The revenue from manufacturing and selling x units of toaster ovens is given by:
R(x) = –.03x^2 + 200x – 82,000
How much revenue should the company expect from selling 3,000 toaster ovens?

Answers

Answer 1

Answer:

$248,000.

Step-by-step explanation:

We have been given that the revenue from manufacturing and selling x units of toaster ovens is given by [tex]R(x)=-0.3x^2+200x-82,000[/tex].

To find the amount of revenue earned from selling 3,000 toaster, we will substitute [tex]x=3,000[/tex] in the given formula as:

[tex]R(3,000)=-0.03(3,000)^2+200(3,000)-82,000[/tex]

[tex]R(3,000)=-0.03*9,000000+600,000-82,000[/tex]

[tex]R(3,000)=-270,000+518,000[/tex]

[tex]R(3,000)=248,000[/tex]

Therefore, the company should expect revenue of $248,000 from selling 3,000 toaster ovens.


Related Questions

1,787 pages in 11 days = pages in 1 month

Answers

assuming 30 days per month.

[tex]\bf \begin{array}{ccll} pages&days\\ \cline{1-2} 1787&11\\ x&30 \end{array}\implies \cfrac{1787}{x}=\cfrac{11}{30}\implies 53610=11x \\\\\\ \cfrac{53610}{11}=x\implies 4873\frac{7}{11}=x[/tex]

Answer: 4873.64

Step-by-step explanation:

I'm assuming that you're asking how many pages there are in a month. On average, the typical month is 30 days, correct? We can plug this information into proportions.

1787/11 = x/30

1787 multiplied by 30 is 53610, and that divided by 11 would be 4873.64, when rounded to the nearest hundredth.

I hope that helped!

Look online for the growth of the trunk of a tree. Estimate how much time does it take for a water oak to grow one inch in diameter. Estimate the growth rate over a year

Answers

Answer:

Explained

Step-by-step explanation:

The trunk of a tree grows in two different ways, first in height and second in diameter.Usually tree grows one ring per year in diameter. So, counting the number of rings we can determine the age of a tree. Both height and diameter growth does not occur at the same rate. Tree grows more in height than in their diameter. Mature trees usually grows 1 inch in diameter every year.

Water oak gains 24 inches in height  every year and  1.5 inch growth in diameter annually, meaning if we divide 1.5 inches by 12 months we gets 0.125 inches growth monthly. So a water oak tree needs only 8 months to grow 1 inch in diameter.

Evaluate 1^3 + 2^3 +3^3 +.......+ n^3

Answers

Notice that

[tex](n+1)^4-n^4=4n^3+6n^2+4n+1[/tex]

so that

[tex]\displaystyle\sum_{i=1}^n((n+1)^4-n^4)=\sum_{i=1}^n(4i^3+6i^2+4i+1)[/tex]

We have

[tex]\displaystyle\sum_{i=1}^n((i+1)^4-i^4)=(2^4-1^4)+(3^4-2^4)+(4^4-3^4)+\cdots+((n+1)^4-n^4)[/tex]

[tex]\implies\displaystyle\sum_{i=1}^n((i+1)^4-i^4)=(n+1)^4-1[/tex]

so that

[tex]\displaystyle(n+1)^4-1=\sum_{i=1}^n(4i^3+6i^2+4i+1)[/tex]

You might already know that

[tex]\displaystyle\sum_{i=1}^n1=n[/tex]

[tex]\displaystyle\sum_{i=1}^ni=\frac{n(n+1)}2[/tex]

[tex]\displaystyle\sum_{i=1}^ni^2=\frac{n(n+1)(2n+1)}6[/tex]

so from these formulas we get

[tex]\displaystyle(n+1)^4-1=4\sum_{i=1}^ni^3+n(n+1)(2n+1)+2n(n+1)+n[/tex]

[tex]\implies\displaystyle\sum_{i=1}^ni^3=\frac{(n+1)^4-1-n(n+1)(2n+1)-2n(n+1)-n}4[/tex]

[tex]\implies\boxed{\displaystyle\sum_{i=1}^ni^3=\frac{n^2(n+1)^2}4}[/tex]

If you don't know the formulas mentioned above:

The first one should be obvious; if you add [tex]n[/tex] copies of 1 together, you end up with [tex]n[/tex].The second one is easily derived: If [tex]S=1+2+3+\cdots+n[/tex], then [tex]S=n+(n-1)+(n-2)+\cdots+1[/tex], so that [tex]2S=n(n+1)[/tex] or [tex]S=\dfrac{n(n+1)}2[/tex].The third can be derived using a similar strategy to the one used here. Consider the expression [tex](n+1)^3-n^3=3n^2+3n+1[/tex], and so on.

Q: Would like assistance in understanding and solving this example on Modern Algebra with the steps of the solution to better understand, thanks.

a) Determine the gcd(474,147) and write it as a linear combination of 174 and 147.

b) Prove by math induction that 2+4+6+...+2n = n(n+1) for all positive integers n.

Answers

Answer:

The gcd(474,147) = 3 and the linear combination is [tex]3=9\cdot 474 - 29\cdot 147[/tex] and the proof is below.

Step-by-step explanation:

The greatest common divisor (GCD) of two whole numbers is the largest natural number that divides evenly into both without a remainder.

To find the GCD you can use the Euclidean algorithm which is an efficient method for computing the greatest common divisor (GCD) of two integers, without explicitly factoring the two integers. Here is an outline of the steps:

Let a=x, b=yGiven x,y, use the division algorithm to write x=yq + rif r=0, stop and output y; this is the gcd of a,bif r ≠ 0, replace (x,t) by (y,r): Go to step 2

To compute gcd(474,147), divide the larger number by the smaller number, using the division algorithm we have

[tex]\frac{474}{147} \\= 474-147=327\\327-147=180\\180-147=33\\[/tex]

At this point, we cannot subtract 147 again. Hence 3 is the quotient ( we subtract 147 from 474 3 times) and 33 is the remainder. We can express this as a linear combination [tex]474 = 147*3+33[/tex]

Using the same reasoning and the steps of the Euclidean algorithm we have

[tex]gcd(474,147) = \\474 =147\cdot 3+33\\147=33\cdot 4 +15\\33=15\cdot 2+3\\15=3\cdot 5+0[/tex]

To find the linear combination you need to use the Bezout's identity that says that the equation [tex]ax+by=gcd(a,b)[/tex] has solutions x, y. So we need to find the solution of the equation [tex]474x+147y=3[/tex].

