The recipe for pumpkin pie calls for 3 tablespoons of flour and 1.5 cups of sugar for each pie. Which of the following conversion factors would be used to find out how many pies could be made from 7.5 cups of sugar.

Answers

Answer 1

Answer:

5 pumpkin pies could be made with 7.5 cups of sugar.

Explanation:

The conversion factor to solve the problem is:

[tex]7.5 cups of sugar\times\frac{1 pie}{1.5 cups of sugar} = 5 pies[/tex]


Related Questions

A 12-liter tank contains helium gas pressurized to 160 \rm atm.How many 3-liter balloons could the 12-L helium tank fill? Keep in mind that an "exhausted" helium tank is not empty. In other words, once the gas inside the tank reaches atmospheric pressure, it will no longer be able to fill balloons.

Answers

Answer:

636 balloons

Explanation:

If we assume that helium gas follows an ideal gas behaviour, we can use the ideal gas law to solve this problem as follows:

We consider two different states, the initial given by the conditions of the problem statement and the final, when the tank reaches atmospheric pressure and it's no longer able to fill balloons:[tex]P_{1}=160 atm\\V_{1}=12 L\\P_{2}=1 atm\\V_{2}= ?[/tex]To find out what would be this volume 2, we use the Boyle's Law: [tex]P_{1}V_{1}=P_{2}V_{2}\\V_{2}=\frac{P_{1}V_{1}}{P_{2}} \\V_{2}=\frac{160 atm \times 12L}{1 atm}\\V_{2}=1920 L[/tex]Now we find the available volume to fill the balloons by substracting both, volume 2 and volume 1: [tex]V_{b}=V_{2}-V_{1}=1920L-12L=1908 L[/tex]Finally, we determine the quantity of ballons by dividing that available volume between the volume of each ballon:[tex]B=\frac{1908L}{3L} =636 balloons[/tex]
Final answer:

By applying Boyle's Law that states the pressure of a gas is inversely proportional to its volume, we find that the 12-L tank pressurized to 160 atm can fill a total of 640 3-L balloons to atmospheric pressure.

Explanation:

This is a typical problem related to the ideal gas law and mainly involves the understanding of pressure-volume relationship in gases. Since the tank and the balloons are at different pressures, the volume the helium will occupy in the balloons at atmospheric pressure will be larger than the volume it occupies in the tank.

Based on this, if the helium tank is pressurized to 160 atm and the balloons are to be filled until the pressure in the tank is equivalent to atmospheric pressure (1 atm), the helium in the tank will expand 160 times its initial volume. Hence, the 12-L tank will fill 12 * 160 = 1920 L of balloon space. Given each balloon has a volume of 3 L, the number of balloons that can be filled is thus 1920 / 3 = 640 balloons.

Learn more about Boyle's Law here:

https://brainly.com/question/21184611

#SPJ3

An ideal diatomic gas starting at room temperature T1 = 300 K and atmospheric pressure p1 = 1.0 atm is compressed adiabatically to 1/10 of its original volume. What is the final temperature of the gas?

Answers

Answer:

The final temperature of the given ideal diatomic gas: T₂ = 753.6 K

Explanation:

Given: Atmospheric pressure: P = 1.0 atm

Initial Volume: V₁ , Final Volume: V₂ = V₁ (1/10)

⇒ V₁ / V₂ = 10

Initial Temperature: T₁ = 300 K, Final temperature: T₂ = ? K

 

For a diatomic ideal gas: γ =  7/5

For an adiabatic process:

[tex]V^{\gamma-1 }T = constant[/tex]

[tex]V_{1}^{\gamma-1 }T_{1} = V_{2}^{\gamma-1 }T_{2}[/tex]

[tex]\left [\frac{V_{1}}{V_{2}} \right ]^{\gamma-1 } = \frac{T_{2}}{T_{1}}[/tex]

[tex]\left [10 \right ]^{\frac{7}{5}-1 } = \frac{T_{2}}{300 K}[/tex]

[tex]\left [10 \right ]^{\frac{2}{5} } = \frac{T_{2}}{300 K}[/tex]

[tex]2.512 = \frac{T_{2}}{300 K}[/tex]

[tex]T_{2} = 753.6 K[/tex]

Therefore, the final temperature of the given ideal diatomic gas: T₂ = 753.6 K

Consider the reaction: H2(g) + I2(g)->2HI(g)
A reaction mixture in a 3.67-L flask at a certain temperature initially contains 0.763 g H2 and 96.9 g I2. At equilibrium, the flask contains 90.4 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature.

Answers

To calculate the equilibrium constant (Kc) for the reaction H2(g) + I2(g) \ightarrow 2HI(g), the moles of each reactant and product at equilibrium were calculated and then converted to concentrations. Using the concentrations, the Kc was determined to be approximately 610.97.

The reaction in question is H2(g) + I2(g) \ightarrow 2HI(g). To calculate the equilibrium constant (Kc), we need to determine the moles of HI, H2, and I2 at equilibrium. The molecular weights of H2, I2, and HI are approximately 2 g/mol, 254 g/mol, and 128 g/mol, respectively.

