 0.000729 / 81 = 8.1 × 101 N

Thus, the electric force between the two objects is 81 N acting to push them apart.

When a pendulum with a period of 2.00000 s in one location (g = 9.80 m/s2) is moved to a new location from one where the period is now 1.99863 s. what is the change in acceleration (in m/s2) due to gravity at its new location?

Answers

The period of a pendulum is given by:
[tex]T=2 \pi \sqrt{ \frac{L}{g} } [/tex]
where L is the pendulum length and g is the gravitational acceleration.

Initially, the period of the pendulum is T=2.00 s while the gravitational acceleration is [tex]g=9.80 m/s^2[/tex]. If we re-arrange the previous equation, we can find the pendulum length:
[tex]L=g \frac{T^2}{(2 \pi)^2}=(9.80 m/s^2) \frac{(2.00s)^2}{4 \pi^2}= 0.994 m[/tex]

Then the same pendulum is moved to another location, and its new period is
[tex]T=1.99863 s[/tex]. Again, by re-arranging the same equation, we can find the value of g (gravitational acceleration) at the new location:
[tex]g=L \frac{(2 \pi)^2}{T^2}=(0.994 m) \frac{4 \pi^2}{(1.99863 s)^2}=9.814 m/s^2 [/tex]

Two small objects each with a net charge of +q exert a force of magnitude f on each other: we replace one of the objects with another whose net charge is +4q: the original magnitude of the force on the +q charge was f; what is the magnitude of the force on the +q charge now?

Answers

The force between 2 charged objects is given by, F = kq1q2/d².
where k ⇒ constant
          d ⇒ distant between the 2 objects.
 
In this case, k and d are constants.
So, let k/d² = x
since q1=q2,
F = xq²
x = F/q²
After replacing q1  with 4q, the new force on +q will be:

F = xq.4q
    = Fq4q/q²
    = 4F

The new charge on +q is 4F.  

When a rocket is traveling toward a mountain at 100 m/s, the sound waves from this rocket's engine approach the mountain at speed v. if the rocket doubles its speed to 200 m/s, the sound waves from the engine will now approach the mountain at speed?

Answers

The sound will approach the mountain at the same speed, v, irrespective of the speed of the rocket. This is because sound will always travel at the same speed as long as properties of air remain the same.
Therefore, sound will approach the mountain at velocity v in both 100 m/s and 200 m/s of the rocket.

Answer:

The sound waves from the engine will approach the mountains at the same speed, no matter if the speed of the rocket is 100m/s or 200 m/s.

Explanation:

The sound wave is a property of the air, which means that the speed of the object producing sound does not matter to the sound of the waves, that is, they are always going to be the same.

So the sound waves from the engine will approach the mountains at the same speed, no matter if the speed of the rocket is 100m/s or 200 m/s.

The most common natural fiber found at a crime scene, and thus forensically insignificant (unless it is of a unique color)

Answers

i believe the answer is cotton
The answer is cotton.

Organ pipe a, with both ends open, has a fundamental frequency of 340 hz. the third harmonic of organ pipe b, with one end open, has the same frequency as the second harmonic of pipe
a. how long are (a) pipe a and (b) pipe b? (take the speed of sound to be 343 m/s.)

Answers

The fundamental frequency of the open pipe A
Length 'L₀' is, f₀ = U/2L₀ = 340 H₂
the speed of sound in air V=  343m/s
∴343/2L₀ = 340 → length L₀ = 343/2 ×340 = 0.5044 = 50.44
The third harmonic of closed pipe 'B' is 
F3₀ = 3V/4LC
The second harmonic of open pipe 'A'  is
f2₀ = 2V/2L₀
∴ 3V/4LC = 2V/2L →L₀ = 3L₀/4
⇒ The length of closed pipe B is 
Lc = 37.83cm

What happens when a person’s immune system is very weak?

a) The patient’s blood is unable to clot so he or she must take medication.

b) The patient is able to fight off more infections than normal.

c) The patient is unable to fight the infections a healthy person could resist.

d) The patient is unable to take antibiotics and must get a flu shot.

