The maximum kinetic energy of photoelectrons is 3.10 ev . when the wavelength of the light is increased by 50%, the maximum energy decreases to 1.50 ev . part a what is the work function of the cathode?

Answers

Answer 1

The work function of the cathode is found to be 0.10 eV, calculated by using the relationship between the maximum kinetic energy of photoelectrons, the photon energy, and the work function within the context of the photoelectric effect.

The question involves finding the work function of a cathode in a photoelectric effect scenario. We know that the maximum kinetic energy (KE) of photoelectrons is related to the photon energy (hf) and the work function (
W) as KE = hf - W. We were given that the kinetic energy decreased to 1.50 eV when the wavelength increased by 50%, which implies the initial wavelength corresponds to a photon energy that gives photoelectrons a kinetic energy of 3.10 eV. Let's express these energies in the equation form:

KE1 = hf1 - W, where KE1 = 3.10 eV

KE2 = hf2 - W, where KE2 = 1.50 eV and hf2 = hf1/1.5 (since the wavelength increased by 50%, energy decreases by the same factor)

By subtracting the second equation from the first, we eliminate W and can solve for hf1. Once we have hf1, we can solve for the work function using either of the equations:

3.10 eV - 1.50 eV = hf1 - hf1/1.5

1.60 eV = 0.5 * hf1

hf1 = 3.20 eV

Work function W = hf1 - KE1 = 3.20 eV - 3.10 eV = 0.10 eV

The work function of the cathode is therefore 0.10 eV.


Related Questions

A mass of 15 kg of air in a piston-cylinder device is heated from 25 to 77°c by passing current through a resis tance heater inside the cylinder. the pressure inside the cylin der is held constant at 300 kpa during the process, and a heat loss of 60 kj occurs. determine the electric energy supplied, in kwh

Answers

A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs. 
Read more on Brainly.com - https://brainly.com/question/1581851#readmore

A ray of light is traveling in a glass cube that is totally immersed in water. you find that if the ray is incident on the glass-water interface at an angle to the normal greater than 52.5 ∘, no light is refracted into the water. part a what is the refractive index of the glass?

Answers

if the object, ends up with a positive charge, then it is missing electrons. if it is missing electrons, then it must have been removed form the object during the rubbing process.

f the ray is incident on the glass-water interface at an angle to the normal greater than 52.5 ∘ then Refractive index of the glass will be  1.26 by critical angle.

What is Refractive index?

The optical medium's refractive index would be a dimensionless number that indicates how well the medium bends light. The refractive index controls however much light would be refracted or twisted when it enters a substance.

What is critical angle ?

Critical angle, in optics, the greatest angle at which a ray of light, travelling in one transparent medium, can strike the boundary between that medium and a second of lower refractive index without being totally reflected within the first medium.

critical angle = [tex]sin^{-1} (1/n)[/tex]

Put the value of critical angle in above equation.

52.5° =    [tex]sin^{-1}(1/n)[/tex] = 1.26  

Refractive index of the glass will be  1.26

learn more about critical angle

https://brainly.com/question/3314727

#SPJ2

Using a crowbar, a person can remove a nail by exerting little force, whereas pulling directly on the nail requires a large force to remove it (you probably can't). why?

Answers

Here we deal with a lever law. It states that product of force and distance from a fixed point on a lever is equal on both sides.

F₁*d₁ = F₂*d₂

By analysing this formula we can see that applying small force on a great length equals great force on a small length.
To remove nail we need to apply certain force. If we use F₁ for this required force we can see that on other side we need to apply certain force. If we have greater arm length we need smaller force. In a crowbar arm length along which we apply force is greater than length of our arm. This leads to a conclusion that we need smaller force when using crowbar. Depending on the length of a nail it is possible that we need to apply force that is greater than force required to remove nail.

Final answer:

Using a crowbar to remove a nail requires less force because it uses leverage to amplify the input force and increase the mechanical advantage.

Explanation:

When using a crowbar to remove a nail, you are using a lever with a large mechanical advantage. The input force you apply to the crowbar is much smaller than the force exerted by the crowbar on the nail. This is because the length of the crowbar provides a greater lever arm, which increases the mechanical advantage.