Initial moles of H2 = 0.763 g / 2 g/mol = 0.3815 mol

Initial moles of I2 = 96.9 g / 254 g/mol = 0.3815 mol

At equilibrium, there are 90.4 g of HI:

Equilibrium moles of HI = 90.4 g / 128 g/mol = 0.70625 mol

Since the reaction produces 2 moles of HI for every 1 mole of H2 and I2 that react, 0.70625 mol of HI would require half that amount of H2 and I2 to react:

Moles of H2 and I2 reacted = 0.70625 mol HI / 2 = 0.353125 mol

Moles of H2 and I2 at equilibrium = initial moles - moles reacted

Equilibrium moles of H2 = 0.3815 mol - 0.353125 mol = 0.028375 mol

Equilibrium moles of I2 = 0.3815 mol - 0.353125 mol = 0.028375 mol

We then convert these moles to concentrations by dividing by the volume of the flask:

[H2] = 0.028375 mol / 3.67 L \hickapprox 0.007732 M

[I2] = 0.028375 mol / 3.67 L \hickapprox 0.007732 M

[HI] = 0.70625 mol / 3.67 L \ hickapprox 0.192398 M

Now, we can calculate the equilibrium constant Kc

Kc = [HI]² / ([H2][I2]) = (0.192398 M)² / (0.007732 M × 0.007732 M) \hickapprox 610.97

The following ions contain the same number of electrons. Rank them in order of decreasing ionic radii.?A. Na+B. Mg 2+C. Al 3+D. O 2-E. N 3-F. F -

Answers

Answer:

N3- > O2- > F- > Na+ > Mg2+ > Al3+

Explanation:

The ionic radio can simply be defined as the distance from the center of the nucleus to the electron in the outermost shell.

It should be noticed that all these ions belong to elements in group 3 of the periodic table.

It must be noted that anions I.e negative ions are generally bigger than anions.

Hence, it is expected that the negative ions are bigger. The arrangement goes thus:

N3- > O2- > F- > Na+ > Mg2+ > Al3+

Final answer:

The ions are ranked according to the number of protons in their nucleus, from least to most, which corresponds to the decreasing ionic radii. Therefore, the order of decreasing ionic radii is: N 3-, O 2-, F -, Na+, Mg 2+, Al 3+.

Explanation:

The ions Na+, Mg 2+, Al 3+, O 2-, N 3- and F - all contain the same number of electrons so they are considered isoelectronic. The size of isoelectronic species depends on their nuclear charges, that is, the number of protons in their nucleus. An ion with more protons will have a stronger nuclear charge which attracts the negatively charged electrons more, causing the ion to be smaller.

So, when you put the ions in order of decreasing ionic radii, the ion with the most protons will be the smallest. Therefore, the order of decreasing ionic radii will be: N 3- < O 2- < F - < Na+ < Mg 2+ < Al 3+. This indicates that N 3- has the largest ionic radius while Al 3+ has the smallest ionic radius among these ions.

Learn more about Ionic Radius here:

https://brainly.com/question/33300977

#SPJ11

An ionic compound is formed when there is a reaction between the elements

Answers

Final answer:

Ionic compounds are formed when a metal and a nonmetal react, leading to a transfer of electrons and the formation of ions. These ions are held together by ionic bonds, which demonstrate strong electrostatic attraction. These compounds display unique properties, including high melting and boiling points, and they can conduct electricity when dissolved or melted.

Explanation:

An ionic compound is formed when an element composed of atoms that readily lose electrons (a metal) reacts with an element composed of atoms that readily gain electrons (a nonmetal). This process usually leads to a transfer of electrons, resulting in the production of ions. For example, sodium atoms can lose an electron to form positively charged sodium ions (Na+), while chlorine atoms can gain an electron to form negatively charged chloride ions (Cl-). A compound such as NaCl consists of these sodium and chloride ions held together by ionic bonds — the electrostatic attractions between oppositely charged ions.

Ionic compounds have certain distinct properties. They exhibit a crystalline structure and are usually rigid and brittle. Their melting and boiling points tend to be high, implying the strength of the ionic bonds. These compounds are poor conductors of electricity in their solid state due to the immobility of ions, but once dissolved or melted, they become excellent conductors because the ions are free to move.

Learn more about Ionic Compounds here:

https://brainly.com/question/3222171

#SPJ3

Which of the following statements about ethylene and polyethylene is true?
A) The polymer has the same properties as the monomer.
B) The polymer has alternating double and single bonds between carbons, while the monomer has only single bonds between carbons.
C) The polymer has alternating double and single bonds between carbons, while the monomer has only double bonds between carbons.
D) The polymer has only single bonds between carbons, while the monomer has only double bonds between carbons.

Answers

Answer:

D is the correct option.

Explanation:

The structure of ethene/ethyelene is : [tex]H_{2}[/tex]C==C[tex]H_{2}[/tex]

The carbon atoms are bonded together by a double bond.

The structure of polyethylene/polythene is: (-[tex]H_{2}[/tex]C-C[tex]H_{2}[/tex]-[tex])_{n}[/tex]

The carbon atoms are bonded together by single bonds.

Lets analyse each option:

A) Its false. Lets look at the obvious: Ethylene is a gas and polyethylene is a solid. Monomers and polymers have very different properties.

B) Its false. Polyethylene doesnt have double bonds.

C) False as well. Polyethylene doesnt have double bonds.

D) True. It is evident from the structure of the the monomer and polymer that I've shown above. I'll also provide neat structures in the attachments.

Use the information in the table to identify the metal with a volume of 1.38 cm3.

Answers

Answer:

The metal with a volume of [tex]1.38 cm^3 [/tex] is zinc.

Explanation:

Density is defined as mass of the substance present in the unit volume of the substance.