To find the values of x and y you can run the Euclidean Algorithm backward.

We know that

[tex]33=15\cdot 2+3[/tex]

We can express 3 as linear combination

[tex]3=33- 2\cdot15\\3=33-2\cdot(147-33*4)=9\cdot 33 -2\cdot147\\3=9\cdot 33 -2\cdot147=9\cdot (474-147\cdot 3)-2 \cdot 147\\3= 9\cdot 474-27 \cdot 147-2 \cdot 147\\3=9\cdot 474 - 29\cdot 147[/tex]

The gcd(474,147) = 3 and the linear combination is [tex]3=9\cdot 474 - 29\cdot 147[/tex]

The principle of mathematical induction is stated as follows:

Let n be a natural number and let P(n) be an statement that depends on n. If

P(1) is true, andfor all positive integer k, P(k+1) can be shown to be true if P(k) is assumed to be true,

Then P(n) is true for all natural numbers n.

Proposition: For all positive integers n, 2+4+6+...+2n = n(n+1).

Proof. Let's let P(n) be the statement "2+4+6+...+2n = n(n+1)" .The proof will now proceed in two steps: the initial step and the inductive step.

Initial step. We must verify that P(1) is true

[tex]n=1\\2\cdot 1=1\cdot (1+1)[/tex]

which is clearly true. So we are done with the initial step.

Inductive step. We must prove the following assertion: "If there is a k such that P(k) is true, then (for this same k) P(k+1) is true." Thus, we assume there is a k such that 2+4+6+...+2k = k(k+1), this is called the inductive assumption. We must prove, for this same k, the formula P(k+1): 2+4+6+...+2k+2(k+1) = (k+1)(k+2)

To prove that P(k+1) holds, we will start  with the expression on the left-hand side of P(k+1) and show that it is equal to the expression on the right-hand side.

[tex]2+4+6+...+2k+2(k+1)[/tex]

we know that [tex]2+4+6+...+2k+2(k+1)=k(k+1)[/tex] for the inductive assumption

[tex]k(k+1)+2(k+1)\\k^{2}+k+2k+2\\k^2+3k+2\\(k+1)(k+2)[/tex]

we see that the result [tex](k+1)(k+2)[/tex], is the expression on the right-hand side of P(k+1). Thus by mathematical induction P(n) is true for all natural numbers n.

A patient is to receive Taxol 100 mg/m2. The patient weighs 120 lbs and is 5'8" tall. What dose of Taxol in milligrams should the patient receive? Round answers to the nearest tenth and DO NOT include units

Answers

Answer:

164.6 mg

Step-by-step explanation:

Given:

Weight of the patient= 120 lbs

Height of patient = 5'8" = 5 × 12 + 8 = 68 inches

Dose of Taxol to be administered= 100 mg/ m²

Now,

the surface area of the body of patient = [tex]\textup{(Weight in kg)}^{0.425}\times\textup{(Height in cms)}^{0.725}\times0.007184[/tex]

Also,

weight of patient in kg = 120 × 0.454 = 54.48 kg

Height of patient in cm = 68" × 2.54 = 172.72 cm

therefore,

Body surface area = [tex]\textup{(54.48)}^{0.425}\times\textup{(172.72)}^{0.725}\times0.007184[/tex]

or

= 5.47 × 41.89 × 0.007184

or

= 1.646 m²

Hence,  

Dose of Taxol to be received by the patient

= 100 mg/m²  × surface area of the patient

= 100 × 1.646

= 164.6 mg

State the chain rule for the derivative dy/dt if y(t)=f(u(t))(chain of f and u)

Answers

Answer:

[tex]\displaystyle\frac{d(y(t))}{dt} =\displaystyle\frac{d(f(u(t)))}{dt} = f'(u(t)).u'(t)[/tex]

Step-by-step explanation:

The chain rule helps us to differentiate functions and a composition of two functions.

Let r(u) and s(u) be two function. Then, composition of these two functions can be be differentiated with the help of chain rule. It states that:

[tex]\displaystyle\frac{d(r(s(u)))}{du} = r'(g(u)).s'(u)[/tex]

Now, we are given

[tex]y(t) = f(u(t))[/tex]

Then, by chain rule, we have:

[tex]\displaystyle\frac{d(y(t))}{dt} =\displaystyle\frac{d(f(u(t)))}{dt} = f'(u(t)).u'(t)[/tex]

Which of the following angles have equal measure when a pair of parallel lines are crossed by a transversal?

supplementary angles


complementary angles


corresponding angles


adjacent angles

Answers

Answer:

  corresponding angles

Step-by-step explanation:

Corresponding angles are congruent where a transversal crosses parallel lines. Such a geometry has 4 pairs of corresponding angles. The corresponding angles of each pair are congruent.

Answer:

corresponding angles

Step-by-step explanation:


The Titanic was 883 feet long and 175 feet tall.

A. If a model is built to have a scale ratio of 1in : 36ft , how long will the model be?

B. If a model is built to have a scale ratio of 1 in : 22 ft , how tall will the model be?

C. If a model is built to have a ratio of 1: 30 , how tall will the model be?

Answers

Answer:

Actual length = 883 feet

Actual height = 175 feet

A)  If a model is built to have a scale ratio of 1 in : 36ft , how long will the model be?

36 feet = 1 inch

Actual length = 883 feet

So, 883 feet = [tex]\frac{883}{36} inch[/tex]

883 feet = [tex]24.527 inch[/tex]

So, If a model is built to have a scale ratio of 1in : 36ft ,the model will be 24.527 inch long.

B)  If a model is built to have a scale ratio of 1 in : 22 ft , how tall will the model be?

22 feet = 1 inch

Actual height = 175 feet

So, 175 feet = [tex]\frac{175}{22} inch[/tex]

883 feet = [tex]7.9545 inch[/tex]

So,  If a model is built to have a scale ratio of 1 in : 22 ft , the model will be 7.9545 inch tall.