On the other hand, when you try to pull directly on the nail, you don't have the same leverage as the crowbar, so you need to exert a larger force to overcome the resistance of the nail.

In summary, the crowbar allows you to remove a nail with less force because it uses leverage to amplify the input force and increase the mechanical advantage.

A stone is thrown outward from the top of a 59.4-m high cliff with an upward velocity component of 19.5 m/s. how long is stone in the air?

Answers

The stone is in the air for 6 seconds.

[tex]\texttt{ }[/tex]

Further explanation

Acceleration is rate of change of velocity.

[tex]\large {\boxed {a = \frac{v - u}{t} } }[/tex]

[tex]\large {\boxed {d = \frac{v + u}{2}~t } }[/tex]

a = acceleration ( m/s² )

v = final velocity ( m/s )

u = initial velocity ( m/s )

t = time taken ( s )

d = distance ( m )

Let us now tackle the problem!

[tex]\texttt{ }[/tex]

Given:

height of the cliff = h = 59.4 m

speed of the stone = u = 19.5 m/s

Asked:

total time taken = t = ?

Solution:

[tex]h = ut + \frac{1}{2}at^2[/tex]

[tex]-59.4 = 19.5t - \frac{1}{2}(9.8)t^2[/tex]

[tex]-59.4 = 19.5t - 4.9t^2[/tex]

[tex]49t^2 -195t - 594 = 0[/tex]

[tex]( t - 6 ) ( 49t + 99 ) = 0[/tex]

[tex]t - 6 = 0[/tex]

[tex]t = 6 \texttt{ s}[/tex]

[tex]\texttt{ }[/tex]

Learn moreVelocity of Runner : https://brainly.com/question/3813437Kinetic Energy : https://brainly.com/question/692781Acceleration : https://brainly.com/question/2283922The Speed of Car : https://brainly.com/question/568302

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Kinematics

[tex]\texttt{ }[/tex]

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle , Projectile , Motion , Horizontal , Vertical , Release , Point , Ball , Wall

A stone is thrown outward from the top of a 59.4-m high cliff with an upward velocity component of 19.5 m/s. The stone is in the air for 6 seconds.

What is acceleration?

The rate at which an item changes its velocity is known as acceleration, a vector quantity. If an object's velocity is changing, it is acceleration.

Given in the question a stone is thrown outward from the top of a 59.4-m high cliff with an upward velocity component of 19.5 m/s.

Acceleration is rate of change of velocity.

a = acceleration ( m/s² )

v = final velocity ( m/s )

u = initial velocity ( m/s )

t = time taken ( s )

d = distance ( m )

height of the cliff = h = 59.4 m

speed of the stone = u = 19.5 m/s

to find total time taken = t = ?

s = ut + 1/2 at² putting the value we get,

t = 6 sec

The stone is in the air for 6 seconds.

To learn more about acceleration refer to the link:

brainly.com/question/12550364

#SPJ5

how high was a brick dropped from if if falls in 2.5 seconds?

Answers

using the kinematic equation d =  V_0 * t  + 1/2 * a * t^2, where d is height you can rewrite this to be d = 1/2*g*t^2 or 4.9t^2
g = a because this is a free fall 
d = 1/2 * 9.81m/s^2 * 2.5^2
d = 30.65625m
d = 30.7m

When a guitar string plays the note "a," the string vibrates at 440 hz ?

Answers

Answer:

440hz

Explanation: Guitars do in fact play at 440 herts for the note a

What element below makes up 71% of the earth's crust?

Answers

The most abundant element in Earth's crust is oxygen, which accounts for approximately 46 % of the total mass of the crust. The second most abundant element is silicon (28% of the total crust's mass) and the third one is aluminum (8%).

A wave is a disturbance that carries from one place to another through matter and space.

Answers

I have a hunch:  There's a blank space in that question, and 
you want somebody to fill in the blank.  You just forgot to show
where the blank space is.

Unless I miss my guess, the answer is

        A wave is a disturbance that carries  ENERGY  from
        one place to another through matter and space.

