The Lewis structure for CO2 has a central The Lewis structure for C O 2 has a central blank atom attached to blank atoms.
1. atom attached to The Lewis structure for C O 2 has a central blank atom attached to blank atoms. atoms.
2. These atoms are held together by These atoms are held together by blank bonds. bonds.
3. Carbon dioxide has a Carbon dioxide has a blank electron geometry. electron geometry.
4. The carbon atom is The carbon atom is blank hybridized. hybridized.
5. Carbon dioxide has two Carbon dioxide has two blankπ bonds and two blankσ bonds.π bonds and two Carbon dioxide has two blankπ bonds and two blankσ bonds.σ bonds.

Answers

Answer 1

Answer:

See the explanation

Explanation:

1) The Lewis structure for  [tex]CO_2[/tex] has a central Carbon atom attached to Oxygen atoms.

In the [tex]CO_2[/tex]  we will have a structure:  O=C=O the central atom "carbon" we will have 2 sigma bonds and 2 pi bonds, therefore, we have an Sp hybridization. For O we have 1 pi and 1 sigma bond, therefore, we have an Sp2 hybridization.

2) These atoms are held together by double bonds.

Again in the structure of [tex]CO_2[/tex]: O=C=O we only have double bonds.

3. Carbon dioxide has a Carbon dioxide has a Linear electron geometry.

Due to the double bonds we have to have a linear structure because in this geometry the atoms will be further apart from each other.

4. The carbon atom is Sp hybridized.

We will have for carbon 2 pi bonds, so we will have an Sp hybridization.

5. Carbon dioxide has two Carbon dioxide has two C(p) - O(p) π bonds and two C(sp) - O(Sp2) σ bonds.

(See figures)

Figure 1: Carbon hybridization

Figure 2: Oxygen hybridization

The Lewis Structure For CO2 Has A Central The Lewis Structure For C O 2 Has A Central Blank Atom Attached
The Lewis Structure For CO2 Has A Central The Lewis Structure For C O 2 Has A Central Blank Atom Attached
Answer 2
Final answer:

The Lewis structure of CO₂ has a central carbon atom with double bonds to two oxygen atoms, resulting in a linear geometry and sp hybridization. Each double bond contains one pi bond and one sigma bond.

Explanation:

The Lewis structure for CO₂ features a central carbon atom attached to two oxygen atoms. These atoms are held together by double bonds. The electron geometry of carbon dioxide is linear, which is determined by the Valence Shell Electron Pair Repulsion (VSEPR) theory.

The carbon atom in CO₂ is sp hybridized. In a molecule of carbon dioxide, there are two π (pi) bonds and two σ (sigma) bonds. Each double bond consists of one σ bond and one π bond, contributing to the overall structure and stability of the molecule.

Learn more about Lewis Structure of CO₂ here:

https://brainly.com/question/34665614

#SPJ3


Related Questions

A chemistry student needs to standardize a fresh solution of sodium hydroxide. She carefully weighs out of oxalic acid , a diprotic acid that can be purchased inexpensively in high purity, and dissolves it in of distilled water. The student then titrates the oxalic acid solution with her sodium hydroxide solution. When the titration reaches the equivalence point, the student finds she has used of sodium hydroxide solution.Calculate the molarity of the student's sodium hydroxide solution. Be sure your answer has the correct number of significant digits.

Answers

Answer:

See explanation below to full answer

Explanation:

First of all, you are not providing the amounts of acid and hydroxide here, to do the calculations. However, in order to help you, I will use these values that are taken from a similar exercise. Then, replace your data with this procedure and you should get the correct answer.

For this part, I will say that the student weights about 210 mg of oxalic acid, (H2C2O4) and the volume of NaOH used to reach equivalent point was 150 mL in a beaker of 250 mL.

Now the equivalence point is the point where both moles of acid and hydroxide are the same. In other words:

nA = nB

The reaction that it's taking place is the following:

2NaOH + H2C2O4 ----------> Na2C2O4 + 2H2O

This means that 2 moles of NaOH reacts with 1 mole of H2C2O4, therefore the expression in (1) corrected is:

nB = 2 nA

So, we need to calculate first the moles of the acid. To do that we need the molar mass of the acid (the reported is 90.03 g/mol)

nA = 0.210 / 90.03 = 0.0023 moles

We have the moles of acid used, so the moles of the hydroxide is:

nB = 2 * 0.0023 = 0.0046 moles

We have the volume used of hydroxide, which is 150 mL, so finally the concentration is:

MB = 0.0046 / 0.150 = 0.031 M

Now, replace the actual values that you have in here, and you should get an accurate result.

An experiment is performed in which different masses and shapes are dropped from different heights and the times it takes for each to reach the ground are recorded. Which of the following is the dependent variable? i.e. which variable is the RESULT of another variable?

a. time
b. mass
c. shape
d. height

Answers

Answer:

C

Explanation:

The answer is shape.

Basically, quantities can either be fundamental or derived. While fundamental are the basic quantities, derived are obtained from combining fundamentals.

To get a shape, we would need the combination of lengths. This makes the shape a derived quantity

The answer is C.) Shape

Which of the following shows the correct units for acceleration?


kilometers/second km/sec

meters/second m/sec

seconds/meter squared sec/m2

meters/second squared m/s2

Answers

Answer:

The correct answer is meters/second squared m/s2

Explanation:

Acceleration corresponds to a magnitude of vector type, is the relationship between a delta velocity and a delta time. The speed has units of m / second, km / second, km / minute for example, and time in seconds, minutes, etc.

Final answer:

Acceleration is measured in meters per second squared (m/s2), indicating the amount an object's speed changes every second.

Explanation:

The correct unit for acceleration is meters/second squared (m/s2). Acceleration is the rate at which an object changes its velocity. This means it's measuring how quickly an object's speed or direction of motion changes in a given period of time. In physics, the primary units are typically expressed using meters for distance, seconds for time; thus, it's in terms of how much the speed (meters / second) changes every second, leading us to meters/second squared.

