The Royal Fruit Company produces two types of fruit drinks. The first type is 60% pure fruit juice, and the second type is 85% pure fruit juice. The company is attempting to produce a fruit drink that contains 80% pure fruit juice. How many pints of each of the two existing types of drink must be used to make 160 pints of a mixture that is 80% pure fruit juice?

Answers

Answer 1

Answer: There are 32 pints of first type and 128 pints of second type in mixture.

Step-by-step explanation:

Since we have given that

Percentage of pure fruit juice in first type = 60%

Percentage of pure fruit juice in second type = 85%

Percentage of pure fruit juice in mixture = 80%

We will use "Mixture and Allegation" to find the ratio of first and second type in mixture:

          First type          Second type

               60%                    85%

                              80%

------------------------------------------------------------------------

     85-80               :              80-60

       5%                  :                 20%

        1                     :                   4

so, the ratio of first and second type is 1:4.

Total number of pints of mixture = 160

Number of pints of mixture of  first type in mixture  is given by

[tex]\dfrac{1}{5}\times 160\\\\=32\ pints[/tex]

Number of pints of mixture of second type in mixture is given by

[tex]\dfrac{4}{5}\times 160\\\\=4\times 32\\\\=128\ pints[/tex]

Hence, there are 32 pints of first type and 128 pints of second type in mixture.


Related Questions

he head librarian at the Library of Congress has asked her assistant for an interval estimate of the mean number of books checked out each day. The assistant provides the following interval estimate: from 740 to 920 books per day. If the head librarian knows the population standard deviation is 150 books checked out per day, how large a sample did her assistant use to determine the interval estimate?

Answers

Answer:

At 95% confidence level, she used 11 people to estimate the confidence interval

Step-by-step explanation:

The bounds of the confidence interval are: 740 to 920

Mean is calculated as the average of the lower and upper bounds of the confidence interval. So, for the given interval mean would be:

[tex]u=\frac{740+920}{2}=830[/tex]

Margin of error is calculated as half of the difference between the upper and lower bounds of the confidence interval. So, for given interval, Margin of Error would be:

[tex]E=\frac{920-740}{2}=90[/tex]

Another formula to calculate margin of error is:

[tex]E=z\frac{\sigma}{\sqrt{n}}[/tex]

Standard deviation is given to be 150. Value of z depends on the confidence level. Confidence Level is not mentioned in the question, but for the given scenario 95% level would be sufficient enough.

z value for this confidence level = 1.96

Using the values in above formula, we get:

[tex]90=1.96 \times \frac{150}{\sqrt{n} }\\\\ n = (\frac{1.96 \times 150}{90})^{2}\\\\ n=11[/tex]

So, at 95% confidence level her assistant used a sample of 11 people to determine the interval estimate

Final answer:

The sample size used by the assistant to determine the interval estimate is 7.

Explanation:

To determine how large a sample the assistant used to determine the interval estimate, we need to use the formula for the margin of error:

Margin of Error = Critical Value × Standard Deviation / sqrt(Sample Size)

In this case, the margin of error is half the width of the interval estimate, which is (920 - 740) / 2 = 90.

Using a z-table, the critical value for a 95% confidence level is approximately 1.96.

By substituting the given values into the formula, we can solve for the sample size:

90 = 1.96 × 150 / sqrt(Sample Size)

Simplifying the equation, we get:

sqrt(Sample Size) = 1.96 × 150 / 90

Sample Size = (1.96 × 150 / 90)^2 = 6.83

Since we cannot have a fraction of a sample, we round up to the nearest whole number.

Therefore, the assistant used a sample size of 7 to determine the interval estimate.

2- suppose a ball is thrown upward to a height of h0 meters . each time the ball bounces, it rebounds to a fraction r of its previous height . let hn be the hight after the nth term biunces. cosider the following value of h0 and r

a- find the first 4 terms of the sequence of heights(hn)

b- find a general expression for the nth term of the sequence (hn)

h0=20 , r=0.5

Answers

Answer:

a) 40, 50, 55, 57.5

b) [tex]S_n=h_0+2h_0\sum_{n=1}^{\infty}r^n[/tex]

Step-by-step explanation:

h₀ = Initial height of the ball =20

r = Rebound fraction = 0.5

a) The series of bouncing balls is given by

Sₙ=h₀+2h₀(r¹+r²+r³+r⁴.........rⁿ)

S₁=h₀+2h₀r¹=20+2×20×0.5=40

S₂=h₀+2h₀(r¹+r²)=20+2×20×(0.5+0.5²)=50

S₃=h₀+2h₀(r¹+r²+r³)=20+2×20×(0.5+0.5²+0.5³)=55

S₄=h₀+2h₀(r¹+r²+r³+r⁴)=20+2×20×(0.5+0.5²+0.5³+0.5⁴)=57.5

b) General expression for the nth term of the sequence

[tex]S_n=h_0+2h_0\sum_{n=1}^{\infty}r^n[/tex]

Final answer:

The first 4 heights after each bounce form a geometric sequence with the first term h₀ being 20 meters and subsequent terms being 10, 5, and 2.5 meters. The general expression for the nth term (hn) is given by the formula hₙ = 20 * (0.5)ⁿ

Explanation:

Given an initial height h₀ of 20 meters and a rebound fraction r of 0.5, the sequence of heights after each bounce forms a geometric sequence.

The first height is h₀ which is 20 meters. Subsequent heights can be found by multiplying the previous height by the rebound fraction r.

Third term : h2 = h= 10 * 0.5 = 5 meters

General Expression for the nth Term (b)

The nth term (hₙ) of the sequence can be found using the formula for the nth term of a geometric sequence:

hₙ = h₀ * rⁿ

For this particular sequence:

hₙ = 20 * (0.5)ⁿ

Using the critical value rule, if a two-sided null hypothesis is rejected for a single mean at a given significance level, the corresponding one-sided null hypothesis (i.e., the same sample size, the same standard deviation, and the same mean) will ______________ be rejected at the same significance level.

Answers

Answer:

Using the critical value rule, if a two-sided null hypothesis is rejected for a single mean at a given significance level, the corresponding one-sided null hypothesis will "always" be rejected at the same significance level.

Step-by-step explanation:

Consider the provided statement.

As the value of p is less than the significance level, therefore always reject the null hypothesis. Where p is exact level of significance.