Answer:

Energy

Explanation:

Eng 2021

If it takes 6.02 kj of heat energy to melt a mole of ice, how much heat is absorbed when 6.30 g of water melts? 21.0 j 2.10 kj 21 kj 0.210 kj

Answers

First, let's see how many moles correspond to 6.30 g of water.
The molar weight of water is 18.01 g/mol, so
[tex]n= \frac{6.30 g}{18.01 g/mol}=0.35 mol [/tex]
Then we know it takes 6.02 kJ to melt 1 mole of ice, so if we have 0.35 mol, the amount of heat needed will be
[tex]Q=6.02 kJ \cdot 0.35 mol=2.10 kJ[/tex]

Why are objects that fall near Earth’s surface rarely in free fall?

Gravity does not act on objects near Earth’s surface.
Air exerts forces on falling objects near Earth’s surface.
The objects do not reach terminal velocity.
The objects can be pushed upward by gravity.

Answers

Objects that fall near Earth’s surface are rarely in free fall.

"Free fall" is the situation where the ONLY force on an object is
the force of gravity, and nothing else.

Objects near Earth's surface are almost always surrounded by air.
If they are falling, then the air is exerting forces on them, and they
are not in "free fall".
it's B. Air exerts forces on falling objects near Earth’s surface.

air force, look it up! ;)

In terms of the torque needed to rotate your leg as you run, would it be better to have a long calf and short thigh or vice versa? a) Long calf, short thigh b) Short calf, long thigh c) Does not matter

Answers

Final answer:

Having a short calf and long thigh would result in better torque for leg rotation during running, as a longer lever arm (thigh) from the pivot point (knee) allows for greater torque. However, proportions should be balanced for optimal running biomechanics.

Explanation:

In terms of the torque needed to rotate your leg as you run, it would be better to have a short calf and long thigh. This is because torque is the rotational equivalent of force and is calculated by multiplying the force by the distance from the pivot point. In this case, the pivot point is the knee.

Therefore, a longer thigh would result in a greater torque because the force (muscle contraction) is applied further from the pivot point (knee). Conversely, a short calf means less mass is being rotated around the pivot point, reducing the torque needed for movement.

Learn more about torque here:

https://brainly.com/question/25708791

#SPJ11

In terms of the torque needed to rotate your leg as you run, it be better to have b) Short calf, long thigh

In terms of the torque needed to rotate your leg as you run, it would be better to have a short calf and long thigh.

This is because torque is the rotational equivalent of force, and it depends on both the magnitude of the force and the distance from the pivot point where the force is applied. In running, the longer the distance from the pivot point (knee), the more torque is generated by the same muscle force. A long thigh and short calf combination helps in maximizing this distance, thereby reducing the effort required to achieve the same angular acceleration of the leg.

Let's break this down step-by-step:

Torque (τ) is defined as τ = r × F, where r is the distance from the pivot point (in this case, the knee) and F is the force applied by the muscles.For a given force, increasing the distance r will increase the torque, making it easier to rotate the leg.A long thigh means a greater r from the hip pivot point, increasing the torque generated for the same muscle effort.A short calf means less weight and less moment of inertia that needs to be rotated, making the rotation more efficient.

What was the speed of the cannon ball if the spring compressed 58 cm when the cannon was fired?

Answers

I attached the full question.
We need to write down the law of conservation of momentum and energy.
The law of conservation of momentum:
[tex]m_cv_c=m_bv_b[/tex]
The law of conservation of energy:
[tex]\frac{1}{2}x^2=\frac{m_c v_c^2}{2}[/tex]
This tells us that potential energy of the compressed spring is used to stop the canon. In other words, the kinetic energy of the canon, after firing is used to do work again the force of the spring.
We can use this two equations to find the velocity of the cannonball:
[tex]\frac{1}{2}x^2=\frac{m_c v_c^2}{2}\\ v_c=\sqrt{\frac{1}{m_c}}}\cdot x[/tex]
We can now plug this in the first equation:
[tex]m_cv_c=m_bv_b\\ v_c=\sqrt{\frac{1}{m_c}}}\cdot x\\ m_c\cdot\sqrt{\frac{1}{m_c}}}\cdot x=m_bv_b\\ \sqrt{m_c}}}\cdot x=m_bv_b\\ v_b=\frac{\sqrt{m_c}x}{m_b}[/tex]
Please note that I found this question online with multiple diferent data( mass of the canon, ball etc)
You can use this formula, just plug in your numbers and you will get the correct answer.