C) If a model is built to have a ratio of 1: 30 , how tall will the model be?

Let the height be x

Actual length = 883 feet

Ratio of 1: 30

So, [tex]\frac{1}{30}=\frac{883}{x}[/tex]

[tex]x=\frac{883}{30}[/tex]

[tex]x=29.433[/tex]

So, If a model is built to have a ratio of 1: 30 ,the model will be 29.433 inches tall .


Consider the two functions:

f(x,a) =70- 5xa & g(x) = 30 +4x

a) find the x value of the point where the two equations intersect (in terms of the variable a)

b) Find the value of the functions at the point where the two equations intersect (in terms of the variable a).

c) Take the partial derivate of f with respect to x, \partial f / \partial x, and with respect to a, \partial f / \partial a

d) What are the values of these derivatives , when x= 3 and a=2, which can be written as \partialf /\partialx (3,2) and \partial f /\partiala (3,2)

e) Next caculate these two numbers:

\upsilon1 = (\partialf /\partialx ( 3,2)) 3 / f (3,2)

\upsilon2 = (\partialf /\partiala ( 3,2)) 2 / f (3,2)

f) Finally write out these equations in term of a and x and simplify,

\upsilon1 = (\partialf /\partialx ( x,a)) x / f (x,a)

\upsilon2 = (\partialf /\partialx ( x,a)) a / f (x,a)

Answers

Answer:

a) The x value of the point where the two equations intersect in terms of a is [tex]x=\frac{40}{4+5a}[/tex]

b) The value of the functions at the point where they intersect is [tex]\frac{10 (28 + 15 a)}{4 + 5 a}[/tex]

c) The partial derivative of f with respect to [tex]x[/tex] is [tex]\frac{\partial f}{\partial x} = -5a[/tex] and the partial derivative of f with respect to [tex]a[/tex] is [tex]\frac{\partial f}{\partial x} = -5x[/tex]

d) The value of [tex]\frac{\partial f}{\partial x}(3,2) = -10[/tex] and [tex]\frac{\partial f}{\partial a}(3,2) = -15[/tex]

e) [tex]\upsilon_1=-\frac{3}{4} = -0.75[/tex] and [tex]\upsilon_2=-\frac{3}{4} = -0.75[/tex]

f) equation [tex]\upsilon_1 = \frac{-5a\cdot x}{70-5ax}=\frac{ax}{ax-14}[/tex] and [tex]\upsilon_2 = \frac{-5a\cdot a}{70-5ax}=\frac{a^2}{ax-14}[/tex]

Step-by-step explanation:

a) In order to find the [tex]x[/tex] we just need to equal the equations and solve for [tex]x[/tex]:

[tex]f(x,a)=g(x)\\70-5xa = 30+4x\\70-30 = 4x+5xa\\40 = x(4+5a)\\\boxed {x = \frac{40}{4+5a}}[/tex]

b) Since we need to find the value of the function in the intersection point we just need to substitute the result from a) in one of the functions. As a sanity check , I will do it in both and the value (in terms of [tex]a[/tex]) must be the same.

[tex]f(x,a)=70-5ax\\f(\frac{40}{4+5a}, a) = 70-5\cdot a \cdot  \frac{40}{4+5a}\\f(\frac{40}{4+5a}, a) = 70 - \frac{200a}{4+5a}\\f(\frac{40}{4+5a}, a) = \frac{70(4+5a) -200a}{4+5a}\\f(\frac{40}{4+5a}, a) =\frac{280+350a-200a}{4+5a}\\\boxed{ f(\frac{40}{4+5a}, a) =\frac{10(28+15a)}{4+5a}}[/tex]

and for [tex]g(x)[/tex]:

[tex]g(x)=30+4x\\g(\frac{40}{4+5a})=30+4\cdot \frac{40}{4+5a}\\g(\frac{40}{4+5a})=\frac{30(4+5a)+80}{4+5a}\\g(\frac{40}{4+5a})=\frac{120+150a+80}{4+5a}\\\boxed {g(\frac{40}{4+5a})=\frac{10(28+15a)}{4+5a}}[/tex]

c) [tex]\frac{\partial f}{\partial x} = (70-5xa)^{'}=70^{'} - \frac{\partial (5xa)}{\partial x}=0-5a\\\frac{\partial f}{\partial x} =-5a[/tex]

[tex]\frac{\partial f}{\partial a} = (70-5xa)^{'}=70^{'} - \frac{\partial (5xa)}{\partial a}=0-5x\\\frac{\partial f}{\partial a} =-5x[/tex]

d) Then evaluating:

[tex]\frac{\partial f}{\partial x} =-5a\\\frac{\partial f}{\partial x} =-5\cdot 2=-10[/tex]

[tex] \frac{\partial f}{\partial a} =-5x\\\frac{\partial f}{\partial a} =-5\cdot 3=-15[/tex]

e) Substituting the corresponding values:

[tex]\upsilon_1 = \frac{\partial f(3,2)}{\partial x}\cdot \frac{3}{f(3,2)} \\\upsilon_1 = -10 \cdot \frac{3}{40}  = -\frac{3}{4} = -0.75[/tex]

[tex]\upsilon_2 = \frac{\partial f(3,2)}{\partial a}\cdot \frac{3}{f(3,2)} \\\upsilon_2 = -15 \cdot \frac{2}{40}  = -\frac{3}{4} = -0.75[/tex]

f) Writing the equations:

[tex]\upsilon_1=\frac{\partial f (x,a)}{\partial x}\cdot \frac{x}{f(x,a)}\\\upsilon_1=-5a\cdot \frac{x}{70-5xa}\\\upsilon_1=\frac{-5ax}{70-5ax}=\frac{-5ax}{-5(ax-14)}\\\boxed{\upsilon_1=\frac{ax}{ax-14} }[/tex]

[tex]\upsilon_2=\frac{\partial f (x,a)}{\partial x}\cdot \frac{a}{f(x,a)}\\\upsilon_2=-5a\cdot \frac{a}{70-5xa}\\\upsilon_2=\frac{-5a^2}{70-5ax}=\frac{-5a^2}{-5(ax-14)}\\\boxed{\upsilon_2=\frac{a^2}{ax-14} }[/tex]

Plato math help please

Answers

Answer:

The function's graphic is the one that is below the first one in th right.