Learn more about Acceleration here:

https://brainly.com/question/11789833

#SPJ6

The value of ΔG°′ for the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P) is +1.67 kJ/mol. If the concentration of glucose-6-phosphate at equilibrium is 2.05 mM, what is the concentration of fructose-6-phosphate? Assume a temperature of 25.0°C.

Answers

Answer:

1.04 mM

Explanation:

The conversion reaction given is reversible, and for reversible reactions, the free-energy can be calculated by:

ΔG = -RTlnK

Where R is the constant of the gases(8.3145 J/mol.K), T is the temperature( 25°C + 273 = 298 K), and K is the equilibrium constant.

K = [F6P]/[glucose-6-phosphate]

Because T = 25ºC, ΔG = ΔG°' = 1670 J/mol

1670 = -8.3145*298*ln[F6P]/2.05

-2477.721*ln[F6P]/2.05 = 1670

ln[F6P]/2.05 = -0.6740

[F6P]/2.05 = 0.50966

[F6P] = 1.04 mM

Impure samples have melting point ranges that are both Blank 1. Fill in the blank, read surrounding text. and Blank 2. Fill in the blank, read surrounding text. compared to a pure sample.

Answers

Answer:

1 Lower

2 wider

Explanation:

It is lower and wider in range because impurities affects the crystalline lattice of sample structure theory causing a deviation from real melting point of pure sample.

Final answer:

Impure samples display a wider and lower melting point range compared to a pure sample due to melting point depression caused by impurities.

Explanation:

Impure samples have melting point ranges that are both wider and lower compared to a pure sample. This is due to the presence of impurities which cause a phenomenon known as melting point depression. When assessing the purity of a substance, melting point determination is crucial as a pure sample typically has a very narrow melting point range of 1 - 2 0C. In contrast, an impure sample will start melting at a lower temperature and continue to melt over a broader range, with the extent of this range depending on the amount and type of impurity present.

For example, if we examine the melting points of samples of benzoic acid contaminated with acetanilide, as the quantity of impurity increases, the onset of melting begins at a progressively lower temperature, and the breadth of the melting range expands. This makes the melting point range a valuable tool for a rough assessment of a sample's purity.

A 2.21-kg piece of copper metal is heated from 20.5°C to 126.4°C. Calculate the heat absorbed (in kilojoules) by the metal.

Answers

Answer:

The heat absorbed by the metal is 91.27 kJ.

Explanation:

This is a sort of excersise about calorimetry which formula is:

Q = m . C . ΔT

where Q = heat

where m = mass

where C  = Specific heat

ΔT = T° final - T° initial

You can find specific heat in tables, if you don't know it. It is generally given in the statement unless, you have to find it out.

Specific heat for copper is 0.390 kJ/kg.°K

Notice that units in specific heat are in °K, but it is the same K or C.

The difference doesn't change the sense of units. We can use °C.

Q = 2.21 kg . 0.390 kJ/kg.°K (126.4°C - 20.5°C)

Q = 91.27 kJ

Final answer:

The copper metal absorbed approximately 898 kJ of heat when its temperature was increased from 20.5°C to 126.4°C.

Explanation:

To calculate the heat absorbed by a substance when its temperature changes, we can use the formula:

Q = mcΔT

where ΔT is the temperature change, m is the substance's mass, c is its specific heat capacity, and Q is the heat absorbed.

The specific heat capacity of copper (c) is approximately 0.385 J/g°C. We need to use the mass (m) in grams and the temperature change (ΔT) in Celsius.

First, we convert the mass from kg to g:

2.21 kg = 2210 g

Then calculate the temperature change (ΔT):

ΔT = Final temperature - Initial temperature

ΔT = 126.4°C - 20.5°C = 105.9°C

Now, we can calculate Q:

Q = (2210 g)(0.385 J/g°C)(105.9°C)

Q = 897993.35 J

Q = 897.99335 kJ

Q ≈ 898 kJ (rounded to three significant figures)

So, the copper metal absorbed approximately 898 kJ of heat when its temperature was increased from 20.5°C to 126.4°C.

If a system has 2.00 × 10 2 kcal 2.00×102 kcal of work done to it, and releases 5.00 × 10 2 kJ 5.00×102 kJ of heat into its surroundings, what is the change in internal energy of the system?

Answers

Answer:

336.8 kilo Joules is the change in internal energy of the system.

Explanation:

The equation for first law of thermodynamics follows:

[tex]\Delta U=Q+W[/tex]

where,

Q = heat added to the system

ΔU = Change in internal energy

W = work done

We have :

Amount of heat given out by the system will be negatuive as heat relased by the system = Q

Q= [tex]-5.00\times 10^2 kJ[/tex]

Work done on the system will positive as work is done on the system:

w = [tex]2.00\times 10^2 kCal=836.8 kJ[/tex]

[tex]\Delta U=-5.00\times 10^2 kJ+836.8 kJ=336.8 kJ[/tex]

336.8 kilo Joules is the change in internal energy of the system.

Final answer:

The net change in internal energy of the system is calculated using the first law of thermodynamics and is found to be 3.368 × 105 Joules.

Explanation:

The change in internal energy (ΔU) of a system can be calculated using the first law of thermodynamics, which states that the change in internal energy is equal to the heat (Q) added to the system minus the work (W) done by the system on its surroundings: ΔU = Q - W.

In your question, work is done on the system (2.00 × 102 kcal), which equates to 2.00 × 105 cal or 8.368 × 105 Joules (since 1 kcal = 4.184 kJ or 4184 Joules). Heat is released by the system (5.00 × 102 kJ), which is already in Joules. Since work is done on the system, it's positive, but heat released by the system is negative for the internal energy calculation. So, ΔU = Q - W = -5.00 × 102 kJ + 8.368 × 105 J.

Here's the calculation:

Q = -5.00 × 102 kJ = -5.00 × 105 J (since 1 kJ = 1000 J)W = +8.368 × 105 JΔU = -5.00 × 105 J + 8.368 × 105 JΔU = 3.368 × 105 J

Therefore, the net change in internal energy of the system is 3.368 × 105 Joules.