Therefore, the answer to the statement is "Using the critical value rule, if a two-sided null hypothesis is rejected for a single mean at a given significance level, the corresponding one-sided null hypothesis (i.e., the same sample size, the same standard deviation, and the same mean) will always be rejected at the same significance level."

Final answer:

If a two-sided null hypothesis is rejected at a given significance level, the corresponding one-sided null hypothesis will also be rejected at the same significance level, because the two-sided test is more stringent.

Explanation:

Using the critical value rule, if a two-sided null hypothesis is rejected for a single mean at a given significance level, the corresponding one-sided null hypothesis will also be rejected at the same significance level.

This is because when performing a two-sided test, we are testing both ends of the distribution, thus it requires a stricter criteria to reject the null hypothesis than a one-sided test. Since we have already rejected it under a stricter evaluation, we will definitely reject it under a less strict one.

Consider an example where you are using a significance level of 5 percent (α = 0.05). Suppose that your computed t-statistic is 2.2. This value is greater than the critical value for a two-tailed test from the t29 distribution, which is 2.045. Therefore, you reject the two-sided null hypothesis.

Consequently, when comparing your t-statistic (2.2) with the critical value for a one-sided test (which will be less stringent than that for a two-tailed test), you also reject the one-sided null hypothesis.

Learn more about Hypothesis Testing here:

https://brainly.com/question/34171008

#SPJ3

Mr. Smith is purchasing a $ 100000 house. The down payment is 20 % of the price of the house. He is given the choice of two mortgages:

a) a 30-year mortgage at a rate of 7 %.

Find: (i) the monthly payment: $ (ii) the total amount of interest paid: $

b) a 15-year mortgage at a rate of 7 %.

Find: (i) The monthly payment:$ (ii) the total amount of interest paid: $

Answers

Answer:

The price of the house = $ 100000

The down payment is 20 % of 100000 means [tex]0.20\times100000=20000[/tex] dollars

So, loan amount will be = [tex]100000-20000=80000[/tex] dollars

Case A:

30-year mortgage at a rate of 7 %

p = 80000

r = [tex]7/12/100=0.005833[/tex]

n = [tex]30\times12=360[/tex]

EMI formula is :

[tex]\frac{p\times r\times(1+r)^n}{(1+r)^n-1}[/tex]

Putting the values in formula we get;

[tex]\frac{80000\times0.005833\times(1+0.005833)^360}{(1+0.005833)^360-1}[/tex]

= [tex]\frac{80000\times0.005833\times(1.005833)^360}{(1.005833)^360-1}[/tex]

Monthly payment = $532.22

So, total amount paid in 30 years will be = [tex]532.22\times360=191599.20[/tex]

Interest paid will be = [tex]191599.20-100000=91599.20[/tex] dollars

Case B:

15-year mortgage at a rate of 7 %.

Here everything will be same as above. Only n will change.

n = [tex]15\times12=180[/tex]

Putting the values in formula we get;

[tex]\frac{80000\times0.005833\times(1+0.005833)^180}{(1+0.005833)^180-1}[/tex]

= [tex]\frac{80000\times0.005833\times(1.005833)^180}{(1.005833)^180-1}[/tex]

Monthly payment = $719.04

Total amount paid in 15 years will be = [tex]719.04\times180=129427.20[/tex]

Interest paid will be = [tex]129427.20-100000=29427.20[/tex] dollars

Final answer:

To find the monthly payment and total amount of interest paid for each mortgage, use the formula A = P(1+r/12)^(12n) / (12n), where A is the monthly payment, P is the principal, r is the interest rate, and n is the number of months.

Explanation:

To find the monthly payment and total amount of interest paid for each mortgage option, we can use the formula for calculating the monthly mortgage payment:

A = P(1+r/12)^(12n) / (12n)

where A is the monthly payment, P is the principal (price of the house minus the down payment), r is the interest rate (expressed as a decimal), and n is the number of months in the mortgage term.

For option a) the 30-year mortgage, we have:

P = 100000 - (0.2 * 100000) = $80000

r = 0.07

n = 30 * 12 = 360

Plugging these values into the formula, we get:

A = (80000(1+(0.07/12))^(12 * 30)) / (12 * 30) = $532.09

To calculate the total amount of interest paid, we subtract the principal from the total payment over the life of the mortgage:

Total Interest Paid = (360 * 532.09) - 80000 = $93891.24

For option b) the 15-year mortgage, we have:

P = 100000 - (0.2 * 100000) = $80000

r = 0.07

n = 15 * 12 = 180

Plugging these values into the formula, we get:

A = (80000(1+(0.07/12))^(12 * 15)) / (12 * 15) = $754.56

To calculate the total amount of interest paid, we subtract the principal from the total payment over the life of the mortgage:

Total Interest Paid = (180 * 754.56) - 80000 = $75822.80

Learn more about Monthly mortgage payment here:

https://brainly.com/question/34785943

#SPJ3

Eliminate the parameter and obtain the standard form of the rectangular equation. Hyperbola: x = h + b tan(θ), y = k + a sec(θ) Use your result to find a set of parametric equations for the line or conic. (When 0 ≤ θ ≤ 2π. Set your center at the origin. Enter your answers as a comma-separated list of equations.) Hyperbola: vertices: (0, ±2); foci: (0, ± 5 )

Answers

Final answer:

The standard form of the hyperbola is derived using trigonometric identities and substituted values. The given hyperbola has vertices (0,±2) and foci (0,±5), which yields a = 2, and c = 5. Using these, the standard form of the hyperbola would be y²/4 - x²/21 = 1, and the parametric equations are x = sqrt(21) tan(θ), y = 2 sec(θ).

Explanation:

To eliminate the parameter and obtain the standard form of the rectangular equation for a hyperbola, use the properties of trigonometric identities and apply the Pythagorean identity tan²(θ) + 1 = sec²(θ). Now, express tan(θ) and sec(θ) in terms of x and y, and substitute these into the Pythagorean identity to obtain the equation of the hyperbola.

In this case, tan(θ) = (x - h) / b and sec(θ) = (y - k) / a. Substitute these into the Pythagorean identity to get ((x - h) / b)² + 1 = ((y - k) / a)². Rearrange to obtain ({(x - h)²}/{b²}) - ({(y - k)²}/{a²}) = 1. This is the standard form of the hyperbola equation centered at (h, k).