Answers

the correct answer is C) becuse without certain medicine they will dieeeee
Final answer:

When a person's immune system is very weak, their body may be unable to fight off pathogens and diseases that a healthy immune system can resist. This can lead to increased risk of illness and vulnerability to infection.

(Option C)

Explanation:

Immunodeficiency occurs when the immune system is not working properly, generally because one or more of its components are inactive. As a result, the immune system may be unable to fight off pathogens or cancers that a normal immune system would be able to resist. Immunodeficiency may occur for a variety of reasons.

The body's immune system would not be able to fight off pathogens like bacteria with fewer white blood cells. This can increase the risk of illness in HIV patients.

The person's immune system would not be able to distinguish self and non-self. This would make the person very vulnerable to infection.

Learn more about immune system here:

https://brainly.com/question/19843453

#SPJ2

A car has two horns, one emitting a frequency of 199 hz and the other emitting a frequency of 203 hz. what beat frequency do they produce?

Answers

Beat frequency, fb = |f2-f1|

That is, beat frequency is the absolute difference between two frequencies. Is is as a results of destructive and constructive inferences.

Therefore, in this case:

fb = 203 - 199 = 4 Hz

The beat frequency produced by two horns emitting frequencies of 199 Hz and 203 Hz is 4 Hz.

The question is regarding the production of beat frequency when two horns with different frequencies sound together. The two horns have frequencies of 199 Hz and 203 Hz, respectively.

To calculate the beat frequency, you subtract the smaller frequency from the larger frequency:

fbeat = |f1 - f2|

fbeat = |203 Hz - 199 Hz|

fbeat = 4 Hz

This means that the beat frequency produced by the two car horns is 4 Hz.

¿Cuál es la velocidad promedio de un hombre que camina 70m con una rapidez de 1m/s y luego corre 70m con una rapidez de 3m/s?

Answers

Hola!

Respuesta:

[tex]1,5 \frac{m}{s} [/tex]

Explicación:

Para calcular la velocidad promedio, necesitamos conocer dos cosas:

1: Distancia total recorrida
2: Tiempo total del recorrido

Del enunciado tenemos los siguientes datos:

Primer tramo:

Distancia recorrida : 70 m
Velocidad: [tex] \frac{1m}{s} [/tex]

Segundo tramo:

Distancia recorrida:70 m
Velocidad: [tex]\frac{3m}{s}[/tex]

Utilizando la siguiente formula:

[tex]X=Xo + V.t[/tex]

Donde:

X: Distancia final
Xo: Distancia inicial
V: Velocidad
T: Tiempo

Para este ejercicio, nos es dada la distancia recorrida, es decir  la diferencia entre la distancia final (X) y la distancia inicial (Xo), teniendo que:

[tex]X-Xo= V. t[/tex]

Sustituyendo los valores del primer tramo, tenemos:

[tex]70m= \frac{1m}{s} .t \\ t= \frac{70m}{ \frac{1m}{s \\ } } \\ t= 70s [/tex]

Sustutuyendo los valores del segundo tramo, tenemos:

[tex]70m= \frac{3m}{s} .t \\ t= \frac{70m}{ \frac{3m}{s \\ } } \\ t= 23,33 s[/tex]

Calculando ambos tiempos, tenemos un tiempo de recorrido total de:

[tex]Ttotal= [/tex] Tiempo en el tramo 1 + Tiempo en el tramo 2 [tex]= 93,33 s[/tex]

Para calcular la velocidad promedio, dividimos la distancia total del recorrido por el tiempo total recorrido. Esta viene dada por la siguiente formula:

[tex]Vprom= \frac{Distancia Total}{Tiempo Total} = \frac{140 m}{93,33s} = \frac{1,5m}{s} [/tex]

Que tengas un buen día!


Bats can detect small objects such as insects that are of a size on the order of a wavelength. if bats emit a chirp at a frequency of 69.3 khz and the speed of sound waves in air is 330 m/s, what is the smallest size insect they can detect? give your answer in mm (millimeters)

Answers

The smallest size of the insect that the bats can detect corresponds to the wavelength of the chirp they emit.