Le Chatelier's principle describes the effect of changing conditions on a chemical reaction that was previously at equilibrium. Choose the statement that correctly describes the possible effects.A. Adding more carbon dioxide to a combustion reaction will increase the rate of the reaction.B.When oxygen is removed from a combustion reaction, the reaction slows down or stops.C.When water is added to a combustion reaction, it will increase the rate of the reaction.

Answers

Answer:

.B.When oxygen is removed from a combustion reaction, the reaction slows down or stops.

Explanation:

Le Chatelier's principle -

The direction of the reaction by changing the concentration can be determined by Le Chatelier's principle,

It states that ,

When a reaction is at equilibrium , Changing the concentration , pressure,  temperature disturbs the equilibrium , and the reaction again tries to attain equilibrium by counteracting the change.

The combustion reaction of carbon dioxide is as follows -

C + O₂ → CO₂

Hence ,

Removing O₂ from the system , i.e. decreasing the concentration of O₂ ,  according to Le Chatelier , the reaction will move in backward direction , to increase the amount of reduced O₂ .

Hence, reaction will go in backward direction.

The statement that correctly describes the possible effects of changing conditions on a chemical reaction is (B) When oxygen is removed from a combustion reaction, the reaction slows down or stops.

Le Chatelier's  principle states that when a system at equilibrium experiences a change in concentration, temperature, or pressure, the equilibrium will shift to counteract the imposed change and restore a new equilibrium. If we consider a combustion reaction at equilibrium, we can apply Le Chatelier's principle to predict the effects of changing conditions:

Adding more carbon dioxide to a combustion reaction does not necessarily increase the rate of the reaction; instead, the equilibrium might adjust to offset the change.Removing oxygen from a combustion reaction generally causes the reaction to slow down or stop because the system will try to counteract the loss of a reactant by reducing the rate of the forward reaction.Adding water to a combustion reaction is unlikely to increase the rate of the reaction, and it might not be relevant unless water is a reactant or product in the equilibrium.

Overall, according to Le Chatelier's principle, the system will adjust to a change by shifting the equilibrium position to either increase the concentration of reactants or products, depending on the direction of the change.

Ask Your Teacher Calculate the freezing-point depression and osmotic pressure in torr at 25°C for an aqueous solution of 3.2 g/L of a protein (molar mass = 9.0 ✕ 104 g/mol) if the density of the solution is 1.0 g/cm3

Answers

Answer:

Osmotic pressure(π) = 0.661 Torr.

Depression in freezing point =  6.64 * 10⁻⁵ °C.

Explanation:

To calculate depression in freezing point and osmotic pressure, let's start by calculating Molarity of the solution.

Also, protein undergoes no dissociation or association when in solution.

Molarity = [tex]\frac{Moles of solute}{liters of solution}[/tex]

Molarity = [tex]\frac{3.2 g/L}{9.0 * 10^{4}g/mol }[/tex]

Molarity= 3.56 * 10⁻⁵ mol/L

Temperature = 25 +273 = 298 K

Osmotic pressure(π) = M R T

= (3.56 * 10⁻⁵ mol/L)* (0.08206 L atm/ mol K) * (298 K)

= 87.055 *  10⁻⁵ atm

But 1 atm= 760 Torr

So, Osmotic pressure(π) = (87.055 *  10⁻⁵ atm) * ( 760 torr/ 1atm)

= 0.661 Torr.

The depression in freezing point Δ[tex]T_{f} =K_{f} * m[/tex]

[tex]K_{f}[/tex]= molal freezing point depression constant of the solvent (1.86 °C/m for water).

m= molality or molal concentration of the solution.

m= moles of solute in 1kg of solvent.

Density of solution = [tex]1.0 \frac{g}{cm^{3} }[/tex]

Mass of 1L(1000 cm³) of this solution is= density * volume of solution

= 1000g

Molarity means 3.56 * 10⁻⁵ mol of protein in 1L of solution

Mass of protein=  3.56 * 10⁻⁵ * 9.0 * 10⁴ = 3.2 g of protein

1000g of solution- 3.2 g of protein = 996.8 g of solvent

Molality =  [tex]\frac{3.56 * 10⁻⁵ mol}{0.9968 kg}[/tex]

=3.57 *  10⁻⁵ m

depression in freezing point Δ[tex]T_{f} =K_{f} * m[/tex]

= 1.86 * 3.57 *  10⁻⁵ = 6.64 * 10⁻⁵ °C.

Or a gas with a volum of 475ml at a temperature of -25c is heated to 275c. What is the new volume of the gas if the pressure and number of moles are held constant

Answers

Answer:

The new volume of the gas is 1.04L

Explanation:

You have to apply Charles's Law to solve this:

In two different situations, when you have a gas with the same quantity and  pressure, relation between volume and T° must be the same

Volume / Temperature = Constant

Temperature in K

So;

475 mL/248K = Vol₂ / 548K

(475 mL/248K) 548K = Vol₂

1049 mL = Vol₂

A large sport utility vehicle has a mass of 2700 kg.Calculate the mass of CO2 emitted into the atmosphere upon accelerating the SUV from 0.0 mph to 67.0 mph. Assume that the required energy comes from the combustion of octane with 30\% efficiency. (Hint: Use KE=1/2mv^2 to calculate the kinetic energy required for the acceleration.)

Answers

Answer:

[tex]m_{CO2}=260.7 g CO2[/tex]

Explanation:

First of all we need to calculate the energy required:

[tex]KE= 0.5*m*v^2[/tex]

where:

[tex]m=2700kg[/tex]

[tex]v=67 mph=29.95 m/s[/tex]

[tex]KE= 0.5*2700kg*(29.95)^2[/tex]

[tex]KE= 1210953 J=1210.953 kJ[/tex]

Octane's combustion enthalpy: [tex]\Delta H_{comb}=- 5450 kJ/mol[/tex]

The reaction:

[tex]C_8H_{18} + 25/2 O_2 longrightarrow 8 CO_2 +9 H_O[/tex]

Mass of CO2:

[tex]m_{CO2}=\frac{1210.953 kJ}{5450mol}*\frac{1}{0.3}*\frac{8 mol CO2}{1 mol}*\frac{44 g CO2}{mol CO2}[/tex]

[tex]m_{CO2}=260.7 g CO2[/tex]

Lithium and fluorine undergo ionic bonding. Using the noble gas electron configurations for each (below), please explain the process of bonding step by step, using proper grammar and mechanics. Noble Gas Electron Configurations:________ Lithium:_______ [He] 2s1 Fluorine:______ [He] 2s22p5

Answers

Answer:

Lithium loses one electron to fluorine and forms ionic bond, having formula [tex]LiF[/tex].