For the specific hyperbola given with vertices (0,±2) and foci (0,±5), you can determine that a = 2, and c = 5. Using the relationship c² = a² + b² (for hyperbolas), you can find b = sqrt(c² - a²) = sqrt((5)² - (2)²) = sqrt(21).

So, the standard form of the equation would be y²/4 - x²/21 = 1. The parametric equations revert back to the original equation with specific values, i.e., x = sqrt(21) tan(θ) and y = 2 sec(θ).

Learn more about Hyperbola here:

https://brainly.com/question/27799190

#SPJ3

caps hock Guess and Check (or use Algebra) to solve #3 & # 4 3. Plato has 36 coins in nickels, dimes, and quarters. The number of nickels is three less than twice the number of dimes. The total value of the coins is $5.20. How many of each type of coin does Plato have? mel 36 coinsin d
4. Katy bought a ski hat that was marked down 35% to $15.60. What was the price of the hat before the markdown? (Hint: She was in Oregon where they do not have sales tax). 35 9. douon 15.60 5. Sele amo ont 621.06

Answers

Answer:

Part 1:

Let the nickels be = n

Let the dimes be = d

Let the quarters be = q

Plato has 36 coins in nickels, dimes, and quarters. So, equation forms:

[tex]n+d+q=36[/tex]    .....(1)

The number of nickels is three less than twice the number of dimes.

[tex]n=2d-3[/tex]    ....(2)

The total value of the coins is $5.20.

[tex]0.10d+0.05n+0.25q=5.20[/tex]   .... (3)

Substituting n=2d-3 in (1) and (3)

[tex]2d-3+d+q=36[/tex]

=> [tex]3d+q=39[/tex]    ....(4)

[tex]0.10d+0.05(2d-3)+0.25q=5.20[/tex]

=> [tex]0.10d+0.10d-0.15+0.25q=5.20[/tex]

=> [tex]0.20d+0.25q=5.35[/tex]    ...(5)

Multiplying (4) by 0.25 and subtracting (5) from (4)

[tex]0.75d+0.25q=9.75[/tex] now subtracting (5) from this we get;

[tex]0.55d=4.4[/tex]

=> d = 8

Substituting d = 8 in [tex]3d+q=39[/tex]

[tex]3(8)+q=39[/tex]

[tex]24+q=39[/tex]

=> q = 15

Substituting values of d and q in [tex]n+d+q=36[/tex], we get n

[tex]n+8+15=36[/tex]

[tex]n=36-23[/tex]

=> n = 13

Therefore Plato has 13 nickels, 15 quarters and 8 dimes.

-----------------------------------------------------------------------------------------

Part 2:

Let the original price of the ski hat be = x

Original price was marked down by 35% means value was lowered by 35%.

So, we can calculate as:

[tex]x-\frac{35x}{100}=15.60[/tex]

=> [tex]\frac{65x}{100}=15.60[/tex]

=> [tex]65x=1560[/tex]

x = 24

Hence, the original price was $24 but after 35% marking down, it was available for $15.60.

(1 point) Suppose that for two random variables X and Y the joint density function is f(x,y)=6xe−x(y+6), for x>0 and y>0. Find each of the following. (a) fX|Y(x,y)= (b) fY|X(x,y)=

Answers

Final answer:

The question is about calculating the conditional probability density functions of two random variables X and Y given their joint density function. However, without the marginal density functions for X and Y, it is not possible to provide exact numerical answers. General formulas involve dividing the joint density function by the respective marginal density function.

Explanation:

The question relates to the field of probability and statistics, specifically pertaining to joint density functions of two random variables (X and Y). We have the joint density function f(x, y) = 6xe^(−x(y+6)) where x > 0 and y > 0.

For the conditional probability density function, the general formula for fX|Y(x, y) is the joint density function divided by the marginal density function of Y. Similarly, for fY|X(x, y), it is the joint density function divided by the marginal density function of X.

However, the marginal density functions for X and Y are not specified in the question. Typically, to find these, one would integrate the joint density function with respect to the other variable. Due to this missing information, it's not possible to provide an exact numerical answer.

Learn more about Conditional Probability here:

https://brainly.com/question/32171649

#SPJ2

A genetic experiment with peas resulted in one sample of offspring that consisted of 447447 green peas and 172172 yellow peas. a. Construct a 9090​% confidence interval to estimate of the percentage of yellow peas. b. It was expected that​ 25% of the offspring peas would be yellow. Given that the percentage of offspring yellow peas is not​ 25%, do the results contradict​ expectations?

Answers

Answer:

The results do not contradict expectations.

Step-by-step explanation:

Given that a genetic experiment with peas resulted in one sample of offspring that consisted of 447 green peas and 172 yellow peas.

Proportion of yellow peas = [tex]\frac{172}{172+447} =27.79%[/tex]

Std error = 0.25(0.75)/sq rt 619

=0.0174

Proportion difference = 0.2779-0.25=0.0279

Test statistic = 0.0279/0.0174 =1.603

p value = 0.1089

For two tailed we have p value >0.10

Hence accept null hypothesis.

The results do not contradict expectations.

An inverted pyramid is being filled with water at a constant rate of 50 cubic centimeters per second. The pyramid, at the top, has the shape of a square with sides of length 6 cm, and the height is 14 cm. Find the rate at which the water level is rising when the water level is 6 cm.

Answers

Final answer:

The rate at which the water level is rising when the water level is 6 cm is 8.33 cm/s.

Explanation:

We can find the rate at which the water level is rising by using similar triangles. Let the height of the water level be h (in cm). Since the pyramid is inverted, the volume of water inside the pyramid is given by V = (6-h)^2 * h. Taking the derivative of both sides with respect to time, we get dV/dt = 50. Solving for dh/dt, we find that the rate at which the water level is rising is dh/dt = 50 / (12 - h).

When the water level is 6 cm, we substitute h = 6 into the equation to find the rate at which the water level is rising. dh/dt = 50 / (12 - 6) = 50 / 6 = 8.33 cm/s. Therefore, when the water level is 6 cm, the rate at which the water level is rising is 8.33 cm/s.

8 Line in the xy-plane contains points from each of Quadrants II, III, and IV, but no points from Quadrant I. Which of the following must be true? A) The slope of line is undefined. B) The slope of line is zero. C) The slope of line is positive. D) The slope of line is negative. CONTINUE

Answers

Answer:

The correct option is D.