To calculate the speed of a cannon ball using the distance the spring compressed, the spring constant is required to use energy conservation principles. Without this value, it is not possible to provide an exact answer.

To determine the speed of the cannon ball given that the spring compressed 58 cm when it was fired, we would use the conservation of energy principle where the potential energy stored in the spring is converted into the kinetic energy of the cannon ball. If we had the spring constant (k), we could use the formula for the potential energy stored in a spring, which is PE_spring = (1/2)kx² where x is the compression distance, and equate this to the kinetic energy formula KE = (1/2)mv², where m is the mass of the cannon ball, and v is the velocity we want to find. Without the specific spring constant, it is not possible to calculate the exact speed of the cannon ball.

How much work does an elevator motor do to lift a 1200-kg elevator car a height of 80 m at constant speed?

Answers

The increase in gravitational potential energy of the elevator car when is lifted to a height of 80 m is given by
[tex]\Delta U=mg \Delta h[/tex]
where m=1200 kg is the mass of the elevator car, [tex]g=9.81 m/s^2[/tex] is the gravitational acceleration, and [tex] \Delta h=80 m[/tex] is the variation of height of the elevator car. If we plug these numbers into the equation, we find:
[tex]\Delta U=(1200 kg)(9.81 m/s^2)(80 m)=9.42 \cdot 10^5 J[/tex]

For the work-energy theorem, the work done by the motor to lift the elevator must be equal to the energy acquired by the elevator car: but the energy acquired by the elevator car is [tex]9.42 \cdot 10^5 J[/tex], therefore the work done by the motor is exactly equal to this value:
[tex]W=\Delta U=9.42 \cdot 10^5 J[/tex]

Answer:

Work = 940800 J

Explanation:

As we know that work done is defined as

Work = (Force)(displacement in the direction of force)

here elevator motor lift a mass of 1200 kg

so in order to lift it up motor must have to apply the force same as the weight so that it will move up with constant speed.

so here we have

[tex]F = mg[/tex]

[tex]F = (1200 kg)(9.8 m/s^2)[/tex]

[tex]F = 11760 N[/tex]

now it is displaced upwards by distance d = 80 m

so here we have

[tex]W = (11760)\times (80)[/tex]

[tex]W = 940800 J[/tex]

so above is the work done by the elevator to lift it upwards

"why might a good electrical conductor also be a good thermal conductor"

Answers

A good electrical conductor is a material that has a lot of free charges that can easily move across the material, and with a large mean free path.

Now let's assume that one side of the material is at higher temperature than the other side. The charges on the hotter side move faster than the charges on the cooler side, so the faster charges transfer part of their energy to the charges of the cooler side by collisions. The larger the number of free charges (and the larger their mean free path), the faster is this transmission of energy (which is basically transmission of heat), so the larger is the thermal conductivity of the material, so a good electrical conductor is generally also a good thermal conductor.

If r1 < r2 < r3, and if these resistors are connected in series in a circuit, which one dissipates the most power

Answers

All three have the same current, so that is not a factor. Wattage (power) is E*I or i^2 R. The higher the resistance, the more power dissipated. The answer is R3 because it has the highest resistance.
R3 <<<< ===== answer.

A charge of 7.2 × 10-5 C is placed in an electric field with a strength of 4.8 × 105. If the electric potential energy of the charge is 75 J, what is the distance between the charge and the source of the electric field? Round your answer to the nearest tenth.

Answers

The answer is 2.2 meters.                          

The distance between the charge and the source of the electric field is 2.2 m.

The potential energy U of a charge q placed in an electric field created by a source charge Q, at a distance r from the source charge is given by,

[tex] U=\frac{kQq}{r} [/tex] ...... (1)

Here, k is the Coulomb constant.