Explanation:

Lithium is the element of the group 1 and period 2 which means that the valence electronic configuration is [tex][He]2s^1[/tex].

Fluorine is the element of the group 17 and period 2 which means that the valence electronic configuration is [tex][He]2s^22p^5[/tex].

Thus, lithium loses 1 electron and become positively charged. Fluorine on the other hand accepts this electron and become negatively charged. This is done in order that the octet of the atoms are complete.  These both ions then form ionic bond as their will be electrostatic interaction between the two oppositely charged ions.

Thus, the formula of calcium chloride is [tex]LiF[/tex].

Final answer:

Ionic bonding between Lithium and Fluorine involves transferring 1 electron from Lithium to Fluorine, resulting in Lithium becoming a positive ion and Fluorine becoming a negative ion. This creates an electrostatic force that forms the bond. Both elements reach a stable electron configuration resembling those of noble gases.

Explanation:

The process of ionic bonding between Lithium (Li) and Fluorine (F) involves the transfer of electrons. In the noble gas configuration, Lithium has 1 electron in its outer shell and Fluorine has 7. For both elements to reach a stable state (similar to that of noble gases), Lithium needs to lose 1 electron and Fluorine needs to gain 1.

When these elements come together, Lithium donates its 1 electron to Fluorine. Now, Lithium has no electrons in its outer shell and is left with the inner shell that resembles the electron configuration of Helium (He), a noble gas. Fluorine, on receiving the electron from Lithium, now has 8 electrons in its outer shell and resembles the electron configuration of Neon (Ne), another noble gas. So, both have achieved a stable state.

On losing 1 electron, Lithium becomes a positively charged ion (Li+) and Fluorine, on gaining 1 electron, becomes negatively charged (F-). This creates an electrostatic force between the two ions and they stick together, resulting in an ionic bond.

Learn more about Ionic Bonding here:

https://brainly.com/question/18297125

#SPJ6

Aqueous humor forms during capillary filtration in the __________?

Answers

Answer:

Ciliary body.

Explanation:

Ciliary body: It is the known for the part of the eye that includes the ciliary muscle, which helps in the control the ciliary epithelium and lens shape, which are helping in the production of aqueous humor.

Through active secretion mechanism helping in to produce eighty percent of aqueous humor, and through the plasma ultra-filtration mechanism twenty percent of aqueous humor is produced.

Ciliary body is the part of the layer which helps to deliver the nutrients, and oxygen to the eye tissues, and this layer is known as uvea.

Final answer:

The aqueous humor, a watery fluid in the anterior cavity of the eye, forms during capillary filtration in the ciliary body.

Explanation:

The aqueous humor is a watery fluid that fills the anterior cavity of the eye, which includes the cornea, iris, ciliary body, and lens. It is produced during a process called capillary filtration.

Capillary filtration occurs when fluid moves from an area of high pressure to an area of lower pressure on the other side of the capillary wall. In the eye, this process takes place in the ciliary body, a part of the eye that has a rich capillary network, and results in the formation of aqueous humor.

The production of aqueous humor is essential for maintaining intraocular pressure and providing nutrients to the cornea and lens, which do not have their own blood supply.

Learn more about Aqueous Humor here:

https://brainly.com/question/34762749

#SPJ12

Which of the following reactions is the least energetic? Question 18 options: ATP + H2O → ADP + Pi ATP + H2O → AMP + PPi AMP + H2O → Adenosine + Pi ADP + H2O → AMP + Pi All give off the same amount of energy.

Answers

Answer:

The correct answer is AMP+H2O→ Adenosine + pi

Explanation:

The above reaction is least energetic because there is no phosphoanhydride bond present with adenosine mono phosphate.Phospho anhydride bond is an energy rich bond.

As a result hydrolysis of AMP generates very little amount of energy in comparison to the hydrolysis of ATP and ADP.

   

Fe(s) + CuSO4(aq) ⇒ Cu(s) + FeSO4(aq)

Which reactant is a substance that is dissolved in solution?

Answers

Answer:

The answer to your question is CuSO₄

Explanation:

To answer your question just remember the following information

- A chemical reaction is divided into sections

 reactants and products

 reactants on the left side of the reaction

products on the right side of the reaction

- All the symbols have a meaning

 (s) means that that compound is in solid phase

 (aq) means that that compound is dissolved in solution.

Then, the answer is CuSO₄

An "empty" container is not really empty if it contains air. How may moles of nitrogen are in an "empty" two-liter cola bottle at atmospheric pressure and room temperature (25∘C)? Assume ideal behavior.What is the partial pressure of oxygen in air at atmospheric pressure (1 atm)? Assume ideal behavior

Answers

Answer:

1. 0.0637 moles of nitrogen.