Step-by-step explanation:

The slope of a line is the change in y with respect to x.

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

If the slope of a line is undefined it means it is a vertical line and a vertical line  can not passes through three quadrants. So, option A is incorrect.

If the slope of a line is 0 it means it is a horizontal line and a horizontal line  can not passes through three quadrants. So, option B is incorrect.

If the slope of a line is positive it means the value of y increases as x increases.

Since it is an increasing line, therefore after a certain period both x and y will positive. It means the line will passes through first quadrant. So, option C is incorrect.

If the slope of a line is negative it means the value of y decreases as x increases. It can passes through each of Quadrants II, III, and IV.

Therefore the correct option is D.

Identify the radius and center.

x^2 + y^2 + 4y -21 =0

Answers

Answer:

radius 5

center (0,-2)

Step-by-step explanation:

The goal is to get to [tex](x-h)^2+(y-k)^2=r^2 \text{ where } (h,k) \text{ is the center and } r \text{ is the radius }[/tex].

We will need to complete the square for both parts.

That is we need to use:

[tex]u^2+bu+(\frac{b}{2})^2=(u+\frac{b}{2})^2[/tex].

First step is group the x's and y's together and put the constant on the opposing side.  The x's and y's are already together.  So we need to add 21 on both sides:

[tex]x^2+y^2+4y=21[/tex]

Now the x part is already done.

If you compare y^2+4y to [tex]u^2+bu+(\frac{b}{2})^2=(u+\frac{b}{2})^2[/tex]

on the left side we have b is 4 so we need to add (4/2)^2 on both sides of [tex]x^2+y^2+4y=21[/tex].

[tex]x^2+y^2+4y+(\frac{4}{2})^2=21+(\frac{4}{2})^2[/tex]

Now we can write the y part as something squared still using my completing the square formula:

[tex]x^2+(y+\frac{4}{2})^2=21+2^2[/tex]

[tex]x^2+(y+2)^2=21+4[/tex]

[tex](x-0)^2+(y+2)^2=25[/tex]

The center is (0,-2) and radius is [tex]\sqrt{25}=5[/tex]

Hello!

The answer is:

Center: (0,-2)

Radius: 2.5 units.

Why?

To solve the problem, using the given formula of a circle, we need to find its standard equation form which is equal to:

[tex](x-h)^{2}+(y-k)^{2}=r^{2}[/tex]

Where,

"h" and "k"are the coordinates of the center of the circle and "r" is its radius.

So, we need to complete the square for both variable "x" and "y".

The given equation is:

[tex]x^2+y^2+4y-21=0[/tex]

So, solving we have:

[tex]x^2+y^2+4y=21[/tex]

[tex]x^2+(y^2+4y+(\frac{4}{2})^{2})=21+(\frac{4}{2})^{2}\\\\x^2+(y^2+4y+4)=21+4\\\\x^2+(y^2+2)=25[/tex]

[tex]x^2+(y^2-(-2))=25[/tex]

Now, we have that:

[tex]h=0\\k=-2\\r=\sqrt{25}=5[/tex]

So,

Center: (0,-2)

Radius: 5 units.

Have a nice day!

Note: I have attached a picture for better understanding.

Find a parametric representation for the surface. The part of the plane z = x + 3 that lies inside the cylinder x2 + y2 = 9. (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of s and/or θ.)

Answers

You can use

[tex]x=u\cos v[/tex]

[tex]y=u\sin v[/tex]

[tex]z=u\cos v+3[/tex]

with [tex]0\le u\le3[/tex] and [tex]0\le v\le2\pi[/tex].

Final answer:

The parametric equations for the part of the plane z = x + 3 that lies inside the cylinder x² + y² = 9 can be written as x = 3cos(θ), y = 3sin(θ), and z = 3cos(θ) + 3.

Explanation:

The parametric representation of a surface can be found by expressing the variables x, y, and z in terms of parameters. Given the cylinder equation x² + y² = 9, we can express x and y in terms of a single parameter θ as follows:

x = 3cos(θ)y = 3sin(θ)

Here we've used the parametric equations for a circle of radius 3. Moving further with the given plane equation z = x+3, we substitute x from our parametric equations above:

z = 3cos(θ) + 3

So, the parametric representation for the given surface is:

x = 3cos(θ)y = 3sin(θ)z = 3cos(θ) + 3

Learn more about Parametric Representation here:

https://brainly.com/question/34159526

#SPJ2

What's the annual percentage yield for money invested at the rate of 3.2% compounded continuously?

Answer:__________ %

Convert your answer into a percentage. Round your answer to 2 decimal places.

Answers

Answer:

The Annual percentage yield is 3.25%.

Step-by-step explanation:

Given : Money invested at the rate of 3.2% compounded continuously.

To find : What's the annual percentage yield?

Solution :

Money invested at the rate of 3.2% compounded continuously.

The compounded continuously formula is

[tex]A=Pe^{rt}[/tex]

Where, P is the principal P=1

t is the time t=1

r is the interest rate r=3.2%=0.032

Substitute the value in the formula,

[tex]A=Pe^{rt}[/tex]

[tex]A=1\times e^{0.032}[/tex]

[tex]A=1.0325[/tex]

The Annual percentage yield is

[tex]APY=(A-1)\times 100[/tex]

[tex]APY=(1.0325-1)\times 100[/tex]

[tex]APY=0.0325\times 100[/tex]

[tex]APY=3.25\%[/tex]

Therefore, The Annual percentage yield is 3.25%.

You invest $1600 in an account paying 5% interest compounded daily. What is the account's effective annual yield? Assume 360 days in a year.

The account's effective annual yield is ___% (Round to two decimal places as needed)

Answers

Answer:

5.13%.

Step-by-step explanation:

Amount  accumulated in 1 year

= 1600(1 + 0.05/360)^360

= $1682.03

Account's effective annual yield

= 82.03 * 100  / 1600 %

= 5.13%.

The account's effective annual yield (EAY) for an investment of $1600 with a 5% interest rate compounded daily (assuming a 360-day year) is approximately 5.12% when rounded to two decimal places.