Step-by-step explanation:

If we want to know how much Chelsea earns for dogsitting her neighbours' dogs, we have to form a linear equation, that must have the following formula:

[tex]y= ax + b[/tex]

In this case, B is the constant value. We know Chelsea charges 12$ for dogsitting, and that doesn't depend on anything (B). But, if you want to Chelsea to walk your dog, then you'd to pay 2.50$ for each walk (X).

[tex]y= 2.50x + 12[/tex]

So, if Chelsea doesn't walk the neighbour's dog (x=0), she would be earning 12 dolars.

[tex]y= 2.50 x 0 + 12 = 12[/tex]

If she walks four times the dog, she would be earning:

[tex]y= 2.50 x 4 + 12 = 10 + 12 = 22 [/tex]

Knowing these two values, we can graph the equation. When x=0, y=12, and when x=4, y=22

The function's graphic is the one that is remarked in the attachment.

Let P(x) be the statement"x= x2", If the domain consists of the integers, what are these truth values? (a) P(0) (b) P(1) (c) P(2) (d) P(-1) (e)

Answers

Answer: i guess the problem is with P(x) => "x = [tex]x^{2}[/tex]", then P(x) is true if that equality is true, and is false if the equality is false.

so lets see case for case.

a) x = 0, and [tex]0^{2}[/tex] = 0. So p(0) is true.

b) x = 1 and [tex]1^{2}[/tex] = 1, so P(1) is true.

c) x = 2, and [tex]2^{2}[/tex] = 4, and 2 ≠ 4, then P(2) is false.

d) x= -1 and [tex]1^{2}[/tex] = 1, and 1 ≠ -1, so P(-1) is false.

The truth value of P(0) and P(1) is true while the truth value of P(2) and P(-1) is false

The statement is given as:

[tex]x = x^2[/tex]

For P(0), we have:

[tex]0 = 0^2[/tex]

[tex]0 = 0[/tex] --- this is true

For P(1), we have:

[tex]1 = 1^2[/tex]

[tex]1 = 1[/tex] --this is true

For P(2), we have:

[tex]2 = 2^2[/tex]

[tex]2= 4[/tex] -- this is false

For P(-1), we have:

[tex](-1) = (-1)^2[/tex]

[tex](-1) = 1[/tex] --- this is false

Hence, the truth value of P(0) and P(1) is true while the truth value of P(2) and P(-1) is false

Read more about truth values at:

https://brainly.com/question/10678994

A snorkeler dives for a shell on a reef. After entering the water, the diver decends 11/3 ft in one second. Write an equation that models the divers position with respect to time.

Answers

Answer:

[tex]h(t)=-\dfrac{11}{3}t[/tex]

Step-by-step explanation:

A snorkeler dives for a shell on a reef. After entering the water, the diver decends [tex]\frac{11}{3}[/tex] ft in one second.

Let t be the time passed after entering the water, in seconds, and h(t) be the position of the snorkeler under the water, in feet.  

The initial position of the snorkeler was 0 feet under the water.

An equation that models the divers position with respect to time is

[tex]h(t)=0-\dfrac{11}{3}t\\ \\h(t)=-\dfrac{11}{3}t[/tex]

Here the position is negative, because the diver decends (he deepens under the water)

If the mass of your father is 70kg, what is his weight (N)?

Answers

Answer: 686 N

Step-by-step explanation:

Hi!

Second Newton's law is: F=m*a, where F is force, m is mass, and a acceleration

On the Earth's surface, weight is the gravity force W=m*g, where g=9.8 m/s² is the acceleretion of gravity on Earth. So the weight of someone with mass m=70 kg is W=70*9.8 kg*m/s² = 686 N.

The unit N (Newton) is defined as 1 N = 1 kg*m/s²

A housing development was occupied by 12 people. During January 2016, 6 more people move into the development. During each subsequent month, 4 more people move into the development than moved in during the previous month. Assuming nobody dies or moves out of the development, work out how many people occupy the development on 31 March 2017.

Answers

Answer:  30 people

Step-by-step explanation: So you start with 12 people

12+6= 18 because 6 more people moved in then an additional 12 move in because it doubles every month

The total number of people occupying the development on 31 March 2017 is 466.

To determine how many people occupy the development on 31 March 2017, we need to consider the pattern of people moving in each month since January 2016.

Initial Occupants: There were 12 people in the development as of January 2016.

Additional Occupants in January 2016: During January 2016, 6 more people moved in.

Total at the end of January 2016: 12 (initial) + 6 = 18 people

Monthly Pattern: Each subsequent month, 4 more people move in than the previous month. So, we need to figure out this sequence from February 2016 to March 2017.

Calculating Monthly Increase:

February 2016: 6 (January) + 4 = 10 peopleMarch 2016: 10 (February) + 4 = 14 peopleApril 2016: 14 (March) + 4 = 18 peopleContinue this pattern for the remaining months.

Sum of Monthly Increases: We need to determine the total number of new occupants from February 2016 to March 2017. This period includes 14 months.

The sequence of increases is: 6, 10, 14, 18, ..., up to March 2017.

This is an arithmetic sequence where the first term [tex]a = 6[/tex] and the common difference [tex]d = 4[/tex].

The [tex]n^{th}[/tex] term of an arithmetic sequence is given by: [tex]a_n = a + (n-1)d[/tex]

For March 2017 (14 months after January 2016): $a_{14} = 6 + (14-1) * 4 = 6 + 52 = 58 people.

Sum of an Arithmetic Sequence: The sum of the first [tex]n[/tex] terms of an arithmetic sequence is given by: [tex]S_n = \{n}{2} \times (2a + (n-1)d)[/tex]

Here, [tex]a = 6[/tex], [tex]d = 4[/tex], and [tex]n = 14[/tex].

[tex]S_{14} = \{14}{2} \times(2 \times 6 + (14-1) \times 4)[/tex]

[tex]S_{14} = 7 \times (12 + 52) = 7 \times 64 = 448[/tex] people moved in from February 2016 to March 2017.