Their chirp has a frequency of
[tex]f=69.3 kHz=69.3 \cdot 10^3 Hz[/tex]
and the speed of the chirp is equal to the speed of sound in air:
[tex]v=330 m/s[/tex]
Therefore the wavelength of the chirp is
[tex]\lambda= \frac{v}{f}= \frac{330 m/s}{69.3 \cdot 10^3 Hz}=4.76 \cdot 10^{-3} m [/tex]
which corresponds to a size of 4.76 mm.

A certain part of the electromagnetic spectrum ranges from 200 nm to 400 nm. what is the highest frequency associated with this portion of the spectrum? (c = 3.00 × 108 m/s)

Answers

The lowest and highest wavelengths of this part of the electromagnetic spectrum are:
[tex]\lambda_1 = 200 nm=200 \cdot 10^{-9} m[/tex]
[tex]\lambda_2 = 400 nm=400 \cdot 10^{-9} m[/tex]

The frequency and the wavelenght of an electromagnetic wave are related by
[tex]f= \frac{c}{\lambda} [/tex]
where c is the speed of light and f the frequency. By using this equation, we can find the frequencies that corresponds to the lowest and highest wavelengths of this part of the spectrum:
[tex]f_1 = \frac{c}{\lambda_1}= \frac{3 \cdot 10^8 m/s}{200 \cdot 10^{-9} m}=1.5 \cdot 10^{15}Hz [/tex]
[tex]f_2 = \frac{c}{\lambda_2}= \frac{3 \cdot 10^8 m/s}{400 \cdot 10^{-9} m}=7.5 \cdot 10^{14}Hz [/tex]

So, the highest frequency associated with this part of the spectrum is the one corresponding to the lowest wavelength:
[tex]f_1 = 1.5 \cdot 10^{15}Hz[/tex]
Final answer:

The highest frequency associated with the portion of the electromagnetic spectrum ranging from 200 nm to 400 nm is 7.50 × 10^14 Hz.

Explanation:

The highest frequency associated with the portion of the electromagnetic spectrum ranging from 200 nm to 400 nm can be determined using the formula c = fλ, where c is the speed of light. In this case, the wavelength is given as 200 nm to 400 nm. Converting the wavelength to meters, we find that it corresponds to 2.00 × 10-7 m to 4.00 × 10-7 m. Using the formula, we can rearrange it to solve for the frequency, f = c/λ. Plugging in the values, we get the highest frequency as 7.50 × 1014 Hz.

Learn more about Electromagnetic Spectrum here:

https://brainly.com/question/23727978

#SPJ3

When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is measured to be 1.10 ev . part a what is the maximum kinetic energy of the photoelectrons when light of wavelength 295 nm falls on the same surface? emax =?

Answers

A general relationship between Kinetic Energy (KE) and wavelength (y) is that KE is inversely proportional to square of y. That is,

KE α 1/y^2 => KE = k/y^2 where k is a constant of proportionality.

For KE = 1.10 ev, and y = 400 nm;

k = KE*y^2 = 1.10*400 = 176,000 ev.nm^2

For y = 295 nm,

KE = k/y^2 = 176,000/295^2 = 2.02 ev.

Therefore, e max = 2.02 ev

In Figure 18.8 the grounding wire is removed first, followed by the rod, and the sphere is left with a positive charge. If the rod were removed first, followed by the grounding wire, would the sphere be left with a charge? Account for your answer.

Answers

In Figure 18.9, the ground wire is first removed, then the rod. This leaves a positive charge on the sphere. If you remove the rod first and then remove the ground wire, there will be no charge left on the sphere. When the rod is removed, the repulsive force caused by the presence of the rubber rod no longer exists. As the wire is still attached, free electrons enter the sphere from the ground until the sphere is neutral again.
Final answer:

If the charged rod is removed before the grounding wire, the sphere will not retain a net charge because any excess charge will flow back to ground. Only if the grounding wire is removed while the rod is still present does the sphere retain an excess charge.