2. The partial pressure of oxygen is 0.21 atm.  

Explanation:

1. If we assume ideal behaviour, we can use the Law of ideal gases to find the moles of nitrogen, considering that air composition is mainly nitrogen (78%), oxygen (21%) and argon (1%):  

[tex]V_{N_2}=V_{T}\times 0.78=2L \times 0.78 =1.56 L\\PV=nRT\\n_{N_2}=\frac{PV}{RT}=\frac{1 atm\times 1.56 L}{0.0821\frac{atmL}{molK}\times 298 K}\\n_{N_2}= 0.0637 mol[/tex]

2. Now, in order to find he partial pressure of oxygen we need to find the total moles of air, and then the moles of oxygen. Then, we use these results to determine the molar fraction of oxygen, to multiply it with total pressure and get the partial pressure of oxygen as follows:

[tex]n_{total}=\frac{1 atm \times 2L}{0.0821 \frac{atmL}{molK}298K}=0.0817 mol[/tex]

[tex]V_{O_2}=2L \times 0.21 = 0.42 L\\n_{O_2}=\frac {1atm \times 0.42 L}{0.0821 \frac{atm L}{mol K}298 K}=0.0172 mol\\X_{O_2}=\frac{n_{O_2}}{n_{total}}=\frac{0.0172 mol}{0.0817 mol}= 0.21 [/tex]

[tex]P_{O_2}=X_{O_2} \times P = 1 atm \times 0.21 = 0.21 atm[/tex]

As you see, the molar fraction and volume fraction are the same because of the assumption of ideal behaviour.  

Final answer:

Using the ideal gas law, we can determine the moles of nitrogen in an 'empty' container and calculate the partial pressure of oxygen in air at atmospheric pressure. The moles of nitrogen is 78% of the total moles of air in the container. The partial pressure of oxygen is 21% of the atmospheric pressure.

Explanation:

To calculate the number of moles of nitrogen in a two-liter container at atmospheric pressure and room temperature, we can use the ideal gas law PV = nRT. Given room temperature 25°C (which is 298.15 K), a volume of 2.00 liters (2.00 x 10-3 m3), and atmospheric pressure (1 atm or 101.325 kPa), we can solve for n, the number of moles of nitrogen gas (N2).

The air is approximately 78% nitrogen by moles. Therefore, to find the moles of nitrogen, we first calculate the moles of air using the ideal gas law and then multiply this by 0.78.

For the partial pressure of oxygen, we acknowledge that air is around 21% oxygen by moles. Thus, the partial pressure of oxygen would be 0.21 times the total atmospheric pressure, which results in a partial pressure of 0.21 atm.

A 0.04328 g sample of gas occupies 10.0-mL at 294.0 K and 1.10 atm. Upon further analysis, the compound is found to be 25.305% C and 74.695% Cl. What is the molecular formula of the compound?
Draw the Lewis structure of the compound. Identify the geometry around each carbon atom.

Answers

Final answer:

The molecular formula of the gas compound given is approximately CCl3. The geometry surrounding each carbon atom would be trigonal planar with each carbon being surrounded by three chlorine atoms. This can be determined using the given mass, ideal gas laws, and the percent composition of the constituents.

Explanation:

The data given can be used alongside the Ideal Gas Law (PV=nRT) to find the molar mass of the gas. This molar mass, along with the percent composition of carbon (C) and chlorine (Cl), can be used to deduce the molecular formula of the compound.

The molar mass of chlorine is around 35.45 g/mol and for carbon, it's approximately 12.01 g/mol. With 25.305% C and 74.695%, the molecular formula becomes approximately CCl3, such that each carbon atom in the structure is surrounded by 3 chlorine atoms.

This geometry surrounding the carbon atom is trigonal planar based on VESPR theory. The Lewis structure would illustrate this with a carbon in the center surrounded evenly by three chlorine atoms.

Learn more about Molecular Formula here:

https://brainly.com/question/28647690

#SPJ3

Which substance is the limiting reactant when 2.0 g of sulfur reacts with 3.0 g of oxygen and 4.0 g of sodium hydroxide according to the following chemical equation: [tex]2S(s) + 3O_2(g) + 4NaOH(aq) \rightarrow 2Na_2SO_4(aq) + 2H_2O(l)[/tex]a. O₂(g)b. NaOH(aq)c. S(s)d. None of these substances is the limiting reactant.

Answers

Answer:

The limiting reactant is NaOH (option B)

Explanation:

2S(s)  +  3O₂(g)  +  4NaOH(aq)   →   2Na₂SO₄(aq)  +  2H₂O(l)

The reaction is ballanced. OK

We need to know how many moles do we have from each compound.

Mass / Molar weight = Mol

Molar weight S = 32 g/m

Molar weight O₂ = 32 g/m

Molar weight NaOH = 40 g/m

Mol S: 2g/ 32g/m = 0.0625 mol

Mol O₂: 3g / 32 g/m = 0.09375 mol

Mol NaOH: 4g/ 40g/m = 0.1 mol

Now, we can play with the reactants. The base is: 2 moles of S, react with 3 mol of O₂ and 4 moles of hydroxide to make 2 moles of sulfate and 2 moles of water. Pay attention to the rules of three.

2 moles of S __ react with __ 3 moles of O₂ __ and __ 4 moles of NaOH

0.0625 moles S __________ 0.09375 moles O₂ ___ 0.125 moles NaOH

The limiting reactant is the NaOH. I need to use 0.125 moles and I only have 0.1 moles.

Let's do the same with O₂

3 moles of O₂ __ react with __ 2 moles of S __ and __ 4 moles of NaOH

0.09375 moles of O₂ _______ 0.0625 mol of S _____ 0.125 moles NaOH

About one hundred thousand years ago, very fluid lava started erupting slowly and gently from a place near a plate boundary. What best describes the slope of the mountain that resulted from such a phenomenon?

Answers

Answer:

Steep slope with high mountain, as these are formed by a composite volcano

Explanation:

Answer:

Steep slope with high mountain, as these are formed by a composite volcano

Explanation:

The heat of vaporization of water at 100°c is 40.66 kj/mol. Calculate the quantity of heat that is absorbed/released when 5.00 g of steam condenses to liquid water at 100°c.

Answers

Answer : The quantity of heat released is -11.30 kJ

Explanation :

First we have to calculate the number of moles of water.

[tex]\text{Moles of water}=\frac{\text{Mass of water}}{\text{Molar mass of water}}[/tex]

Molar mass of water = 18 g/mole

[tex]\text{Moles of water}=\frac{5.00g}{18g/mole}=0.278mole[/tex]

Now we have to calculate the amount of heat released.