Total Occupants at the End of March 2017:

Initial occupants: 12

Additional in January 2016: 6

New occupants from February 2016 to March 2017: 448

Total = 12 + 6 + 448 = 466 people

A farmer has 96 feet of fence with which to make a corral. if he
arranges it iinto a rectangle that is twice as long as it is wide,
what are the dimensions?

Answers

Answer: The dimensions of rectangle are 32 feet and 16 feet.

Step-by-step explanation:

Let the width of rectangle be 'x'.

Let the length of rectangle be '2x'.

Perimeter of fence = 96 feet

As we know the formula for "Perimeter":

[tex]Perimeter=2(l+b)\\\\96=2(2x+x)\\\\\dfrac{96}{2}=3x\\\\48=3x\\\\x=\dfrac{48}{3}\\\\x=16\ ft[/tex]

Hence, the length of rectangle is 2x=2×16 = 32 feet and width is 16 feet.

Therefore, the dimensions of rectangle are 32 feet and 16 feet.

The recommended dose for a brand nicotine patch is one 21-mg dose per day for 6 weeks, followed by 14 mg per day for 2 weeks, and then 7 mg per day for 2 more weeks. What total quantity, in grams, would a patient receive during this course of treatment?

Answers

Answer:

1.176 grams

Step-by-step explanation:

Given:

Recommended dose

21 mg per day for 6 weeks

Now,

1 week = 7 days

Thus,

number of days in 6 weeks = 6 × 7 = 42 days

Therefore, the total dose = dose per days × number of days

= 21 × 42 = 882 mg

further,

14 mg per day for 2 weeks

Now,

1 week = 7 days

Thus,

number of days in 2 weeks = 2 × 7 = 14 days

Therefore, the total dose = dose per days × number of days

= 14 × 14 = 196 mg

further,

7 mg per day for 2 weeks

Now,

1 week = 7 days

Thus,

number of days in 6 weeks = 2 × 7 = 14 days

Therefore, the total dose = dose per days × number of days

= 7 × 14 = 98 mg

Hence, the total dose = 882 + 196 + 98 = 1176 mg

also,

1 g = 1000 mg

thus,

1176 mg = 1.176 grams

total quantity received during this course is 1.176 grams

Evaluate C_n.xP^xQn-x For the given n=7, x=2, p=1/2

Answers

Answer:

The value of given expression is [tex]\frac{21}{128}[/tex].

Step-by-step explanation:

Given information: n=7, x=2, p=1/2

[tex]q=1-p=1-\frac{1}{2}=\frac{1}{2}[/tex]

The given expression is

[tex]C(n,x)p^xq^{n-x}[/tex]

It can be written as

[tex]^nC_xp^xq^{n-x}[/tex]

Substitute n=7, x=2, p=1/2 and q=1/2 in the above formula.

[tex]^7C_2(\frac{1}{2})^2(\frac{1}{2})^{7-2}[/tex]

[tex]\frac{7!}{2!(7-2)!}(\frac{1}{2})^2(\frac{1}{2})^{5}[/tex]

[tex]\frac{7!}{2!5!}(\frac{1}{2})^{2+5}[/tex]

[tex]\frac{7\times 6\times 5!}{2\times 5!}(\frac{1}{2})^{2+5}[/tex]

[tex]21(\frac{1}{2})^{7}[/tex]

[tex]\frac{21}{128}[/tex]

Therefore the value of given expression is [tex]\frac{21}{128}[/tex].

The owner of a pizza-by-the-slice shop has determined the marginal cost for his company is $1.50. His daily fixed costs are $125. What is the total cost to sell 300 slices in one day?

Answers

Answer:

[tex]300\cdot \$1.50+\$125=\$450+\$125=\$575[/tex]

Step-by-step explanation:

The marginal cost is said to be $1.50. Marginal cost is just how much the cost increases per additional unit produced. In this case we're dealing with a shop of slices of pizza, so the marginal cost just represents how much the cost increases per additional slice of pizza produced, or in simpler words, how much it costs to produce a slice of pizza.

We want to compute the total cost to sell 300 slices in one day, so we have to compute how much it costs to produce those 300 slices and add up the fixed costs (which is $125, no matter how many slices we produce). Since the marginal cost is $1.50, that means each slice costs $1.50 to produce. So the 300 slices cost [tex]300\cdot \$1.50=\$450[/tex] to produce. And so the total cost is

[tex]\$450+\$125=\$575[/tex]

Construct a truth table for the logical operator NOR.

Answers

Answer:

NOR Gate

Step-by-step explanation:

NOR gate is a two input gate.

It is defined as the complement of (X or Y), where X and Y are the inputs of the gate.

X    Y    X+Y   Complement(X+Y)   NOR

1      1        1                  0                       0

1      0       1                  0                       0

0     1        1                  0                       0

0     0       0                  1                        1

Ut is an operator which gives a value of 1 only when the bvoth the inputs are 0.

A truth table for the logical operator NOR is:

P Q NOR

T T F

T F F

F T F

F F T

How to construct a Truth Table?

A truth table is a mathematical table used in logic to show all possible combinations of truth values for the input variables of a Boolean function and their corresponding output.

To construct a truth table for the logical operator NOR, we can use the following table:

P Q NOR

T T F

T F F

F T F

F F T

The NOR operator returns true only when both inputs are false. Otherwise, it returns false.

This can also be expressed as ¬(P ∨ Q), which is logically equivalent to P NOR Q.

You have an order for Vasopressin 18 units/hr IV infusion. You have available vasopressin 200 units in 5000 mL D5W. Please calculate the drip rate in mL/hr.

Answers

Answer:

450 mL/hr

Step-by-step explanation:

Given:

Order for vasopressin = 18 units/hour

Available vasopressin = 200 units in 5000 mL

Now,

Volume of vasopressin per unit =  [tex]\frac{\textup{Volume of vasopressin}}{\textup{Number of units}}[/tex]

or

Volume of vasopressin per unit =  [tex]\frac{\textup{5000}}{\textup{200}}[/tex]

or

Volume of vasopressin per unit = 25 mL/unit

Thus,

Drip rate in mL/hr  

= volume of vasopressin per unit × order for vassopressin

or

Drip rate in mL/hr  = 25 × 18 = 450 mL/hr

Final answer:

The drip rate for an order of Vasopressin 18 units/hr, given a solution concentration of 200 units in 5000 mL, is calculated to be 450 mL/hr.