The electric field E at a distance r from the source charge is given by,

[tex] E =\frac{kQ}{r^2} [/tex] ......(2)

From equations (1) and (2)

[tex] U=E*q*r [/tex]

Rewrite the expression for ri.

[tex] r=\frac{U}{Eq} [/tex]

Substitute 75 J for U, [tex] 4.5*10^5 V/m [/tex] for E and [tex] 7.5*10^{-5} C [/tex] for q.

[tex] r=\frac{U}{Eq} \\ =\frac{75 J}{(4.8*10^{5} V/m)(7.2*10^{-5}C)} \\ =2.17 m [/tex]

Rounding off to the nearest tenth, the the distance between the charge and the source charge is 2.2 m

Two appliances are connected in parallel to a 120-v battery and draw currents i1 = 3.0 a and i2 = 3.1
a. if these appliances are instead connected in series to the same battery, what is the total current in the circuit?

Answers

Initially they are connected in parallel, so they have the same voltage V=120 V at their ends. Therefore we can use Ohm's law to calculate the resistance of each appliance:
[tex]R_1 = \frac{V}{I_1}= \frac{120 V}{3.0 A}=40 \Omega [/tex]
[tex]R_2 = \frac{V}{I_2}= \frac{120 V}{3.1 A}=38.7 \Omega [/tex]

When they are connected in series, they are crossed by the same current I. The equivalent resistance of the circuit in this case is [tex]R_{eq}=R_1+R_2 = 78.7 \Omega[/tex], so we can use Ohm's law for the entire circuit to find the current in the circuit:
[tex]I= \frac{V}{R_{eq}}= \frac{120 V}{78.7 \Omega}=1.52 A [/tex]

A piano tuner stretches a steel piano wire with a tension of 765 n. the steel wire has a length of 0.700 m and a mass of 5.25 g . part a what is the frequency f1 of the string's fundamental mode of vibration?

Answers

We will use Mersenne's law that states:
[tex]f=\frac{1}{2L}\sqrt{\frac{T}{\mu}[/tex]
Where f is fundamental frequency, T is the tension, [tex]\mu[/tex] is linear density(mass divided by length) and L is the length of the string. 
Let us find the linear density:
[tex]\mu=\frac{m}{L}=\frac{5.25}{0.7\cdot1000}=0.0075\frac{kg}{m}[/tex]
Now we just have to plug in all the number in the formula:
[tex]f=\frac{1}{2L}\sqrt{\frac{T}{\mu}}=\frac{1}{2\cdot 0.7}\sqrt{\frac{765}{0.0075}}=228.12$Hz[/tex]
Final answer:

The fundamental frequency of the steel piano wire, subjected to a tension of 765 N, with a length of 0.700 m, and a mass of 5.25 g, is approximately 424.6 Hz.

Explanation:

The frequency f1 of the string's fundamental mode of vibration can be calculated using the formula f = sqrt(T / μ) / 2L. Here:

T is the tension in the string, which is 765 Nμ is the linear density of the string, which is the mass of the string divided by its length. Therefore, μ = (5.25 g) / (0.700 m) = 0.0075 kg/mL is the length of the string, which is 0.700 m

Plugging these values into the formula, we get:
f1 = sqrt((765 N) / (0.0075 kg/m)) / (2 * 0.700 m) = 424.6 Hz

This means that the fundamental frequency of the string is roughly 424.6 Hz.

Learn more about Fundamental Frequency here:

https://brainly.com/question/31314205

#SPJ3

A cylinder with a moveable piston contains 219 ml of nitrogen gas at a pressure of 1.23 atm and a temperature of 295 k . part a what must the final volume be for the pressure of the gas to be 1.53 atm atm at a temperature of 337 k ?

Answers

Final answer:

The final volume needed for the pressure of the nitrogen gas to be 1.53 atm at a temperature of 337 K is approximately 190.8 ml. This is calculated using the combined gas law.

Explanation:

To find out what the final volume of nitrogen gas in the cylinder would be when the pressure is 1.53 atm and the temperature is 337 K, we can use the combined gas law, which is derived from the ideal gas law. The combined gas law states that the ratio of the product of pressure and volume to temperature remains constant for a fixed amount of gas when the temperature is measured in Kelvin. The formula for the combined gas law is (P1 * V1) / T1 = (P2 * V2) / T2, where P is pressure, V is volume, and T is temperature.