[tex]\Delta H=-\frac{q}{n}[/tex]

where,

[tex]\Delta H[/tex] = heat of vaporization = 40.66 kJ/mol

q = heat released = ?

n = number of moles of water = 0.278 mole

[tex]40.66kJ/mol=-\frac{q}{0.278mol}[/tex]

[tex]q=-11.30kJ[/tex]

In vaporization process, the amount of heat is absorbed but in the process of condensation the amount of heat is released.

Therefore, the quantity of heat released is -11.30 kJ

Final answer:

To calculate the quantity of heat absorbed/released when 5.00 g of steam condenses to liquid water at 100°C, use the equation Q = mL. Convert the mass of steam to moles, calculate the heat absorbed or released. Substitute the values and calculate the heat absorbed/released.

Explanation:

To calculate the quantity of heat that is absorbed/released when 5.00 g of steam condenses to liquid water at 100°C, we can use the equation Q = mL, where Q is the heat absorbed or released, m is the mass of the substance, and L is the latent heat of vaporization. First, we need to convert the mass of steam to moles using the molar mass of water. Then, we can calculate the heat absorbed or released using the given latent heat of vaporization.

First, calculate the moles of water vapor:

moles = (mass of water vapor) / (molar mass of water)

Next, calculate the heat absorbed or released using the formula:

Q = (moles of water vapor) * (latent heat of vaporization)

Plugging in the given values, we get:

Q = (5.00 g / (molar mass of water)) * (latent heat of vaporization)

Finally, calculate the molar mass of water using the atomic masses of hydrogen and oxygen:

molar mass of water = (2 * atomic mass of hydrogen) + atomic mass of oxygen

Substitute the molar mass of water and the given latent heat of vaporization into the equation, and calculate the value of Q to find the quantity of heat absorbed/released.

Learn more about latent heat of vaporization here:

https://brainly.com/question/35904400

#SPJ12

Do a graphical analysis of data provided from an example experiment.
My hypothesis was that if the ice is heated to 3 degrees Celsius or above it will fully melt into water. If the water continues to be heated and reaches 100 degrees Celsius or above, then it will boil. My hypothesis was partially correct. The water fully melted at 1 degree Celsius and not at 3 degrees as I had predicted but did in fact boil at 100 degrees Celsius.

Answers

Answer:

its B

Explanation:

What sublevels are filling across the transition elements

Answers

Final answer:

The transition elements fill d sublevels, coming after the s sublevel of the same principal energy level. Lanthanides begin filling the 4f sublevel after the 6s, positioned two principal energy levels behind. Many transition element compounds display bright colors from d electron transitions.

Explanation:

The sublevels that are filling across the transition elements are primarily the d sublevels. The electron configurations of these elements have their outermost s sublevel either completely filled or missing one electron. However, the defining characteristic of transition elements is the filling of the inner d sublevel, which typically occurs after the s sublevel of the same principal energy level has been filled. When discussing the f-block elements, specifically the lanthanides, these elements begin filling their 4f sublevels after the 6s sublevel. This is due to the behaviour of electron filling, where the f sublevels are two principal energy levels behind the current one being filled.

Many transition element compounds are known for their brightly colored appearances as a result of inner-level d electron transitions. Unlike the transition elements, the lanthanides are not grouped together in the periodic table and instead are inserted in a separate row, reflecting their unique electron configurations and properties.

A 23.0 g piece of metal at 99.0 ∘C is placed in a calorimeter containing 53.2 g of water at 24.0 ∘C. The final temperature of the mixture is 26.1 ∘C. What is the specific heat capacity of the metal? Assume no energy is lost to the surroundings.

Answers

Answer: The specific heat of the metal is 0.277 J/g.ºC.

Explanation:

The specific heat (s) of a substance is the amount of heat required to raise the temperature of one gram of the substance by one degree Celsius. Its units are J/g.ºC.

If we know the specific heat and the amount of a substance, then the change in  the sample’s temperature (ΔT) will tell us the amount of heat (q) that has been absorbed  or released in a particular process. The equation for calculating the heat change is  given by:

[tex]: q=m.s.ΔT[/tex]      

Where ΔT is the temperature change: [tex]ΔT= tfinal - tinitial[/tex], m the mass and s the specific heat.

If no energy is lost to the sorroundings, then all the heat lost by the metal will be absorbed by the water. Therefore, the heat change of the system (qsystem) must be zero and we can write:

[tex]qsystem = qwater + qmetal[/tex]

[tex]qwater = -qmetal[/tex]

Replacing each term with the equation for calculating heat change:

[tex]mw.sw.ΔTw = -[mm.sm.ΔTm ][/tex]

A recommendation is to carry the units through the entire sequence of calculations. Therefore, if the equation is set up correctly, then all the units will cancel except the desired one.

[tex]53.2 g . 4.184 J/g°C . (26.1 - 24.0)ºC = -[23.0 g . sm . (26.1 - 99.0)°C][/tex]

[tex]464.436 J = -[23.0 g . sm . (-72.9)°C][/tex]

[tex]sm = 464.436 J/ -[-1676.7 g°C][/tex]

[tex]sm = 0.277 J/g.°C[/tex]

Thus, the specific heat of the metal is 0.277 J/g.ºC.

When Adams blank blank or blank electrons an attract forms between the blank pulling them together to form a blank the attraction is called a blank a chemical bond is the blank that blank

Answers

1. Gain
2. Lose
3. Share
4. Atoms
5.bond
6. Bond
7. Atoms
8. Bond

Shielding or screening occurs when one electron is blocked from the full effects of the nuclear charge so that the electron experiences only a part of the nuclear charge. Penetration occurs when an electron penetrates the electron cloud of the 1s orbital and now experiences the full effect of the nuclear charge. Penetration occurs when one electron is blocked from the full effects of the nuclear charge so that the electron experiences only a part of the nuclear charge. Shielding or screening occurs when an electron penetrates the electron cloud of the 1s orbital and now experiences the full effect of the nuclear charge. Shielding and penetration are essentially the same thing and occurs when an electron penetrates the electron cloud of the 1s orbital and now experiences the full effect of the nuclear charge. Shielding and penetration are essentially the same thing and occurs when one electron is blocked from the full effects of the nuclear charge so that the electron experiences only a part of the nuclear charge.