Explanation:

To find the drip rate in mL/hr, we start by determining the concentration of the vasopressin solution. It is 200 units in 5000 mL D5W, so the concentration is 0.04 units/mL (200 units/5000 mL).

Next, we know the doctor prescribed 18 units/hr of vasopressin. To find out how many mL this corresponds to, we divide the order of 18 units/hr by the concentration in units/mL,  which gives us 450 mL/hr (18 units/hr / 0.04 units/mL).

Therefore, the drip rate for the Vasopressin order is 450 mL/hr.

Learn more about Drip Rate Calculation here:

https://brainly.com/question/30637108

#SPJ3

Disks of polycarbonate plastic from a supplier are analyzed for scratch and shock resistance. The results from 100 disks are summarized as follows:

shock resistance
scratch resistance high low
high 70 9
low 16 5

Let A denote the event that a disk has high shock resistance, and let B denote the event that a disk has high scratch resistance. If a disk is selected at random, determine the following probabilities. Input your answers in the fractional form (do not simplify).

P(A)=86/100

P(B)=79/100

P(A')=7/50

P(A U B)=95/100

P(A' U B)= ???

Answers

Answer:

0.84

Step-by-step explanation:

Given that Disks of polycarbonate plastic from a supplier are analyzed for scratch and shock resistance. The results from 100 disks are summarized as follows:

P(A) = 0.86, P(B) = 0.79, P(A') = 0.14, P(AUB) = 0.95

We are to find out P(A'UB)

We have

[tex]P(AUB) =P(A)+P(B)-P(A\bigcap B)\\0.95=0.86+0.79-P(A\bigcap B)\\P(A\bigcap B)=0.70[/tex]

[tex]P(A'UB) = P(A')+P(B)-P(A' \bigcap B)\\= 1-P(A) +P(B)-[P(B)-P(A \bigcap B)]\\= 1-0.86+0.79-P(B)+[tex]P(A'UB)=0.14+0.79-0.79+0.70\\=0.84[/tex]P(A \bigcap B)[/tex]

Consider randomly selecting a student at a certain university, and let A denote the event that the selected individual
has a Visa credit card and B be the analogous event for a MasterCard. Suppose that , P(A)= 0.6 and P(B)=0.4.
a. Could it be the case that P( A ∩ B )=0.5, why or why not?

b. From now on, suppose that P( A ∩ B )=0.3 What is the probability that student has one of these two types of cards?

c. What is the probability that the selected student has neither type of card?

d. Describe in terms of A and B the event that the select student has a visa card, but not a mastercard? and then calulate the probability of this event.

e. Calcuate th probability that the selected student has exactly one of the two types of cards?

Answers

Answer:

(a) P( A ∩ B )=0.5 is not possible.

(b) 0.7

(c) 0.3

(d) 0.3

(e) 0.4

Step-by-step explanation:

Given information: The alphabet A and B represents the following events

A : Individual has a Visa credit card.

B: Individual has a MasterCard.

P(A)= 0.6 and P(B)=0.4.

(a)

We need to check whether P( A ∩ B ) can be 0.5 or not.

[tex]A\cap B\subset A[/tex] and [tex]A\cap B\subset B[/tex]

[tex]P(A\cap B)\leq P(A)[/tex] and [tex]P(A\cap B)\leq P(B)[/tex]

[tex]P(A\cap B)\leq 0.6[/tex] and [tex]P(A\cap B)\leq 0.4[/tex]

From these two inequalities we conclude that

[tex]P(A\cap B)\leq 0.4[/tex]

Therefore, P( A ∩ B )=0.5 is not possible.

(b)

Let [tex]P(A\cap B)=0.3[/tex]

We need to find the probability that student has one of these two types of cards.

[tex]P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]

Substitute the given values.

[tex]P(A\cup B)=0.6+0.4-0.3=0.7[/tex]

Therefore the probability that student has one of these two types of cards is 0.7.

(c)

We need to find the probability that the selected student has neither type of card.

[tex]P(A'\cup B')=1-P(A\cup B)[/tex]

[tex]P(A'\cup B')=1-0.7=0.3[/tex]

Therefore the probability that the selected student has neither type of card is 0.3.

(d)

The event that the select student has a visa card, but not a mastercard is defined as

[tex]A-B[/tex]

It can also written as

[tex]A\cap B'[/tex]

The probability of this event is

[tex]P(A\cap B')=P(A)-P(A\cap B)[/tex]

[tex]P(A\cap B')=0.6-0.3=0.3[/tex]

Therefore the probability that the select student has a visa card, but not a mastercard is 0.3.

(e)

We need to find the probability that the selected student has exactly one of the two types of cards.

[tex]P(A\cap B')+P(A\cap B')=P(A\cup B)-P(A\cap B)[/tex]

[tex]P(A\cap B')+P(A\cap B')=0.7-0.3[/tex]

[tex]P(A\cap B')+P(A\cap B')=0.4[/tex]

Therefore the probability that the selected student has exactly one of the two types of cards is 0.4.

Pollsters are concerned about declining levels of cooperation among persons contacted in surveys. A pollster contacts 8686 people in the​ 18-21 age bracket and finds that 4343 of them respond and 4343 refuse to respond. When 276276 people in the​ 22-29 age bracket are​ contacted, 258258 respond and 1818 refuse to respond. Suppose that one of the 362362 people is randomly selected. Find the probability of getting someone in the 18 dash 2118-21 age bracket or someone who respondedresponded.