Given that:

Initial pressure (P1) = 1.23 atmInitial volume (V1) = 219 mlInitial temperature (T1) = 295 KFinal pressure (P2) = 1.53 atmFinal temperature (T2) = 337 K

We want to find the final volume (V2), so rearranging the equation to solve for V2 gives us:

V2 = (P1 * V1 * T2) / (P2 * T1)

Substituting the known values:

V2 = (1.23 atm * 219 ml * 337 K) / (1.53 atm * 295 K)

By performing the calculations:

V2 ≈ 190.8 ml

Therefore, the final volume needed for the pressure of the nitrogen gas to be 1.53 atm at 337 K is approximately 190.8 ml.

Dr. Lao has discovered a substance that emits energy in the form of waves. If Dr. Lao observes that these waves can travel through a perfect vacuum, then

Answers

The waves are electromagnetic waves. 
That is the mostly likely answer.

Answer: The waves that travel through vacuum is electromagnetic waves.

Explanation:

There are two types of waves:

Mechanical waves: These are the waves that need a medium to travel so that they can transport their energy from one location to another. For Example:  Sound waves

Electromagnetic waves: These are waves which can travel through vacuum. These have electrical and magnetic component associated with them. They travel with the speed of light. They does not require a medium to travel. For Example: Infrared waves, Microwaves

Hence, the waves that travel through vacuum is electromagnetic waves.

A cyclist is riding his bike up a mountain trail. When he starts up the trail, he is going 8 m/s. As the trail gets steeper,he slows to 3 m/s in 1 minuet. What is the cyclist acceleration

Answers


Acceleration  =  (change in speed) / (time for the change)

Change in speed = (speed at the end) - (speed at the beginning)

                            =         (3 m/s)           -       (8 m/s)

                            =                      -5 m/s .

Time for the change  =  1 minuet = 2 sonatas = 60 seconds

Acceleration  =  (-5 m/s) / (60 seconds)

                      =     - 1/12  m/s²

                      =      0.0833  m/s²

                      =        8-1/3  cm/s²  

Which of the following occurs over a resistor in a circuit? Current is dissipated. Voltage is dropped. Charge is stored. Electrical energy is stored.

Answers

The correct answer is "Voltage is dropped".

In fact, when a current I flows through a resistor of resistance R, the voltage difference between the two ends of the resistor is (Ohm's law):
[tex]\Delta V = RI[/tex]
This product is different from zero, so there is a difference of voltage between the two ends of the resistor, and so there is a voltage drop across the resistor.

In a circuit, a voltage drop occurs over a resistor as the electric current flows through it, transforming electrical energy into heat due to resistance, not storing charge or electrical energy. the correct answer is voltage is dropped.

Among the choices provided for what occurs over a resistor in a circuit, the correct answer is voltage is dropped. When electric current flows through a resistor, it encounters resistance which impedes the flow of charge. This results in a voltage drop across the resistor. The energy that the charges lose as they pass through the resistor is dissipated mainly in the form of heat. This concept is reflected in the equation for electric power dissipation, P = IV, where P represents power, I is current, and V is voltage. This can also be expressed as P = I²R or P = V²/R using Ohm's law, where R is the resistance. Contrary to some of the other choices, resistors do not store charge or electrical energy; that function is typically carried out by capacitors in a circuit.

When you push a 1.87-kg book resting on a tabletop, it takes 2.02 n to start the book sliding. once it is sliding, however, it takes only 1.47 n to keep the book moving with constant speed. what is the coefficient of static friction between the book and the tabletop?