[tex]Density=\frac{mass}{Volume}[/tex]

For aluminum:

Mass of aluminium metal , M = 4.60 g

Volume of the aluminium metal = V

Density of the aluminium metal = d = [tex]2.70 g/cm^3[/tex]

[tex]V=\frac{M}{d}=\frac{4.60 g}{2.70 g/cm^3}=1.70 cm^3[/tex]

For Zinc :

Mass of zinc metal , M = 9.81 g

Volume of the zinc metal = V

Density of the zinc metal = d = [tex]7.13 g/cm^3[/tex]

[tex]V=\frac{M}{d}=\frac{9.81 g}{7.13 g/cm^3}=1.38 cm^3[/tex]

For chromium :

Mass of chromium metal , M= 6.24 g

Volume of the chromium metal = V

Density of the chromium metal = d = [tex]7.18 g/cm^3[/tex]

[tex]V=\frac{M}{d}=\frac{6.24 g}{7.18 g/cm^3}=0.87 cm^3[/tex]

For nickel :

Mass of nickel metal , M= 3.17 g

Volume of the nickel metal = V

Density of the nickel  metal = d = [tex]8.90 g/cm^3[/tex]

[tex]V=\frac{M}{d}=\frac{3.17 g}{8.90 g/cm^3}=0.36 cm^3[/tex]

The metal with a volume of [tex]1.38 cm^3 [/tex] is zinc.

Answer:

B - zinc

Explanation:

Hope this helps! ✌

Given a reaction between an organic molecule, denoted as A, and NaSH, we observe the following observations. Using the observations, write a rate law for the reaction. (a) The rate triples when the concentration of [A] is tripled and the concentration of [NaSH] is held constant. (b) The rate is decreased when the concentration of [A] is doubled and the concentration of [NaSH] is cut by a factor of 3. (c) The rate doubles when the concentration of [A] is cut in half and the concentration of [NaSH] is quadrupled. (d) The rate increases with an increase in temperature.

Answers

Final answer:

The rate law for the reaction can be determined by analyzing the effects of changing reactant concentrations. Based on the given observations, the rate law can be written as rate = k[A]/[NaSH] and rate = [tex]k[A][NaSH]^2[/tex] for the given conditions. Additionally, the rate constant, k, is temperature-dependent.

Explanation:

The rate law for the reaction can be determined by examining the effects of changing the concentrations of reactants on the rate of the reaction. Based on the given observations, we can conclude the following:

(a) The rate triples when the concentration of [A] is tripled and the concentration of [NaSH] is held constant. This suggests that the reaction rate is directly proportional to the concentration of A, so the rate law can be expressed as rate = k[A]

(b) The rate is decreased when the concentration of [A] is doubled and the concentration of [NaSH] is cut by a factor of 3. This implies that the rate is inversely proportional to the concentration of [NaSH], so the rate law can be written as rate = [tex]k[A]/[NaSH][/tex]

(c) The rate doubles when the concentration of [A] is cut in half and the concentration of [NaSH] is quadrupled. This indicates that the rate is quadratically proportional to the concentration of [NaSH], so the rate law can be expressed as rate = [tex]k[A][NaSH]^2[/tex]

(d) The rate increases with an increase in temperature. This suggests that the rate constant, k, in the rate law equation is temperature-dependent.

Learn more about Rate Law here:

https://brainly.com/question/35884538

#SPJ12

Caffeine, a stimulant in coffee and tea, has a molar mass of 194.19 g/mol and a mass percentage composition of 49.48% C, 5.19% H, 28.85% N, and 16.48% O. What is the molecular formula of caffeine?

Answers

Answer : The molecular formula of a caffeine is, [tex]C_8H_{10}N_4O_2[/tex]

Solution :

If percentage are given then we are taking total mass is 100 grams.

So, the mass of each element is equal to the percentage given.

Mass of C = 49.48 g

Mass of H = 5.19 g

Mass of N = 28.85 g

Mass of O = 16.48 g

Molar mass of C = 12 g/mole

Molar mass of H = 1 g/mole

Molar mass of N = 14 g/mole

Molar mass of O = 16 g/mole

Step 1 : convert given masses into moles.

Moles of C = [tex]\frac{\text{ given mass of C}}{\text{ molar mass of C}}= \frac{49.48g}{12g/mole}=4.12moles[/tex]

Moles of H = [tex]\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{5.19g}{1g/mole}=5.19moles[/tex]

Moles of N = [tex]\frac{\text{ given mass of N}}{\text{ molar mass of N}}= \frac{28.85g}{14g/mole}=2.06moles[/tex]

Moles of O = [tex]\frac{\text{ given mass of O}}{\text{ molar mass of O}}= \frac{16.48g}{16g/mole}=1.03moles[/tex]

Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.

For C = [tex]\frac{4.12}{1.03}=4[/tex]

For H = [tex]\frac{5.19}{1.03}=5.03\approx 5[/tex]

For N = [tex]\frac{2.06}{1.03}=2[/tex]

For O = [tex]\frac{1.03}{1.03}=1[/tex]

The ratio of C : H : N : O = 4 : 5 : 2 : 1

The mole ratio of the element is represented by subscripts in empirical formula.

The Empirical formula = [tex]C_4H_5N_2O_1=C_4H_5N_2O[/tex]

The empirical formula weight = 4(12) + 5(1) + 2(14) + 16 = 97 gram/eq

Now we have to calculate the molecular formula of the compound.

Formula used :

[tex]n=\frac{\text{Molecular formula}}{\text{Empirical formula weight}}[/tex]

[tex]n=\frac{194.19}{97}=2[/tex]

Molecular formula = [tex](C_4H_5N_2O)_n=(C_4H_5N_2O)_2=C_8H_{10}N_4O_2[/tex]

Therefore, the molecular of the caffeine is, [tex]C_8H_{10}N_4O_2[/tex]

Assume that you react 100 mg of benzoic acid with 10 mL of methanol and 10 microliters of sulfuric acid to produce methyl benzoate. Write a balance chemical equation for this reaction. Determine the limiting reagent and calculate a theoretical yield of both the ester and water. If you isolate 75 mg of methyl benzoate, what is the actual yield of the reaction?