The student has invested $1600 in an account that offers 5% interest compounded daily with the assumption of a 360-day year. To find the effective annual yield, we use the formula for compound interest and the definition of effective annual yield (EAY), which accounts for the compounding effect:

EAY = (1 + r/n)n - 1

Where:


 
 

In this case:


 
 

Now, substituting the values, we get:

EAY = (1 + 0.05/360)360 - 1

Calculating this out:

EAY = (1 + 0.0001388888889)360 - 1

EAY

to find the EAY:

EAY = ((1 + (0.05/360))^360) - 1

After calculating the above expression, the approximate effective annual yield comes out to be:

EAY = 0.05116 or 5.116%

Therefore, after rounding to two decimal places as required, the effective annual yield of the account is 5.12%.

y = −(x + 4)2 − 7 vertex

Answers

Answer:

The vertex (h,k) is (-4,-7).

Step-by-step explanation:

I assume you are looking for the vertex [tex]y=-4(x+4)^2-7[/tex].

The vertex form of a quadratic is [tex]y=a(x-h)^2+k[/tex] where the vertex is (h,k) and a tells us if the parabola is open down (if a<0) or up (if a>0). a also tells us if it is stretched or compressed.

Anyways if you compare [tex]y=-4(x+4)^2-7[/tex] to [tex]y=a(x-h)^2+k[/tex] , you should see that [tex]a=-4,h=-4,k=-7[/tex].

So the vertex (h,k) is (-4,-7).

Answer:

The vertex is [tex](-4,-7)[/tex]

Step-by-step explanation:

The vertex form of a parabola is given by:

[tex]y=a(x-h)^2+k[/tex], where (h,k) is the vertex and [tex]a[/tex] is the leading coefficient.

The given parabola has equation:

[tex]y=-1(x+4)^2-7[/tex]

When we compare to the vertex form, we have

[tex]-h=4\implies h=-4[/tex] and [tex]k=-7[/tex].

Therefore the vertex is (-4,-7)

The coefficient of x^3y^4 in (3x+2y)^7 is

Answers

Answer:

The coefficient is 15120.  

Step-by-step explanation:

Since, by the binomial expansion formula,

[tex](x+y)^n=\sum_{r=0}^n^nC_r x^{n-r} y^r[/tex]

Where, [tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]

Thus, we can write,

[tex](3x+2y)^7 = \sum_{r=0}^n ^7C_r (3x)^{7-r} (2y)^r[/tex]

For finding the coefficient of [tex]x^3y^4[/tex],

r = 4,

So, the term that contains [tex]x^3y^4[/tex] = [tex]^7C_4 (3x)^3 (2y)^4[/tex]

[tex]=35 (27x^3) (16y^4)[/tex]

[tex]=15120 x^3 y^4[/tex]

Hence, the coefficient of [tex]x^3y^4[/tex] is 15120.

Answer:[tex][/tex]

Coefficient of  [tex]x^3y^4[/tex] in [tex](3x+2y)^7[/tex] is 15120

Step-by-step explanation:

We know that [tex](x+y)^{n}[/tex]) can be expanded in (n+1) terms by using binomial theorem and each term is given as

[tex]n_C_{r}x^{n-r}y^{r}[/tex]

Here value of r is taken from n to 0

we have to determine the coefficient of [tex]x^3y^4[/tex] in [tex](3x+2y)^7[/tex]

in this problem we have given n=7

We have to determine the coefficient of [tex]x^3y^4[/tex]

it means in the expansion we have to find the the 3rd power of x and therefore

r=n-3

here n=7

therefore, r=7-3=4

Hence the coefficient of [tex]x^3y^4[/tex]  can be determine by using formula

[tex]n_C_{r}x^{n-r}y^{r}[/tex]

here n=7, r=4

[tex]7_C_{4}x^{7-4}y^{4}[/tex]

=[tex]\frac{7\times 6\times 5\times 4}{1\times 2\times 3\times 4} (3x)^3(2y)^4[/tex]

=[tex]15120x^3y^4[/tex]

Therefore the coefficient of  [tex]x^3y^4[/tex] in [tex](3x+2y)^7[/tex] is 15120

A fair coin is flipped 4 times. What is the probability that at least two heads are flipped?

Answers

The probability of flipping at least two heads in four tosses of a fair coin is calculated using the binomial distribution, and the total probability is found to be 0.6875 or 68.75%.

To calculate the probability of flipping at least two heads in a series of four coin tosses with a fair coin, we need to consider all the possible outcomes in which we can get at least two heads. The different numbers of heads that can be obtained are 0, 1, 2, 3, or 4. To find the probability of each specific event, we use the binomial distribution formula, which for flipping two heads is:

P(2 heads) = (4 choose 2) × (0.5)² × (0.5)² = 6 × 0.25 × 0.25 = 0.375.

We can also find the probabilities of obtaining three and four heads:

P(3 heads) = (4 choose 3) × (0.5)³ × (0.5)¹ = 4 × 0.125 × 0.5 = 0.25,

P(4 heads) = (4 choose 4) × (0.5)⁴ = 1 × 0.0625 = 0.0625.

Next, we add these probabilities together to get the total probability of flipping at least two heads:

Total probability = P(2 heads) + P(3 heads) + P(4 heads) = 0.375 + 0.25 + 0.0625 = 0.6875.

Therefore, the probability of flipping at least two heads in four tosses of a fair coin is 0.6875 or 68.75%.

could someone explain and help

Answers

Answer:

  80°

Step-by-step explanation:

The sum of the two angles (red and blue) is 145°, so you have ...

  (4x +5)° +(6x -10)° = 145°

  10x = 150 . . . . . . . . divide by °, add 5, simplify

  x = 15 . . . . . . . . . . . divide by 10

Then the measure of the angle of interest is ...

  m∠XMN = (6x -10)° = (6·15 -10)° = 80°

1. Suppose you take a coin and flip it 4 times in a row. After each flip you record whether the coin landed heads or tails. What is the probability you’ll get at least 2 heads?

Answers

Answer:

25%

Step-by-step explanation:

Great question, since a regular coin has two sides one heads and one tails. That gives us a 50% probability of it landing on either side of the coin. Since we would like to know the probability of getting 2 heads in a row, we would need to multiply the probability of the first toss landing on heads with the second toss landing on heads, like so...

[tex]\frac{1}{2} *\frac{1}{2} =\frac{1}{4}[/tex]

So we can see that the probability of us getting two heads in a row is that of \frac{1}{4}[/tex] or 25%.