Answers

Answer:

0.9503

Step-by-step explanation:

First of all, there are some wrong figures in the original text. Because there is a total of 362362 people, the figures should be 86086 (people in the 18-21 age bracket), 43043 (people in the 18-21 age bracket  who respond) and 43043 people in the 18-21 age bracket who refuse to respond. In the same way, because there are 276276 people in the 22-29 age bracket, it should be 18018 and not 1818 who refuse to respond in this subset of people. Now, let's define the following events:

R: a person respond

A: a person belongs to the 18-21 age bracket. So,

The number of people who respond is 43043 + 258258 = 301301, so

P(R) = 301301/362362 = 0.8315

P(A) = 86086/362362 = 0.2376

P(R | A) = 43043/86086 = 0.5

We are looking for P(A∪R) = P(A) + P(R) - P(A∩R),

P(A∩R) = P(R | A)P(A) = (0.5)(0.2376) = 0.1188, so,

P(A∪B) = 0.2376 + 0.8315 - 0.1188 = 0.9503

Find the position and velocity of an object moving along a straight line with the given​ acceleration, initial​ velocity, and initial position. ​a(t) =cos(πt)​, ​v(0)=55​, ​s(0)=77 The velocity is ​v(t)= ____. ​(Type an exact​ answer.)

Answers

The initial position has no effect on the velocity, so you can ignore that value (unless there's another part to the question not included, of course).

We have

[tex]v(t)=v(0)+\displaystyle\int_0^t a(u)\,\mathrm du[/tex]

[tex]v(t)=55+\int_0^t\cos(\pi u)\,\mathrm du[/tex]

[tex]\boxed{v(t)=55+\dfrac1\pi\sin(\pi t)}[/tex]

Final answer:

The velocity of an object given the acceleration function a(t) = cos(πt) and an initial velocity of v(0) = 55 is found by integrating the acceleration function. This gives v(t) = (1/π)sin(πt) + 55.

Explanation:

The object's acceleration, velocity, and position can be determined using principles of calculus. The acceleration function is given as a(t) = cos(πt). We find the velocity by integrating the acceleration function. Therefore, v(t) = ∫a(t) dt = ∫cos(πt) dt. Using fundamental calculus principles, the integral of cos(πt) with respect to time (t) is (1/π)sin(πt).

However, the initial velocity is provided as v(0) = 55. To account for this initial condition, we add this known velocity to our integral, giving us v(t) = (1/π)sin(πt) + 55. Thus, the velocity of the object at any time t is given by v(t) = (1/π)sin(πt) + 55.

Learn more about Kinematics here:

https://brainly.com/question/35140938

#SPJ2

Write x'" = x + t as a first order system

Answers

Answer:

y = x'

z = y'

z' = x + t

Step-by-step explanation:

Hi!

You need to define two new variables y and z:

y = x'

z = y'

Then:

z = y' = x''

z' = x''' = x + t

Now you have a system of 3 equations with only first derivatives

Suppose you buy a new car whose advertised mileage is 20 miles per gallon​ (mpg). After driving your car for several​ months, you find that its mileage is 16.4 mpg. You telephone the manufacturer and learn that the standard deviation of gas mileages for all cars of the model you bought is 1.14 mpg. a. Find the​ z-score for the gas mileage of your​ car, assuming the advertised claim is correct. b. Does it appear that your car is getting unusually low gas​ mileage? a. zequals nothing ​(Round to two decimal places as​ needed.) b. Does it appear that your car is getting unusually low gas​ mileage? Yes No

Answers

Answer:

a) The z-score for the mileage of the car is -3.16

b) It appears that the car is getting unusually low gas mileage.

Step-by-step explanation:

The z-score formula is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

In which: X is the mileage per gallon we are going to find the z-score of, [tex]\mu[/tex] is the mean value of this mileage and [tex]\sigma[/tex] is the standard deviation of this value.

a. Find the​ z-score for the gas mileage of your​ car, assuming the advertised claim is correct.

The gas mileage for you car is 16.4 mpg, so [tex]X = 16.4[/tex]

The advertised gas mileage is 20 mpg, so [tex]\mu = 20[/tex]

The standard deviation is 1.14 mpg, so [tex]\sigma = 1.14[/tex]

The z-score is:

[tex]Z = \frac{X - \mu}{\sigma} = \frac{16.4 - 20}{1.14} = -3.16[/tex]

b. Does it appear that your car is getting unusually low gas​ mileage?

The general rule is that a z-score lower than -1.96 is unusually low. So yes, it appears that the car is getting unusually low gas mileage.

Final answer:

To find the z-score for the gas mileage of your car, use the formula z = (x - μ) / σ. A z-score of -3.16 indicates that your car is getting unusually low gas mileage as it is more than 3 standard deviations below the mean.

Explanation:

To find the z-score for the gas mileage of your car, we can use the formula:

z = (x - μ) / σ

where x is the observed mileage, μ is the mean mileage, and σ is the standard deviation.

In this case, since the advertised mileage is 20 mpg, we have:

z = (16.4 - 20) / 1.14 = -3.16

For part b, a z-score of -3.16 indicates that your car is getting unusually low gas mileage as it is more than 3 standard deviations below the mean. Therefore, the answer is Yes.

The systolic blood pressure of​ 18-year-old women is normally distributed with a mean of 120 mmHg and a standard deviation of 12 mmHg. What percentage of​ 18-year-old women have a systolic blood pressure that lies within 3 standard deviations of the​ mean?
(A) 68%
(B) 95%
(C) 100%
(D) 99.7%

Answers

Final answer:

In a normally distributed scenario, roughly 99.7% of data falls within three standard deviations from the mean, therefore for this question where we need to determine the blood pressure within 3 standard deviations from the mean, the answer is 99.7%.

Explanation:

The topic under discussion pertains to statistics, particularly, the properties of a normal distribution. In a normally distributed dataset, the rule of three standard deviations states that approximately 99.7% of all data falls within three standard deviations from the mean. This is also known as the empirical rule or the 68-95-99.7 rule. Therefore, in this case, since we are asked about the percentage of 18-year-old women who have a systolic blood pressure that falls within three standard deviations of the mean, the answer is 99.7%, which corresponds to choice (D).

Learn more about Normal Distribution here:

https://brainly.com/question/34741155

#SPJ3

The equation shows a number multipled by 8. n x 8 = Which is true about the product?

It is a factor of 8
It is a multiple of 8
It is a prime number
The product is a factor of n

Answers

Answer:

  It is a multiple of 8

Step-by-step explanation:

The product may or may not be a factor of 8. We usually think of the factors of an integer as being positive integers, so the factors of 8 would be 1, 2, 4, or 8. If 8n is to be a factor of 8, then n must be 1/8, 1/4, 1/2, or 1. This will not be the case in general.