Answers

Explanation:

Balanced equation for the reaction between benzoic acid and metanol is as follows.

  [tex]C_{6}H_{5}COOH + CH_{3}OH \overset{H_{2}SO_{4}}{\rightarrow} C_{6}H_{5}COOCH_{3}[/tex]

Since, volume of [tex]H_{2}SO_{4}[/tex] is very small so, that is catalytic amount of [tex]H_{2}SO_{4}[/tex] which is used.

As mass of benzoic acid is 100 mg. Hence, moles of benzoic acid are calculated as follows.

      No. of moles of benzoic acid = [tex]\frac{mass}{molar mass}[/tex]

                                                       = [tex]\frac{100 mg}{122.12 g/mol}[/tex]

                                                       = 0.818 mmol

And, mass of methanol = volume × density

                                       = [tex]10 ml \times 0.792 g/mol[/tex]

                                       = 7.92 g

Now, number of moles of methanol is as follows.

     No. of moles of methanol = [tex]\frac{mass}{molar mass}[/tex]

                                                       = [tex]\frac{ 7.92 g}{32.04 g/mol}[/tex]

                                                       = 0.024 mol      

                                                       = 24.7 mmol    

As number of moles of benzoic acid are smaller than the number of moles of methanol. Hence, benzoic acid is the limiting reagent.

As per the balanced equation, 1 mole of benzoic acid produces 1 mole of methyl benzoate.

Hence, 0.818 mmol of benzoic acid would produce 0.818 mmol of methyl benzoate. Therefore, theoretical yield of methyl benzoate is as follows.

     Theoretical yield of methyl benzoate = [tex]0.818 mmol \times 136.15 g/mol[/tex]      

                                             = 111.48 mg

or,                                          = 111.5 mg (approx)

Now, we will calculate the percent yield of the reaction as follows.

            Percent yield = [tex]\frac{\text{Actual yield}}{\text{Theoretical yield}} \times 100[/tex]

                                   = [tex]\frac{75 mg}{111.5 mg} \times 100[/tex]

                                   = 67.27%

Therefore, we can conclude that the actual yield of the reaction is 67.27%.

Final answer:

The limiting reagent in the synthesis of methyl benzoate from benzoic acid and methanol is benzoic acid. The theoretical yield is approximately 111.5 mg of methyl benzoate, and with an actual yield of 75 mg, the percent yield is approximately 67.26%.

Explanation:

The balanced chemical equation for the reaction between benzoic acid (C7H6O2) and methanol (CH3OH) to produce methyl benzoate (C8H8O2) and water (H2O) in the presence of sulfuric acid (H2SO4) as a catalyst is:

C7H6O2 + CH3OH
ightarrow C8H8O2 + H2O

To determine the limiting reagent, we need to compare the mole ratios of the reactants. The molar mass of benzoic acid is about 122.12 g/mol and methanol is about 32.04 g/mol. Converting the mass of benzoic acid (100 mg = 0.1 g) to moles yields 0.000819 moles, while 10 mL of methanol (assuming a density of approximately 0.79 g/mL) gives 0.248 moles. Since benzoic acid has fewer moles, it is the limiting reagent.

The theoretical yield of methyl benzoate can be calculated based on the moles of benzoic acid, which will also be equal to the moles of water produced as this is a 1 to 1 reaction. This yields 0.000819 moles of methyl benzoate, and with a molar mass of 136.15 g/mol, the theoretical mass of methyl benzoate is approximately 111.5 mg.

The actual yield is 75 mg of methyl benzoate. Therefore, the percent yield can be calculated by dividing the actual yield by the theoretical yield and multiplying by 100, which results in approximately 67.26%.

Isopropyl alcohol is mixed with water to produce a 40.0 % (v/v) alcohol solution. How many milliliters of each component are present in 675 mL of this solution? Assume that volumes are additive.

Answers

Answer : The volume of water and alcohol present in 675 mL of this solution are 405 mL and 270 mL respectively.

Explanation :

As we are given that 40.0 % (v/v) alcohol solution. That means, 40.0 mL of alcohol present 100 mL of solution.

Now we have to calculable the volume of alcohol in 675 mL solution.

As, 100 mL of solution contains 40.0 mL of alcohol

So, 675 mL of solution contains [tex]\frac{675}{100}\times 40.0=270mL[/tex] of alcohol

Thus, the volume of alcohol = 270 mL

Now we have to calculate the volume of water.

Volume of water = Volume of solution - Volume of alcohol

Volume of water = 675 mL - 270 mL

Volume of water = 405 mL

Thus, the volume of water = 405 mL

Hence, the volume of water and alcohol present in 675 mL of this solution are 405 mL and 270 mL respectively.

A 1.0 M solution of hydrochloric acid is mixed with an equal volume of sodium hydroxide solution. The resulting solution turns pH paper blue, meaning the solution is basic. Which of the following concentrations would be consistent with the experimental results for sodium hydroxide?
A. 1.0 M
B. 2.0 M
C. 0.5 M
D. 0.25 M

Answers

Answer:B since it have to be in excess inorder to result into basic salt result to blue colour

Consider two solutions separated by a semi permeable membrane. The membrane allows the passage of small molecules and ions, but not large molecules like polysaccharides are proteins. Solution A contains a 10% solution composed of glucose and the protein albumin dissolved in water. Solution B contains a 5% solution of NaCl in water. Indicate whether each substance in the system would flow into Solution A, Solution B, or neither.

a. Water:
b. NaCl:
c. Albumin:
d. Glucose:

Answers

i would saythat the answer would be D

Which argument(s) for the increasing use of solar energy is/are valid?
I. Solar cells are becoming cheaper and increasingly more efficient.
II. The cost of generating electricity from fossil fuels is increasing.
III. Limited and uncertain supply and the increasing requirements for pollution control are raising the cost of fossil fuels.
A. I only
B. II only
C. I and III only
D. I, II, and III

Answers

Answer:

Option D is correct.