I hope this answered your question. If you have any more questions feel free to ask away at Brainly.

In Problems 25-28 use (12) to verify that the indicated function is a solution of the given differential equation. Assume an appropriate interval / of definition of each solution. - 3 dt dy 25. x dx 3xy 1: y-e|. = e3r t

Answers

the answer is 17. the answer is 17

A card is drawn at random from a standard deck of 52 cards. Find the following conditional probabilities. ​a) The card is a spade​, given that it is black. ​b) The card is black​, given that it is a spade. ​c) The card is a seven​, given that it is black. ​d) The card is a king​, given that it is a face card.

Answers

Final answer:

To find the conditional probabilities, you need to use the definition of conditional probability. Given that a card is black, the probability that it is a spade is 1/2. Given that a card is a spade, the probability that it is black is 2. Given that a card is black, the probability that it is a seven is 1/13. Given that a card is a face card, the probability that it is a king is 1/3.

Explanation:

To find these conditional probabilities, we need to use the definition of conditional probability:

P(A|B) = P(A and B) / P(B)

a) The card is a spade, given that it is black:

In a standard deck of cards, there are 26 black cards and 13 spades. So, P(S|B) = P(S and B) / P(B) = 13/26 / 26/52 = 1/2

b) The card is black, given that it is a spade:

P(B|S) = P(B and S) / P(S) = 26/52 / 13/52 = 26/13 = 2

c) The card is a seven, given that it is black:

In a standard deck of cards, there are 4 black sevens and 26 black cards. So, P(7|B) = P(7 and B) / P(B) = 4/26 / 26/52 = 1/13

d) The card is a king, given that it is a face card:

In a standard deck of cards, there are 4 kings and 12 face cards. So, P(K|F) = P(K and F) / P(F) = 4/52 / 12/52 = 1/3

Prove that if AB= 0and A is invertible then B= 0

Answers

Answer with Step-by-step explanation:

Since we have given that

AB = 0 and A is invertible so, AA⁻¹ = I

So, Consider,

[tex]AB=0[/tex]

Multiplying A⁻¹ on both the sides, we get that

[tex]A^{-1}AB=A^{-1}0\\\\(AA^{-1})B=0\\\\IB=0\\\\B=0[/tex]

Hence proved.

A cable provider wants to contact customers in a particular telephone exchange to see how satisfied they are with the new digital TV service the company has provided. All numbers are in the 443 ​exchange, so there are 10 comma 000 possible numbers from 443​-0000 to 443​-9999. If they select the numbers with equal​ probability: ​a) What distribution would they use to model the​ selection? ​b) What is the probability the number selected will be an even ​number? ​c) What is the probability the number selected will end in 666​?

Answers

Answer:

  a) uniform

  b) 1/2

  c) 1/1000

Step-by-step explanation:

a) "numbers with equal​ probability" have a uniform distribution.

__

b) Even numbers make up 1/2 of all numbers.

__

c) There are ten such numbers in the range, so the probability is ...

  10/10000 = 1/1000

Final answer:

The selection of telephone numbers can be modeled using a Uniform distribution. The probability of selecting an even number is 1/2, while the chance of selecting a number ending in 666 is 0.001.

Explanation:

The questions asked can be explained using probability theory, a branch of mathematics.

a) To model the selection of the telephone numbers, one would use a Uniform distribution. This is because every number in the range has an equal chance of being selected.

b) The probability that the selected number is even relies on the last digit of the telephone number. As the last digit could be 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9, each with equal probability, the chance that it is even (0, 2, 4, 6, or 8) is 1/2 or 50%.

c) The probability that the selected number ends in 666 is much lower. Since there are 10,000 possible numbers, and only 10 of them end in 666 (443-0666, 443-1666, etc. through 443-9666), the probability is 10 in 10,000 or 0.001 (0.1%).

Learn more about Probability Theory here:

https://brainly.com/question/33441869

#SPJ2

3. (6 Points). Solve the initial value problem y'-y.cosx=0, y(pi/2)=2e

Answers

Answer:

[tex]y=2e^{sin(x)}[/tex]

Step-by-step explanation:

Given equation can be  re written as

[tex]\frac{\mathrm{d} y}{\mathrm{d} x}-ycos(x)=0\\\frac{\mathrm{d} y}{\mathrm{d} x}=ycos(x)\\\\=> \frac{dy}{y}=cox(x)dx\\\\Integrating  \\ \int \frac{dy}{y}=\int cos(x)dx \\\\ln(y)=sin(x)+c[/tex]............(i)

Now it is given that y(π/2) = 2e

Applying value in (i) we get

ln(2e) = sin(π/2) + c

=> ln(2) + ln(e) = 1+c

=> ln(2) + 1 = 1 + c

=> c = ln(2)

Thus equation (i) becomes

ln(y) = sin(x) + ln(2)

ln(y) - ln(2) = sin(x)

ln(y/2) = sin(x)

[tex]y= 2e^{sinx}[/tex]

54​% of U.S. adults have very little confidence in newspapers. You randomly select 10 U.S. adults. Find the probability that the number of U.S. adults who have very little confidence in newspapers is ​ (a) exactly​ five, (b) at least​ six, and​ (c) less than four.

Answers

Answer:

[tex]P(5)=0.238[/tex]

[tex]P(x\geq 6)=0.478[/tex]

[tex]P(x<4)=0.114[/tex]

Step-by-step explanation:

In this case we can calculate the probability using the binomial probability formula

[tex]P(X=x)=\frac{n!}{x!(n-x)!}*p^x*(1-p)^{n-x}[/tex]

Where p is the probability of obtaining a "favorable outcome " x is the number of desired "favorable outcome " and n is the number of times the experiment is repeated. In this case n = 10 and p = 0.54.

(a) exactly​ five

This is:

[tex]x=5,\ n=10,\ p=0.54.[/tex]

So:

[tex]P(X=5)=\frac{10!}{5!(10-5)!}*0.54^x*(1-0.54)^{10-5}[/tex]

[tex]P(5)=0.238[/tex]

(b) at least​ six

This is: [tex]x\geq 6,\ n=10,\ p=0.54.[/tex]

[tex]P(x\geq 6)=P(6) + P(7)+P(8)+P(9) + P(10)[/tex]

[tex]P(x\geq 6)=0.478[/tex]

(c) less than four

This is: [tex]x< 4,\ n=10,\ p=0.54.[/tex]

[tex]P(x<4)=P(3) + P(2)+P(1)+P(0)[/tex]

[tex]P(x<4)=0.114[/tex]

This question is based on the probability. Therefore, the required probabilities  are :  (a) [tex]P(5) = 0.238[/tex],  (b)[tex]P(x \geq 6) = 0.478[/tex]  and (c) [tex]P(x <4) = 0.114[/tex].