Answers

Answer:Shielding and penetration are essentially the same thing and occurs when one electron is blocked from the full effects of the nuclear charge so that the electron experiences only a part of the nuclear charge

Explanation:

Penetration is how well the outer electrons are shielded from the nucleus by the core electrons. The outer electrons therefore experience less of an attraction to the nucleus.

The internal energy of a system ________. refers only to the energies of the nuclei of the atoms of the component molecules is the sum of the kinetic energy of all of its components is the sum of the potential and kinetic energies of the components is the sum of the rotational, vibrational, and translational energies of all of its components none of the above

Answers

Answer:

The most appropriate answer here would be :

Internal energy of a system is the sum of the rotational, vibrational, and translational energies of all of its components

Explanation:

Internal energy of a system is the total energy the system possess. It is represented by U (I'll be referring to internal energy as U now). This option is particularly true for ideal gases. In ideal  monoatomic gases, U is the sum of translational kinetic energies only. In di and polyatomic gases, U is the sum of translational and rotaional kinetic energies. Also, vibrational kinetic energies come into play as we increase the temperature and this also adds to U. But, in real substances such as real gases, solids, liquids, there is also interatomic forces and these accounts for intermolecular potential energies. Intermolecular potential energies also add to U in these type of systems. But even for real gases, under many circumstances, the intermolecular potential energy can be neglected.

So, the most appropriate answer here is: Internal energy of a system is the sum of the rotational, vibrational, and translational energies of all of its components

The internal energy of a system is the total of both kinetic and potential energies of its atoms and molecules. It includes various energy forms such as translational, vibrational, and rotational energy. Thus, option C is correct.

The internal energy of a system is the sum of all the kinetic and potential energies of its component atoms and molecules. This encompasses various forms of energy, including translational, vibrational, and rotational kinetic energy, as well as potential energy from molecular interactions and chemical bonds.

The correct choice is C. It is the sum of the potential and kinetic energies of the components.

Complete Question: -
The internal energy of a system ________.

A. refers only to the energies of the nuclei of the atoms of the component molecules

B. is the sum of the kinetic energy of all of its components

C. is the sum of the potential and kinetic energies of the components

D. is the sum of the rotational, vibrational, and translational energies of all of its components none of the above

If 21.39 g  acetylene is allowed to completely react with oxygen, how many grams of O2 are reacted? (The molar mass of acetylene is 26.04 g/mol)2 C2H2(g) + 5 O2(g) → 4 CO2(g) + 2 H2O(g)acetyleneBe sure to use the p

Answers

Answer:

65.712 grams of oxygen has reacted.

Explanation:

[tex]2 C_2H_2(g) + 5 O_2(g)\rightarrow 4 CO_2(g) + 2 H_2O(g)[/tex]

Mass of acetylene = 21.39 g

Moles of acetylene = [tex]\frac{21.39 g}{26.04 g/mol}=0.8214 mol[/tex]

According to reaction , 2 moles of acetylene reacts with 5 moles of oxygen gas.

Then 0.8214 moles of oxygen gas will react with :

[tex]\frac{5}{2}\times 0.8214 mol=2.0535 mol[/tex] of oxygen gas.

Mass of 2.0535 moles of oxygen gas :

2.0535 mol × 32 g/mol = 65.712 g

65.712 grams of oxygen has reacted.

(A chemist burns one mole of C2H6 in oxygen and measures that 382 kJ of energy is released. How many grams of C2H6 must burn to raise the temperature of 39.0 L of water by 58.0°C? Assume the density of water to be 1.00 g/cm3.

Answers

Answer:

744.2 g of C2H6 must burn to raise the temperature of 39.0 L of water by 58.0°C

Explanation:

This excersise is about calorimetry.

Q = m . C . ΔT

For water, 58°C is the ΔT, and the specific heat is 4.18 kJ/kg°C. We are missing the mass, but with the density data, we can know it.

Water density = water mass / water volume

1 g/ml = water mass / 39000 mL

(Notice we had to convert 39 L in mL (.1000))

Water mass = 39000 g

But this is in grams, and we have to make again a conversion, to kg because the units of specific heat.

Q = 39 kg . 4.18 kJ/ kg.°C . 58°C

Q = 9455.16 kJ

This is the heat required to change water temperature with that water mass, and the heat released for one mol of C2H6 is 382kJ.

How many mol of C2H6, for the heat required to change water, need the chemist?. The rule of three will be:

382 kJ ____ 1 mol of C2H6

9455.16 kJ _____  (9455.16 / 382) = 24.7 moles of C2H6

For mass, just work with the molar weight.

Mol . molar weight = mass

24.7 mol . 30.07g/m =744.2 g

Final answer:

To raise the temperature of 39.0 L of water by 58.0°C, you will need to burn 756.504 grams of C2H6.

Explanation:Step 1: Convert the given volume of water to grams

Given: 39.0 L of water; Density = 1.00 g/cm3

Mass = Volume x Density

Mass = 39.0 L x 1.00 g/cm3

Mass = 39.0 kg

Step 2: Calculate the heat required to raise the temperature of the water

Heat = Mass x Specific Heat x Temperature Change

Heat = 39.0 kg x 4.184 J/g °C x 58.0 °C

Heat = 9619.4 kJ

Step 3: Use the energy released in the combustion reaction to find the mass of C2H6

Energy Released = 382 kJ

According to the balanced chemical equation, 1 mole of C2H6 releases 382 kJ

Therefore, we need to calculate the number of moles of C2H6 present in 382 kJ using the molar enthalpy change.

1 mole of C2H6 = 382 kJ

x moles of C2H6 = 9619.4 kJ

x = 9619.4 kJ * (1 mole of C2H6/382 kJ)

x = 25.2 moles of C2H6

Step 4: Convert moles of C2H6 to grams

Molar mass of C2H6 = 30.07 g/mol

Mass of C2H6 = Moles x Molar Mass

Mass of C2H6 = 25.2 moles x 30.07 g/mol

Mass of C2H6 = 756.504 g

Therefore, 756.504 grams of C2H6 must burn to raise the temperature of 39.0 L of water by 58.0°C.