Explanation:

If the grounding wire is removed after the charged rod is taken away, the sphere would be left with no net charge. This is because during the process of charging by induction, if the rod is removed first, any excess charge on the sphere would have the opportunity to redistribute evenly across its surface. Since the sphere was initially neutral and the grounding wire is still connected, the excess charge would flow to the ground, effectively bringing the sphere back to a neutral state.

On the other hand, as described in your references, if the grounding wire is removed first while the charged rod is still present, the sphere retains an excess of electrons. This happens because by breaking the ground connection while the sphere is still influenced by the nearby positive charge of the rod (which repels the electrons), the redistributed electrons are trapped on the sphere, thus leaving the sphere negatively charged. When the positive rod is finally removed, the sphere remains negatively charged because the extra electrons have no path to escape.

Which lists the amplitudes of sound waves from these sources in order from greatest to least?

busy roadway, kids whispering, average home

chainsaw, diesel truck, rustling leaves

kids whispering, vacuum cleaner, jet airplane

library, conversational speech, music from speaker

Answers

Answer:

The correct answer is option B which is a chainsaw, diesel truck, rustling leaves.

Explanation:The amplitude of the sound wave is the maximum displacement of the particles from their resting position.Higher the amplitude means high sound.So the sound of a chainsaw is high, so its amplitude will be great and after that the amplitude of diesel truck is high and rustling leaves have the lowest amplitude.

Answer:

B

Explanation:

Edge :)

Which statement is true of equinoxes? They occur in June and December. Days and nights are equal in length everywhere. The length of daylight in the Arctic and Antarctic circles is 24 hours. The sun’s vertical rays are striking either 23.5°S or 23.5°N.

Answers

Days and nights are equal in length everywhere.(gradpoint)

Answer: Days and nights are equal in length everywhere.

Explanation:

Equinox means equal night. There are two equinox - vernal equinox and autumnal equinox. When the sun crosses celestial equator, the sun rays fall directly over equator at noon. Thus, there is equal length of day and night in the two hemisphere. It occurs around March 22 and September 22.

Other Questions
What is a layer of rock that can bend and produce A downward fold? Caiaphas wanted to make Jesus a scapegoat. TrueFalse An enzyme is a protein that acts as a catalyst in a chemical reaction that takes place in a living thing true or false What organic molecules must be included in the soil for earthworm nutrition? Mesa-and-scarp topography is most closely associated with ________ Question 6 if a gas pressure gauge reads 32.0 psi, what is the pressure in inches of mercury? 165 in. hg 15.7 in. hg 65.1 in. hg 32.0 in. hg 6.19 in. hg On most ocean shorelines, the water rises slowly and covers the land twice a day. Then it slowly falls back. What is this movement called? If i have stress fracture of my radius bone what part of my body i have broken Before the age of feudalism, what was the leader of japan called? buddha emperor shogun mongol James is looking at a parallel circuit plan for lighting. There is a battery providing the power. There are switches labeled A,B,C,D that can be turned on to close the circuit. Which switch does not have to be on for light 3 to function? Start Word and create a new document. Change the style of the blank paragraph to No Spacing. Type the text shown below, pressing Enter to place one blank line where indicated, four blank lines in the closing, and four more blank lines before the word Enclosures, and beginning new paragraphs where indicated. Communication is the process of sending and receiving verbal messages, as opposed to nonverbal messages. Please select the best answer from the choices provided. T F What is the first step in solving ln(x 1) = ln6 lnx for x? Rem sleep is highly correlated with which of the following BRAINIEST TO FIRST ONE TO ANSWER ASAP AND RIGHT REMEMBER ASAP 57 POINTS!!!!!!!!!!!!!!!!!!!!!!!A person's thyroid is not functioning properly. What symptoms is the person likely to show? Drag and drop the correct expression to complete the derivation of the formula. PLEASE answer all of them! There is 3 more! A gas is compressed from 600 cm3 to 200cm3 at a constant pressure of 400 kpa. at the same time, 100 j of heat energy is transferred out of the gas. part a what is the change in thermal energy of the gas during this process? what alabama political alliances led alabama to secede from the union? Both Jonathan and John Seward had been eager to put past horrors behind them, but now they both begin writing in their diaries again. Why do you think they both feel the need to resume this habit?