Given:

54​% of U.S. adults have very little confidence in newspapers. You randomly select 10 U.S. adults.

We have to find the probability that the number of U.S. adults who have very little confidence in newspapers is ​ (a) exactly​ five, (b) at least​ six, and​ (c) less than four.

According to the question,

[tex]P(5) = 0.238\\P(x \geq 6) = 0.478\\P(x <4) = 0.114[/tex]

In this we have to calculate the probability using the binomial probability formula,

[tex]P(X=x) = \dfrac{n!}{x!(n-x)!} \times p^{x} \times (1-p)^{n-x}[/tex]

Where, p is the probability of obtaining a "favorable outcome ", x is the number of desired "favorable outcome " and n is the number of times the experiment is repeated. In this case n = 10 and p = 0.54.

(a) exactly​ five  

x=5, n= 10, p = 0.54

[tex]P(X=5)= \dfrac{10!}{5!(10-5)!} \times 0.5^{x} \times (1-0.54)^{10-5}[/tex]

P(X=5) = 0.238

(b) at least​ six

[tex]x\geq 6, n=10, p=0.54\\P(x\geq 6) = P(6) + P(7) + P(8) + P(9)+P(10)\\P(x\geq 6) = 0.478[/tex]

(c) less than four

[tex]x< 6, n=10, p=0.54\\P(x< 4) = P(3) + P(2) + P(1) + P(0)\\P(x< 4) = 0.114[/tex]

Therefore, the answers are :  (a) [tex]P(5) = 0.238[/tex],  (b)[tex]P(x \geq 6) = 0.478[/tex]

and (c) [tex]P(x <4) = 0.114[/tex].

For more details, please refer this link:

https://brainly.com/question/795909

If ( 43.65 ) ( 8.79 ) / x = ( 0.4365 ) ( 87.9 ) then value of x is:
(a) .01 (b) 0.1 (c) 1 (d) 10 (e) 100
Need step-by-step solution
i will mark your answer Brainliest

Answers

Answer:

  (d)  10

Step-by-step explanation:

Multiply by x and divide by its coefficient:

  (43.65)(8.79) = (0.4365)(87.9)x

  (43.65)(8.79)/((0.4365)(87.9)) = x

At this point, any calculator can give you the answer. It is, perhaps, more satisfying to work out the answer without a calculator.

  x = (43.65)/(0.4365) × (8.79)/(87.9)

In the first quotient, the numerator is 100 times the denominator; in the second, the denominator is 10 times the numerator.

  x = (100) × (1/10) = 100/10

  x = 10

_____

Moving the decimal point to the right 1 place multiplies the numerical value by 10.

Final answer:

The value of x in the given equation that satisfies the condition is 10.

Explanation:

In this question, we're given a mathematical expression in which the value of x is unknown. We're looking for the value of x that satisfies the equation:

( 43.65 ) ( 8.79 ) / x = ( 0.4365 ) ( 87.9 )

To solve this equation for x, we can start by noting the similarity between the left and right sides. We have larger numbers on the left side that appear, in reduced form, on the right side.

Follow these steps:

Multiply 43.65 and 8.79 to get 383.985.Multiply 0.4365 and 87.9 to get 38.3985.Divide 383.985 by 38.3985 to get 10.

So, the correct option would be (d) 10.

Learn more about Algebra here:

https://brainly.com/question/32436021

#SPJ2

A pile of 42 coins worth $4.90, consisting of nickels and quarters. How many nickels are there?

Answers

Answer:14

Step-by-step explanation:

A nickel is 5 cents (20% of dollar)

and a quarter is 25 cents (25% of dollar)

We have given a pile of 42 coins worth of $4.90

Let x be the no nickels and

y be the no of quarter

therefore

x+y=42    -----1

[tex]\frac{x}{4}[/tex]+[tex]\frac{y}{20}[/tex]=4.90 ---2

Solving [tex]\left ( 1\right )&\left ( 2\right )[/tex] we get

x=14 & y=28

Therefore no of nickels is 14 & no of quarters is 28

Maria needed 88 gallons of gas to fill her​ car's gas tank. The mileage odometer read 40 comma 00040,000 miles. When the odometer read 40 comma 18040,180​, Maria filled the tank with 99 gallons. At the end of the​ trip, she filled the tank with 1616 ​gallons, and the odometer read 40 comma 48440,484 miles. How many miles per gallon did she get for the entire​ trip?

Answers

Answer:

about 29,748.3

Step-by-step explanation:

4000040000 - 4018040180 = 18000180

(11 gallons were used there^)

4018040180 - 4048440484 = 30400304

1616+11 = 1627 total gallons

18000180 + 30400304 = 48400484

48400484/ 1627 = 29,748.3

13. Determine whether B = {(-1, 1,-1), (1, 0, 2), (1, 1, 0)} is a basis of R3.

Answers

Answer:  Yes, the given set of vectors is a basis of R³.

Step-by-step explanation:  We are given to determine whether the following set of three vectors in R³ is a basis of R³ or not :

B = {(-1, 1,-1), (1, 0, 2), (1, 1, 0)} .

For a set to be a basis of R³, the following two conditions must be fulfilled :

(i) The set should contain three vectors, equal to the dimension of R³

and

(ii) the three vectors must be linearly independent.

The first condition is already fulfilled since we have three vectors in set B.

Now, to check the independence, we will find the determinant formed by theses three vectors as rows.

If the value of the determinant is non zero, then the vectors are linearly independent.

The value of the determinant can be found as follows :

[tex]D\\\\\\=\begin{vmatrix} -1& 1 & -1\\ 1 & 0 & 2\\ 1 & 1 & 0\end{vmatrix}\\\\\\=-1(0\times0-2\times1)+1(2\times1-1\times0)-1(1\times1-0\times1)\\\\=(-1)\times(-2)+1\times2-1\times1\\\\=2+2-1\\\\=3\neq 0.[/tex]

Therefore, the determinant is not equal to 0 and so the given set of vectors is linearly independent.