Explanation:

Option D is correct.

Solar cells are replacing the conventional ways of making electricity. They are getting cheaper with each coming day. Secondly they use the renewable energy which causes no pollution and is available in large amount as our sun is a continuous source of energy. Another reason fossil fuels are getting out of fashion because they require huge setups and initial cost. Their burning emit green house and other toxic gases which cause rise in temperature and pollution. Also their amount is decreasing which make it expensive to use.

In this experiment, direct titration of a base with acid is not used. Instead, a back titration of a base with excess acid will be employed. Why?

a. The CO2 gas is released during the chemical reaction and is a slow step
b. There is a time delay between the addition of the acid and the completion of the reaction
c. The endpoint of the titration would be unclear because straight titration does not allow enough reaction timed
d. none of the above
e. all of the above

Answers

None of the options are not used in this experiment, hence "all of the above" is the correct answer.

Option: E

Explanation:

In the above experiment "back titration" is opted because of the need to determine "strength of an analyte" as "molar concentration" of an excess reactant is known. It is done when acid or mostly base is an insoluble salt, when reaction take palce very slowly and definitely when endpoint would be hard to discern for example titration of weak acid and weak base. The procedure to follow back titration is firstly the volatile analyte is reacted with an excess reagent then the titration is done on remaining amount of known solution.

Organic compounds are distinguished by molecules that contain ________ bonded to other elements.

Answers

The answer is carbon

The heat of vaporization of water at 100°c is 40.66 kj/mol. Calculate the quantity of heat that is absorbed/released when 9.00 g of steam condenses to liquid water at 100°c.

Answers

Final answer:

When 9.00g of steam condenses to liquid water at 100°C, 20.3 kJ of heat is released. This is calculated by converting the mass of water to moles, then multiplying by the heat of vaporization.

Explanation:

The heat absorbed or released during the condensation of steam to liquid water is calculated by using the heat of vaporization (40.66 kJ/mol) and the moles of water. The mass of water given is 9.00g, which is converted to moles by dividing by the molar mass of water (18.02g/mol), resulting in 0.499 mol of water. The heat absorbed/released (Q) is calculated by multiplying the number of moles and the heat of vaporization. So, Q = 0.499 mol * 40.66 kJ/mol = 20.3 kJ (3 sig figs). So when 9.00g of steam condenses to liquid water at 100°C, 20.3 kJ of heat is released.

Learn more about Heat of Vaporization here:

https://brainly.com/question/33393699

#SPJ12

A buffer with a pH of contains M of sodium benzoate and M of benzoic acid. What is the concentration of in the solution after the addition of mol to a final volume of L? Assume that any contribution of to the volume is negligible.please Answer for H3O+. will rate

Answers

Answer:

benzoic acid(C7H6O2)--->

C7H5NaO2(sodium benzoate)+H30+

The answer is given per the balanced eqn

In the reaction between CO and Fe3O4, the theoretical yield in an experiment is calculated to be 47.2 gFe. When a careless chemistry student carries out the experiment, the actual yield is 42.9 Fe. Calculatethe percentage yield.
A) 88.5%
B) 70.2%
C) 89.9%
D) 74.3%
E) 90.9%

Answers

Answer:

The percentage yield is 90.9 % (option e)

Explanation:

A simple rule of three to explain this.

If the theoretical yield of the reaction is 47.2 g Fe, we assume it as 100%, then what percentage of yield means 42.9 g Fe

47.2 g Fe _____ 100 %

42.9 g Fe ______ ( 42.9  .  100)/ 47.2 = 90.88%

Substituting the given values, the percentage yield is approximately E) 90.9%.

To find the percentage yield, we need to use the formula:

Percentage Yield = (Actual Yield / Theoretical Yield) × 100%

Given the actual yield as 42.9 g Fe and the theoretical yield as 47.2 g Fe, we can substitute these values into the formula:

Calculating -

[tex]\text{Percentage Yield} &= \left( \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \right) \times 100\% \\\\\text{Percentage Yield} &= \left( \frac{42.9 \, \text{g}}{47.2 \, \text{g}} \right) \times 100\% \\\\\text{Percentage Yield} &= \left( \frac{42.9}{47.2} \right) \times 100\% \\\\\text{Percentage Yield} &\approx 0.9091 \times 100\% \\\\\text{Percentage Yield} &\approx 90.91\%[/tex]

Therefore, the percentage yield of the reaction is E) 90.9%.

The electronegativities for the elements vary from 0.7 for cesium to 4.0 for fluorine. The electronegativity for iodine is 2.5. Based entirely on the general guidelines for electronegativities and bond character:

a) binary compounds with iodine should all be polar covalent with a δ- on I.
b) binary compounds with iodine should all polar covalent with a δ+ on I.
c) compounds with iodine may be ionic, polar covalent, or nonpolar covalent.
d) no binary compounds with iodine should be substantially ionic.

Answers

Answer:

a) binary compounds with iodine should all be polar covalent with a δ- on I.

Explanation:

Electronegativity can be defined as the ability of an atom to attract shared pair of electrons towards itself.

the correct answer is a) binary compounds with iodine should all polar covalent with a δ- on I.