Learn more about stoichiometry here:

https://brainly.com/question/30218216

#SPJ3

A flask with a mass of 321.9 g is filled with 15.7 mL of carbon tetrachloride. The mass of the flask and carbon tetrachloride is found to be 523.6 g. From this information, calculate the density of carbon tetrachloride. According to this problem, the density of CCl4 is Answer g/mL.

Answers

Answer:

Density of carbon tetrachloride = 12.8 g/mL

Explanation:

Given :

[tex]m_{flask}=321.9\ g[/tex]

[tex]m_{flask}+m_{CCl_4}=523.6\ g[/tex]

Mass of carbon tetrachloride: -

[tex]m_{flask}+m_{CCl_4}=523.6\ g[/tex]

[tex]m_{CCl_4}=523.6-m_{flask}\ g=523.6-321.9\ g=201.7\ g[/tex]

Mass of carbon tetrachloride = 201.7 g

Given, Volume = 15.7 mL

Considering the expression for density as:

[tex]Density=\frac {Mass}{Volume}[/tex]

So,

[tex]Density=\frac {201.7\ g}{15.7\ mL}[/tex]

Density of carbon tetrachloride = 12.8 g/mL

Most chemical reactions involve the evolution or absorption of heat energy. True or False

Answers

Answer:

True

Explanation:

The majority of the reactions happened with a flow of heat. When there's no heat, the reaction is adiabatic.

For no adiabatic reactions, the heat can be released (evolution) by the system, so the reaction will be exothermic, or absorbed by the system (absorption), then the reaction is called endothermic.

Other Questions
SELECT TWOThe two methods used for determining mass are:1 measuring directly on a scale2 measuring directly on a balance3 calculated by measurements of w and g Why did American colonists resent British taxes?Group of answer choicesAmericans did not elect representatives to Parliament as people who lived in Great Britain did.American colonists were unhappy that the high taxes were keeping the nobility in luxury.Unlike American colonists, people who lived in Great Britain did not have to pay any dutiesGreat Britain did not offer the American colonists any protection from the French and the Indians. In the Solow growth model with population growth and labor-augmenting technological change, the break-even level of investment must cover:______ 1. depreciating capital, capital for new workers, and capital for new effective workers. 2. depreciating capital and capital for new workers. 3. depreciating capital and capital for new effective workers. 4. depreciating capital. The immortal life of Henrietta Lacks chapter 29 statement??? Best friends, Gina and Miranda, have infants close to the same age. Ginas daughter is generally cheerful and happy, whereas Mirandas son seems to be upset and crying much of the time. These children have different: Thirty people are selected for a long-term mission to colonize a planet many light-years away from Earth. The mission is successful and the population rapidly grows to several hundred individuals However, certain genetic diseases are unusually common in this group, and the group's gene pool is quite different from that of the Earth population they have left behind. Which of the following phenomena has left its mark on this population?a.founder effectb.adaptive effectc.high rates of mutationd.natural selection Philip argues that the medical system's main goal is to make profits and not to benefit people who need help. He says that medical care is not equally accessible to all individuals and that it benefits only certain groups of people. Philip's ideas represent the _____ perspective. Live Fund are selling their holding at $5,000 per share. How much would Live Fun receive if they sold half thier holding in Marks Brothers? When pink sweet peas were self-pollinated and the sceds were collected and sown, the following flower colors were obtained Red 34 Pink 76White 40 Use a chi-squared test to determine whether these results are consistent with the hypothesis that pink flowers are heterozygous for a single pair we predict for our null hypothesis? A. 9:3:4 B. 3:1:0 C. 1:2:1 D. 1:4:1 Health class video tape says, "This drug comes from opium and is really scary because after feeling relaxed and happy, you develop a tolerance quickly and need more. Because most people put it in their bodies with needles, there is an increased risk of getting AIDS. The withdrawal effects are awful." What drug is being described? 1 tu telfono celular, pero no la computadora. (apagar)2 tu tarea despus. No la ahora. (hacer) 3 No a la tienda a comprar papel para la impresora. a la cafetera a comprarme algo de comer. (ir) 4 No que no puedes abrir un archivo. que el programa de computacin funciona sin problemas. (decirme) 5 generoso con tu tiempo, y no antiptico si no entiendo fcilmente. (ser) 6 mucha paciencia y no prisa. (tener)7 No en una hora. ahora mismo. (venir) A 250 mL container of CO2 exerting a pressure of 1.00 atm is connected through a valve to a 500 mL container of O2 exerting a pressure of 2.00 atm. When the valve is opened, the gases mix, forming a 750 mL mixture of CO2 and O2. What is the total pressure of this mixture? A rectangular parking lot has an area of 15,000 feet squared, the length is 20 feet more than the width. Find the dimensions Yahoo! allows its users to create a web page by picking the content (stock quotes, weather conditions, local TV schedules) they want to have displayed. This consumer-initiated practice is an example of:_______ A) permission marketing. B) personalization. C) transactional websites. D) collaborative filtering. E) customerization. Compare the two theories regarding the evolution of dinosaurs and then consider the cladogram above. Although the two theories differ on the evolutionary path of dinosaurs, they agree that Determine the value of x so that the line containing the given points is parallel to another line whose slope is also given.12. A(x, 5) and B(-4,3)slope = -113. R(3, -5) and S(1, x)slope = -2 A company has two manufacturing plants with daily production levels of 7 x + 19 items and 2 x - 7 items, respectively. The first plant produces how many more items daily than the second plant? The slowest step of a reaction mechanism is called the A.) Elementary Step B.) Inhibitor C.) Rate Law D.) Rate-Determining Step How do you solve for 2/5 - 1/3? ___________ theories would study criminalization of the often voiceless, marginalized, oppressed individuals in a society.