__

The product of 8 and any number is a multiple of 8. (Again, we usually think of a multiple of 8 as being an integer, which would require the number n to be an integer.)

__

No product of two (integer) numbers is a prime number. If 8n is to be a prime, then the value of n must be (some prime number)/8. Again, this will not be the case in general.

__

n is a factor of the product; not the other way around.

Final answer:

In the equation n x 8, the product is always a multiple of 8. The product is not necessarily a factor of 8, a prime number, or a factor of n.

Explanation:

In the given equation, n x 8, the product of n and 8 is always a multiple of 8. This is because when we multiply any number by 8, the resulting product is included in the sequence of multiples of 8 (i.e., 8, 16, 24, 32, and so forth). Hence, regardless of the value of n, the product is always a multiple of 8. Note that the product is not necessarily a factor of 8, a prime number, or a factor of n, as these properties depend on the specific value of n.

Learn more about Multiples here:

https://brainly.com/question/24327271

#SPJ3

How many ways can six of the letters of the word ALGORITHM be selected 8. How many ways can the letters of the word ALGORITHM be arranged in a be seated together in the row? and written in a row? row if the letters GOR must remain together (in this order)?

Answers

Answer with explanation:

The number of letters in word "ALGORITHM" = 9

The number of combinations to select r things from n things is given by :-

[tex]C(n,r)=\dfrac{n!}{r!(n-r)!}[/tex]

Now, the number of combinations to select 6 letters from 9 letters will be :-

[tex]C(9,8)=\dfrac{9!}{6!(9-6)!}=\dfrac{9\times8\times7\times6!}{6!\times3!}=84[/tex]

Thus , the number of ways can six of the letters of the word ALGORITHM=84

The number of ways to arrange n things in a row :[tex]n![/tex]

So, the number of ways can the letters of the word ALGORITHM be arranged in a be seated together in the row :-

[tex]9!=362880[/tex]

If GOR comes together, then we consider it as one letter,  then the total number of letters will be = 1+6=7

Number of ways to arrange 9 letters if "GOR" comes together :-

[tex]7!=5040[/tex]

Thus, the number of ways to arrange 9 letters if "GOR" comes together=5040

In art class Ms smith is working on polygons. She want the students to Create a picture of the polygons. She points out to the class That there is are three sides to a triangle, 4 sides on a quadrilateral , 5 sides on a pentagon, and six sides on a hexagon, How many more side are on a hexagon than on a quadrilateral

Answers

Answer:

There are two more sides on a hexagon than on a quadrilateral

Step-by-step explanation:

If the hexagon has 6 sides, and the quadrilateral has 4, then 6-4=2

Other Questions
In one of London's novels, Humphrey Van Weyden is rescued by a mysterious Captain Larsen of the Ghost. By what other name is Larsen known? Based solely on its location, which ocean likely contains the highest percentage of dissolved gases? A. Indian Ocean, because it is located mostly around the equator B. Pacific Ocean, because it covers the largest area C. Atlantic Ocean, because it covers a long mid-ocean ridge system D. Arctic Ocean, because it is located mostly around the North Pole Stimpleton Company engages in the following cash payments: Purchase equipment $4,000 Pay rent 700 Repay loan to the bank 5,900 Pay workers' salaries 1,050 What is the total amount of cash paid for operating activities?A.$1,750 B.$4,000 C.$6,950 D.$9,900 . Convert 2AF from hexadecimal to binary. Show your work. Obsidian is formed when rapidly cooling ions are randomly distributed creating a ______. texturea. glassyb. fine-grained c. course-grained d. porphyritic A(n)____ topology is the most reliable. C. You filled your car tank with gas at the beginning of the trip. At the start ofthe trip, your odometer read 25,678 miles. At the end of your trip, yourodometer read 26,109 miles. When you filled your tank at the end of the trip,it took 15 gallons of gas. How many miles per gallon did the car get? Based on the Standards, the statement, "Competition for computer time during periods of high demand had become intense because of a planned increase in the use of the computer by operating departments," is an example of Why do you park in a driveway but drive on a parkway? Give two examples each of nominal,ordinal,and ratio scale data. For the ratio scale data indicate whether these are continuous or discrete variables. 13.48x - 200 < 256.12 a,b,c,d are integers and GCD(a,b)=1. if c divides a and d divides b, prove that GCD(c,d) = 1. Assume the weekly payroll of the Abbott Company is $5,000. December 31, the end of the year, falls on a Wednesday and Abbott will pay its employee on Friday for the full week. What adjusting entry will Abbott make on Wednesday, December 31 (Use five days as a full work week)? 0.1 x 23Please help me As an electron moves through a region of space, its speed decreases from 6.03 106 m/s to 2.45 106 m/s. the electric force is the only force acting on the electron. (a) did the electron move to a higher potential or a lower potential? (b) across what potential difference did the electron travel? The 7-bit ASCII code for the character & is: 0100110 An odd parity check bit is now added to this code so 8 bits are transmitted. What will be the transmitted bit sequence for the ASCII character &? If odd parity check bits are used when transmitting ASCII codes, which of the following received bit sequences are not valid? Explain briefly how you reached your answer. a.01001000 b.01011110 c.01111111 d.11100111 The network administrator is often involved in selecting and implementing network security measures such as firewalls and access codes.TrueFalse What do you view as important issues within healthcaredelivery? Hydrostatic weighing first uses Archimedes' principle to calculate body _________, and then it uses this information to calculate body _________.a. volume; densityb. density; volumec. mass; densityd. volume; mass Which statement best describes the Articles of Confederation and the union they created?A. The Articles of Confederation changed the government of the United States, dismantling individual state governments in favor of a strong central government.B. The Articles of Confederation were the United States first constitution, which joined the original 13 states under a central government with limited power.C. The Articles of Confederation contained the first assertion of the United States independence from Britain, which led to the outbreak of the Revolutionary War.D. The Articles of Confederation established the United States first national court system, which forced individual states to join together and adopt the same laws.Help please!