Answers

[tex]F_{friction} = \mu N = \mu mg \\ \\ \mu = \frac{F_{friction}}{mg}[/tex]

F static friction
m mass
g gravitational acceleration
μ static friction coefficient

[tex]\mu = \frac{2.02N}{1.87kg(9.81 \frac{m}{s^2} )} = 0.11[/tex]

HELP PLEASE!! ASAP
Which accurately compares concave and convex lenses?
A. With both concave and convex lenses, the characteristics of the image do not depend on the placement of the object.
B. With both concave and convex lenses, the characteristics of the image depend on the placement of the object.
C. With concave lenses, the characteristics of the image do not depend on the placement of the object, but with convex lenses, they do.
D. With convex lenses, the characteristics of the image do not depend on the placement of the object, but with concave lenses, they do.

Answers

The correct answer is B) With both concave and convex lenses, the characteristics of the image depend on the placement of the object.
We can have a look at the lens equation:
[tex] \frac{1}{f} = \frac{1}{d_o}+ \frac{1}{d_i} [/tex]
where f is the focal length of the lens, [tex]d_o[/tex] the distance of the object from the lens and [tex]d_i[/tex] is the  distance of the image from the lens. As it can be seen from the formula, the distance of the image depends on [tex]d_o[/tex], the placement of the object.

The same is true for the magnification, i.e. the size of the image ([tex]h_i[/tex]) compared to the size of the object ([tex]h_o[/tex]), which is given by
[tex]M= \frac{h_i}{h_o} - \frac{d_i}{d_o} [/tex]
As it can be seen, this quantity depends on the placement of the object as well.

With concave lenses, the characteristics of the image do not depend on the placement of the object, but with convex lenses, they do.

A rocket in orbit just above the atmosphere is moving in uniform circular motion. The radius of the circle in which it moves is 6.381 × 106 m, and its centripetal acceleration is 9.8 m/s2 . What is the speed of the rocket?

Answers

The centripetal force for an object moving in circular motion is:
[tex]F=m \frac{v^2}{r} [/tex]
where m is the mass, v the speed of the object and r the radius of the orbit. For Newton's second law, this is equal to
[tex]F=ma_c[/tex]
where [tex]a_c[/tex] is the centripetal acceleration. So we can find the centripetal acceleration by equalizing the two equations:
[tex]a_c = \frac{v^2}{r} [/tex]
Since we know the value of the centripetal acceleration of the rocket, [tex]a_c = 9.8 m/s^2[/tex] , and the radius of the orbit, [tex]r=6.381 \cdot 10^6 m[/tex], we can solve the previous formula for v, the speed of the rocket:
[tex]v= \sqrt{a_c r}= \sqrt{(9.81 m/s^2)(6.381 \cdot 10^6 m)}=7912 m/s [/tex]

Chanel has some cotton candy that came in a cloudy shape. She wants to make it more dense. Which describes the candy before and after Chanel manipulated it?
1)The candy before was a cube, and the candy after was a ball.
2)The candy before was compacted, and the candy after was fluffy.
3)The candy before was fluffy, and the candy after was compacted.
4)The candy before was a ball, and the candy after was a cube.

Answers

Answer: Option (C) is the correct answer.

Explanation:

As we known that density is the amount of mass divided by volume of the substance.

Mathematically,    Density = [tex]\frac{mass}{volume}[/tex]

So, when candy was present in the shape of a cloud then it means that it was fluffy as it has more volume.

Since, density is inversely proportional to volume therefore, with increase in volume there will occur a decrease in density.

But when the candy will become compact then there will occur a decrease in its volume. Hence, then there will occur an increase in the density of the candy.

Thus, we can conclude that the statement candy before was fluffy, and the candy after was compacted best describes the candy before and after Chanel manipulated it.

A proton beam in an accelerator carries a current of 106 μa. if the beam is incident on a target, how many protons strike the target in a period of 17.0 s?

Answers

The electric current is defined as the charge Q that passes a certain point in a time [tex]\Delta t[/tex]:
[tex]I= \frac{Q}{\Delta t} [/tex]
We know the current, [tex]I=106 \mu A=106 \cdot 10^{-6} A[/tex], and the time, [tex]\Delta t=17.0 s[/tex], so the total charge that strikes the target during this time is
[tex]Q=I \Delta t=(106 \cdot 10^{-6}A)(17.0s)=1.8 \cdot 10^{-3}C[/tex]

To find the number of proton, we must divide the total charge by the charge of a single proton, which is [tex]q=1.6 \cdot 10^{-19}C[/tex]:
[tex]N= \frac{Q}{q}= \frac{1.8 \cdot 10^{-3}C}{1.6 \cdot 10^{-19}C}=1.13 \cdot 10^{16} [/tex]
And this is the number of protons that strike the target in 17.0 s.