The binary compounds as the name suggests are compounds made of two elements. Halogens being the most electronegative element in periodic table  , tend to attract the shared pair towards themselves. Iodine has high electronegativity and large atomic size hence it polarizes the electron cloud towards itself. Due to this it acquires a negative charge on it. therefore, bonds are polar with δ- charge on iodine.

Final answer:

Compounds with iodine may be ionic, polar covalent, or nonpolar covalent depending on the other element it is bonded with.

Explanation:

Based on the general guidelines for electronegativities and bond character, compounds with iodine may be ionic, polar covalent, or nonpolar covalent. The electronegativity of iodine is 2.5, which falls within the range where both ionic and polar covalent bonds can form. Therefore, binary compounds with iodine can exhibit a range of bond character depending on the other element it is bonded with.

As atoms gain energy, they move faster and slide past one another more easily. Atoms at the surface of the substance overcome attractions to nearby atoms and break free of the surface. Which change of state is taking place?
- liquid to gas
- gas to liquid
- liquid to solid
- solid to liquid

Answers

Answer:

Liquid to gas

Explanation:

There are three states of matter, the solid, liquid and gaseous states. These states can be compared in a number of ways. These comparisms would tell us that the molecules of gases have the highest mobility.

The freedom possessed by these molecules are as a result of there inherent kinetic energy. While we have the highest confinement for solids, molecules of solids still have a level of freedom and hence although confined can move in some directions but are not entirely free from the total confinement of intermolecular forces like solids.

Hence,this total freedom is a character of gaseous molecules. As we were made to know in the question that they already had exhibited degree of movement to an extent,the total breakaway is to the gaseous state.

Thus,the phase transition is from liquid to gaseous state.

Vaporization (evaporation) is the transition from liquid to gas as atoms gain energy, break free of surface attractions, and move freely.

Vaporization (evaporation) is the change of state taking place when atoms at the surface of a substance absorb energy, overcome attractions to nearby atoms, and break free of the surface, transitioning from liquid to gas. This process involves the absorption of energy, which allows particles to move freely and transition into the gas phase.

A moving company is called into a building and asked to relocate 520 bricks to a location 15 meters above the ground. If each brick is 4 kilograms, what amount of work will be needed to accomplish the task?A. 305,760 JB. 229,320 JC. 203,840 JD. 588,000 J

Answers

Answer: A. 305,760 J

Explanation:

Work is defined as a force causing the movement or displacement of an object.

work=[tex]mass\times acceleration\times height[/tex]

Given: m=  mass = 4 kg

g= acceleration due to gravity = [tex]9.80m/s^2[/tex]

h = height = 15m

Putting in the values we get,

work=[tex]4kg\times 9.80m/s^2\times 15m=588J[/tex]

[tex]1kgm^2s^{-2}=1Joule(J)[/tex]

Now 520 bricks are to be relocated, thus work done = [tex]520\times 588J=305760J[/tex]

Thus amount of work will be needed to accomplish the task is 305760 J.

The pH scale for acidity is defined by pH=−log10[H⁺] where [H⁺]is the concentration of hydrogen ions measured in moles per liter (M). A solution has a pH of 12.25. Calculate the concentration of hydrogen ions in moles per liter (M). The concentration of hydrogen ions is ___________ moles per liter.

Answers

Answer:

5.62 * 10^-13 moles per liter

Explanation:

The pH of a solution is the negative logarithm to base 10 of the concentration of hydrogen ions. What we simply do here is to input the information in the question into the equation:

pH=−log10[H⁺]

Here we know the pH but we do not know the concentration of the hydrogen ions.

12.25 = -log [H+]

log[H+] = -12.25

[H+] = 10^-12.25

[H+] = 5.62 * 10^-13 moles per liter

Final answer:

The concentration of hydrogen ions in the solution with a pH of 12.25 is calculated using the formula [H⁺] = 10^(-pH) which gives a result of 10^(-12.25) moles per liter.

Explanation:

The pH scale for acidity is defined by pH=-log10[H+] where [H+] is the concentration of hydrogen ions. A solution has a pH of 12.25. Given that the pH = -log10[H⁺], to get the hydrogen ion concentration when the pH value is known, you rearrange the pH formula to the following: [H⁺] = 10^-pH. Substituting 12.25 for pH, the concentration of hydrogen ions in the solution is 10^(-12.25) moles per liter. This calculation is based on the principles of logarithms and the properties of the pH scale.

Learn more about pH scale here:

https://brainly.com/question/1433865

#SPJ11

What representative units define molecular compounds and ionic compounds?

Answers

Answer:

The molecular formula of the compounds indicates the amount of atoms that the substance contains. For example, water whose formula is H2O contains 2 atoms of hydrogen and 1 of oxygen. The representative unit of a molecular compound is a molecule while ions are represented by a formula unit.

Mole can be a unit 6.02 × 10²³. The units may be electrons, atoms, ions, or molecules, depending on the nature of the substance

Explanation:

The molecular formula of the compounds indicates the amount of atoms that the substance contains. For example, water whose formula is [tex]H2O[/tex] contains 2 atoms of hydrogen and 1 of oxygen. The representative unit of a molecular compound is a molecule while ions are represented by a formula unit.

Mole can be a unit 6.02 × 10²³. The units may be electrons, atoms, ions, or molecules, depending on the nature of the substance.

Therefore, water whose formula is [tex]H2O[/tex] contains 2 atoms of hydrogen and 1 of oxygen. The representative unit of a molecular compound is a molecule while ions are represented by a formula unit.

Learn more about water on:

https://brainly.com/question/28465561

#SPJ6

The mass of solute per 100 mL of solution is abbreviated as (m/v). Mass is not technically the same thing as weight, but the abbreviation (w/v) is also common. How many grams of sucrose are needed to make 765 mL of a 31.0 % (w/v) sucrose solution?