Thus, the given set is a basis of R³.

NEED HELP ASAP!!!!!!!!!!!!

Answers

Answer:

p(0) = 800

p(8) = 997

Step-by-step explanation:

p(t) = 800 * (1.028)^t

The current price is when t=0

p(0) = 800 * (1.028)^0

       = 800(1)

       = 800

The price in 8 years

p(8) = 800 * (1.028)^8

       =997.7802522414861936754688

To the nearest dollar

        = 998

Answer:

[tex]p(0)=\$\ 800[/tex]

[tex]p(8)=\$\ 998[/tex]

Step-by-step explanation:

The function that the mode in the price is a function of exponential growth

[tex]p(t)=800(1.028)^t[/tex]

If t represents time in years, then to find the current price we do [tex]t = 0[/tex]

Then:

[tex]p(t=0)=800(1.028)^0[/tex]

[tex]p(0)=800(1)[/tex]

[tex]p(0)=\$\ 800[/tex]

To find the price after 8 years substitute t = 8 in the equation

[tex]p(t=8)=800(1.028)^8[/tex]

[tex]p(8)=\$\ 998[/tex]

Other Questions
If a diameter intersects a chord of a circle at a right angle, what conclusion can be made? The chord is bisected. The diameter is bisected. The diameter and the chord are congruent. The diameter is twice as long as the chord. The Centers for Disease Control reported the percentage of people 18 years of age and older who smoke (CDC website, December 14, 2014). Suppose that a study designed to collect new data on smokers and nonsmokers uses a preliminary estimate of the proportion who smoke of .31. a. How large a sample should be taken to estimate the proportion of smokers in the population with a margin of error of .02 (to the nearest whole number)? Use 95% confidence. Which line has a slope of LaTeX: \frac{1}{2}12and goes through the point (2, 4)? What is the uncertainty in position of an electron of an atom if there is t 2.0 x 10' msec uncertainty in its velocity? Use the reduced Planck's constant and electron mass 9.19 x 103 kg. A BOX OF 7 ITEMS COSTS $20.79. FIND THE COST OF EACH ITEMS,A.$0.30B.$6C.$0.03D.$3 Which group is being described below emphasize Hardwork settled in new England emphasize social conformity a. Amish b. Puritans c. Catholics d. Quakers What are character traits? List at least three examples. A composite material is a mix of two different materials such as ceramics and metals fused together to the atomic level to form another substance with more improved propertied.a)-True b)-False 4. You have a very concentrated solution (12 M) of potassium chloride (KCI). You need it to be at the least concentration possible for the experiment you areabout to conduct. The problem is you forgot to order lab supplies, so you only have 2 L of distilled water left. What would be the final concentration if youadded the two 2 L of distilled water to the 0.5 L of 12 M KCI?a 3.0 Mb 24 MC 2.4Md 48 M Solomon Asch set up an experimental situation in which participants were asked to identify which of three comparison lines were identical to a standard line. His research was designed to answer a straightforward question, namely: (A) would people obey an authority figure even if it meant hurting others? (B) would people intervene and help a person in trouble in presence of others?(C) would people still conform to the group if the group opinion was clearly wrong?(D) would prejudice be reduced if members of different group were brought into contact with each other? Which is an equation of the line passingthrough the point (10, 8) with a slope of 2/5? Multiple choice:(1): y=2/5x+4(2):y=2/5x+8(3):y=2/5x+12(4):y=2/5xThe multiple choices are in fraction and please help Provide two examples from everyday life which apply sequential, conditional, and iterative operations. Read the dialogue and choose the option with the correct answer for the blank.Caleb: Tengo mucho fro hola, amigos. El tiempo en mi casa est muy fro para mi gusto. Qu tiempo hace en tu pas o ciudad? Escribe tu comentario and let me know.Right now, I need to go warm up! Hasta maana!Caleb: Soli est de viaje con su familia en Argentina. Ahora en Argentina las temperaturas son de verano. Me imagino que ella va a ir a la playa todos los das. Here, las temperaturas son la estacin invierno.Brrrrr.Javi: Hola, Caleb, con quin hablas?Caleb: Hola, Javi, pienso en las estaciones. Pienso en cmo en todo el mundo es invierno, pero en Argentina el clima es de verano.Javi: S, en Argentina ahora hace buen tiempo. Me gustara estar en Argentina. El meteorlogo said that this fin de semana va a llover.Caleb: No me hables ms de mal tiempo, chico.Javi: Ok, vamos a imaginar que estamos con Soli en Argentina en una playa con una temperatura muy caliente.Caleb: Let me get my sunblock.Javi: Sunblock?Caleb: S, chico, you don't want this beautiful face to get burned en este clima de Argentina!Based on the dialogue, in Argentina ________. A) it's cold due to its location in the south hemisphere B) it's hot due to its location in the north hemisphere C) it's cold due to its location in the north hemisphere D) it's hot due to its location in the south hemisphere Windsor, Inc. applied FIFO to its inventory and got the following results for its ending inventory. Cameras 106 units at a cost per unit of $64 Blu-ray players 167 units at a cost per unit of $78 iPods 137 units at a cost per unit of $90 The net realizable value of each of these products at year-end was cameras $76, Blu-ray players $54, and iPods $72. Determine the amount of ending inventory at lower-of-cost-or-net realizable value. Plzzzz help me on this questions fast This is Trigonometry Sketch and label a simple reheat cycle along with the appropriate T-s diagram? If you do not view Hurricane Katrina's impact on New Orleans as a "natural disaster," which one of the following sources of damage would you emphasize?A. sustained winds of over 100 mph B. breaches in the poorly-designed levees C. heavy rain and downpours of up to 25 inches in 30 hours D. flooding induced by the storm surge -36+(-9)+14+(-31)-(-66) A Galilean telescope with two lenses spaced 30 cm apart has an objective of 50 cm focal length. (i) What is the focal length of the eyepiece? (ii) What is the magnification of the telescope? Assume the object to be very far away. (iii) What must be the separation between the two lenses when the subject being viewed is 30 m away? Assume the viewing is done with a relaxed eye. What is the average rate of change for the sequence shown below? coordinate plane showing the points 1, 4; 0.5, 3.5; 0, 3; and negative 0.5, 2.5 2 one half 1 2