What is the maximum velocity for the pacific plate?

Answers

Calculating the Velocity of the Pacific Plate. Standard 3.5: 

why were you able to see the effects of the magnetic fields using iron filings

Answers

The iron filings aligned themselves in a pattern, along with the magnet connecting the north and south poles. This creates the “magnetic field”. Interacting with a metal object in between the magnetic properties of the metal interact with the magnet, expressing signs of magnetic force acting on it and the metal, pulled together letting you see the see the effects of the magnetic fields using iron filings. 
Iron filing are soft magnetic materials. The are highly attracted by magnets. 
They are used in the study of magnetic fields.
Another reason why they are used because they are light and and they can aline themselves in the paths of the magnetic fields. This way the fields patterns can be seen clearly.

An unmanned spacecraft leaves for Venus. Which statements about the spacecrafts journey are true?

A)The weight of the spacecraft keeps changing.
B)The mass of the spacecraft keeps changing
C)The weight of the spacecraft remains the same
D) The mass of the spacecraft remains the same
E)The gravotational pull on the spacecraft remains the same
Hint: There is more than one answer

Answers

Answer:

A)The weight of the spacecraft keeps changing.

D) The mass of the spacecraft remains the same

Explanation:

As we know that the acceleration due to gravity depends on the height from the surface

As we know that the force due to gravity on objects near the surface is given as

[tex]F = \frac{Gm_1m_2}{(R+h)^2}[/tex]

here we know that

R = radius of planet

h = height from the surface of planet

So as we move away at more height the gravitational attraction force will keep on decreasing.

This gravitational attraction force of planet is also known as weight so we can say that the weight of the object will keep on changing while object move away.

Also we know that mass of object is quantity of the matter which always remains constant.

Other Questions
how is geothermal energy used?a. material is burned to cook food or drive engines b. moving water turns a turbine to produce electricity. c.wind turns a mill that makes a generator work. d. heated water warms buildings or generates electricity. Can you please answer number 8 thanks An unmanned spacecraft leaves for Venus. Which statements about the spacecrafts journey are true?A)The weight of the spacecraft keeps changing.B)The mass of the spacecraft keeps changingC)The weight of the spacecraft remains the sameD) The mass of the spacecraft remains the sameE)The gravotational pull on the spacecraft remains the sameHint: There is more than one answer A group of the same species, living together and breeding is known as a ______________. community kingdom population In what respect were qing china and the ottoman empire similar in the nineteenth century what is the meaning of the simile " a bright girdle" in this excerpt from "dover beach" by Matthew Arnold the product of two rational numbers According to the author, why was Hitler influential among young people? what is a budget constraint and what is the formula Find the value of each variable. multiply and simplify 12 and 2 / 3 3 + 1 / 4 Two balloons, one with a charge of 4.0 10-6 coulombs and the other with a charge of 8.2 10-6 coulombs, are kept 2.0 meters apart. What is the electric force between the two balloons? (k = 9.0 109newtonmeter2/coulombs2) Show quoted text Which would be most helpful when comparing Penelope with Odysseus and how they changed in The Odyssey? It would be most helpful to consider Penelopes actions toward her servants. It would be most helpful to consider Odysseuss words to his men. It would be most helpful to consider both characters reactions to the suitors. It would be most helpful to consider both characters physical appearance. the perimeter of a semi circle is 20.56 MM. What is the semicircle of radius? Early in the war of 1812, the government of the Michigan territory led an attack on canada that resulted in help me with this because I'm a little rusty on ths The Southern gothic movement borrowed gothic elements such as _____. Select all that apply.dark humorstream of consciousness descriptionslocal colortwisted characters When implementing a knowledge management strategy, one of the first steps is to? Find the volume of the composite space figure to the nearest whole number. Gender may be considered an achieved status as well as an ascribed status because