Answers

Answer:

There are needed 237.15 g of sucrose.

Explanation:

The 31.0 % (w/v) of the sucrose solution means that in 100 ml of solution, you have 31 g of solute, in this case sucrose.

So you want to make a solution with 765 mL.

Let's think the rule of three:

100 mL solution__contain __31 g sucrose

765 mL solution _________ (765 . 31 ) /100 = 237.15 g

Cesium chloride has a lattice energy -657.0 kJ/mol and a heat of hydration of -639.0 kJ/mol. Determine how much heat is evolved or absorbed when 30.0 g of cesium chloride completely dissolves in water.

Answers

Answer:

Q = 3.21 kJ

Explanation:

First, with the heat of hydration and the lattice energy, we can actually calculate the difference between those two to get the heat evolved per mole. In this case it would be:

657 - 639 = 18 kJ/mol

Now, the expression to get the heat is:

Q = m*ΔE

We already have the energy, now we need to get the moles of the cesium chloride.

The molar mass of cesium chloride is 168.36 g/mol, so the moles:

mole = 30/168.36 = 0.1781 moles

Finally the heat:

Q = 0.1781 * 18

Q = 3.21 kJ

An electrochemical cell is constructed using two half-cells: Al(s) in Al(NO2)3(aq) and Cu(s) in Cu(NO3)2(aq). The two half cells are connected by a KNO3 salt bridge and two copper wires from the electrodes to a voltmeter. Based on their respective standard reduction potentials, which half-cell is the cathode?

Answers

Answer:

Cu(s) in Cu(NO₃)₂(aq)

Explanation:

The standard reduction potential (E°) is the energy necessary to reduce the atom in a redox reaction. When an atom reduces it gains electrons from other than oxides. As higher is E°, easily it will reduce. The substance that reduces is at the cathode of a cell, where the electrons go to, and the other that oxides are at the anode of the cell.

The standard reduction potentials from Al(s) and Cu(s) are, respectively, -1.66V and +0.15V, so the half-cell of Cu(s) in Cu(NO₃)₂(aq) is the cathode.

an element is a mixture of two isotopes. one isotope has an atomic mass of 34.96885 amu and has an abundance of 75.53%. The other isotope has an atomic mass of 36.96590 amu. Calculate the average atomic mass and identify the element?

Answers

Answer:

35.4575 amu

Explanation:

We use the relative abundance of each of the isotopes.

Let the isotopes be A and B.

Since A is having an abundance of 75.53, the abundance of B would be 100 - 75.53 = 24.47%

The average atomic mass is calculated as follows;

(75.53/100 * 34.96885)  + (24.47/100 * 36.96590) = 26.4119 + 9.0456 = 35.4575 amu

Final answer:

To find the average atomic mass of an element with two isotopes, multiply each isotope's mass by its fractional abundance and sum the results. The average atomic mass for the element given with isotopic masses of 34.96885 amu and 36.96590 amu is 35.4458 amu, which identifies the element as chlorine.

Explanation:

The average atomic mass of an element that is a mixture of two isotopes can be calculated using the isotopic masses and their abundances. In this case, we have two isotopes with masses of 34.96885 amu and 36.96590 amu and an abundance of 75.53% and 24.47% (100% - 75.53%), respectively. To find the average atomic mass, we multiply each isotope's mass by its abundance (as a decimal), and then add the results.

First, for the isotope with a mass of 34.96885 amu and an abundance of 75.53%, we calculate:

34.96885 amu × 0.7553 = 26.4062 amu

Similarly, for the other isotope with a mass of 36.96590 amu, we use its abundance of 24.47% (100% - 75.53%):

36.96590 amu × 0.2447 = 9.0396 amu

Adding these together gives us the average atomic mass:

26.4062 amu + 9.0396 amu = 35.4458 amu

The average atomic mass is 35.4458 amu. Comparing this with the periodic table, we can identify the element as chlorine since its atomic mass is closest to this calculated average.

[tex]H_2(g) + I_2(g) \longrightarrow 2HI(g)[/tex]
The forward reaction above is exothermic. At equilibrium, what happens if the reaction mixture is cooled at constant volume?
Select all that apply.
1. The reaction absorbs energy.
2. The reaction releases energy.
3. [H₂] and [I₂] increase.
4. [H₂] and [I₂] decrease.
5. [H₂] and [I₂] remain constant.
6. [HI] increases.
7. [HI] decreases.
8. [HI] remains constant.

If C is added to the equilibrium system above, in which direction will the equilibrium shift?

Answers

Answer:

The appropriate options are:

2. The reaction releases energy.

4. [tex][H_{2}][/tex] and [tex][I_{2}][/tex] increase.

6. [tex][HI][/tex] increases.

The addition of a non-reacting component C will have no effect on the equilibrium system at constant volume.

Explanation:

[tex]H_{2}+I_{2}\longrightarrow2HI(exothermic)[/tex]

The question can be answered by using Le Chatelier's principle.

According to Le Chatelier's Principle, for a exothermic reaction, decreasing the temperature at equilibrium will cause the forward reaction to occur.

If the forward reaction occurs, subsequently the concentrations of the reactants will decrease and that of the product will increase.

This is the reason for the options 4 and 6 being correct.

Exothermic reactions are the ones that release energy and endothermic reactions are the ones that absorb energy.

Since the forward reaction is exothermic, cooling the reaction mixture at constant volume, will lead to a release of energy.

This is the reason for the option 2 to be correct.

If a component C is added at constant volume, there will be no effect on the equilibrium system, assuming that the component C is non-reacting.

The concentration of that component C will increase, at constant volume.

Which elements can form diatomic molecules joined by a single covalent bond?

Answers

Answer:

Hydrogen and halogens.

Explanation:

There are seven types diatomic molecules are present in natural state: Hydrogen, chlorine, fluorine, nitrogen, bromine, iodine, and oxygen.

Hydrogen is the first element which have one electron and needs only one electron to fill its valence shell and form 2 hydrogen single bond to form H2.

The halogens, chlorine, fluorine, bromine, and iodine they all contain seven valence electrons. They all need one more electron so, they are sharing their one electron to fill its valence shell, and get Cl2, F2, Br2 and I2 (all single bonds)

Oxygen contains six valence electrons, each oxygen molecule needs 2 more electrons, and they contain 2 unpaired electrons. So, they share both electrons and form double bond.

Nitrogen contains five valence electrons. Each nitrogen atom required 3 more electrons and contains 3 unpaired electrons. The 2 atoms shares all 3 with each other molecule and this form a triple bond.

So, only Hydrogen and halogens form diatomic molecules with the help of single bond

Answer:

Halogen elements and H, O, N.

Explanation:

All halogen elements can form covalent bonds with each other to form a diatomic molecule. You can also add nonmetals, H, O and N.

All halogens have a configuration that differs from that of noble gases in an electron, so these elements tend to form negative species (anions) or form simple covalent bonds.

The Halogen are Cl, F, Br, I, As.

Other Questions
2. Make a list of at least 5 business ideas that interest you. Then explain which one youthink is the best opportunity for you. Give at least 3 reasons why this opportunity is betterfor you than the others. (2-6 sentences. 3.0 points) What is the pharaoh responsible for selecting Why are the adjustments important to the preparation of the financial statements? (Check all that apply.) Unadjusted financial statements could present a misleading and incomplete picture of the company's financial results. Unadjusted financial statements will always show net income because the expense accounts have not been brought up to date. Adjustments ensure that the revenues earned and expenses incurred during the period are reflected in the income statement. Adjustments ensure that the balance sheet reports all of the economic resources the company owns and all of the obligations the company owes. Confidence Level ABC Companys budgeted sales for June, July, and August are 14,800, 18,800, and 16,800 units, respectively. ABC requires 30% of the next months budgeted unit sales as finished goods inventory each month. Budgeted ending finished goods inventory for May is 4,440 units. Required: Calculate the number of units to be produced in June and July. A 1200 kg car carrying four 80 kg people travels over a rough "washboard" dirt road with corrugations 4.0 m apart which causes the car to bounce on its spring suspension. The car bounces with maximum amplitude when its speed is 15 km/h. The car now stops, and the four people get out. By how much does the car body rise on its suspension owing to this decrease in weight? How is str data used in a dna paternity test? Q3:A company sells bikes for $120 each. They pay a monthly rent of $1,800 for their store and each bike costs them $60 in materials. Write the revenue and cost functions and find the break-even point by graphing. When historians want to evaluate a primary source in the form of human remains, they send the remains to A research team is working on the design of a new drug for the treatment of lung cancer. To be most effective, this drug most specifically enter the cytoplasm of lung cells while not entering the cells of other tissues. Which of the following characteristics would likely enhance the specificity of this drug? In twentieth-century music ________.a. string players are sometimes called on to use the wood instead of the hair on their bowsb. dissonance has been emancipatedc. percussion instruments have become very prominent and numerousd. All answers are correct. At this point, the tube that carries the sperm outside the body meets the prostate gland. Before a male can ejaculate, the spongy tissue surrounding the penis called, ___________, becomes engorged with blood causing the penis to become rigid. (5 points) Question 12 options: 1) epidermal tissue 2) erectile tissue 3) necrotic tissue 4) epithelial tissue Question with 1 blank Diego y Javier (conseguir) un mapa. Question 2 with 1 blankEsta maana usted (pedir) mucho caf. Question 3 with 1 blankT (sentirse) mal ayer. Question 4 with 1 blankLa semana pasada yo no (dormir) bien. Question 5 with 1 blankAmparo (preferir) comer en casa. 3 Oraciones Write sentences using the information provided. Use the preterite and make any necessary changes. Modelo Edgar / preferir / pollo asado Edgar prefiri el pollo asado. Question 1 with 1 blankAlvaro y yo / servir / los entremeses Question 2 with 1 blankquin / repetir / las instrucciones On January 1, Duane Company purchases land at a cost of $125,000. Duane incurs costs of $2,000 for the closing fees and surveys. Duane also spent $7,500 on clearing costs to prepare the land for use. What is the cost of land to be recorded by Duane? A HeNe laser illuminates a narrow, single slit that is 1850 nm wide. The first dark fringe is found at an angle of 20.0 from the central peak. 1) Determine the wavelength of the light from the laser. (Express your answer to three significant figures.) Calculate the number of Carbon atoms in 1.50g of C6H12O6 Transfer payments and subsidies now account for approximately Directions: Simplify each algebraic expression by combining like terms.1. 7x2 5x + 10x - 8x?2.-6a3 + 5a3 + 2a? - a?3. - 4(x + 5) 5(x - 1)4. -a + 5b - 6a + 5(a + 1)5. 18x4 - 3x3 - 2x3 + x2 - 10 + 6 6x - 5y = -104x+3y=6 linear equation The wheel of a car has a radius of 0.350 m. The engine of the car applies a torque of 295 N m to this wheel, which does not slip against the road surface. Since the wheel does not slip, the road must be applying a force of static friction to the wheel that produces a counter torque. Moreover, the car has a constant velocity, so this counter torque balances the applied torque. What is the magnitude of the static frictional force? A - ethene B - oxygen C - carbon dioxide D - water