The standard cell potential (E°cell) for the reaction below is +0.63 V. The cell potential for this reaction is ________ V when [ Zn2+] = 3.5 M and [Pb2+] = 2.0⋅10−4 M.
Pb2+ (aq) + Zn (s) → Zn2+ (aq) + Pb (s)
A) 0.84
B) 0.76
C) 0.50
D) 0.63
E) 0.39

Answers

Answer 1

Answer : The cell potential for this reaction is 0.50 V

Explanation :

The given cell reactions is:

[tex]Pb^{2+}(aq)+Zn(s)\rightarrow Zn^{2+}(aq)+Pb(s)[/tex]

The half-cell reactions are:

Oxidation half reaction (anode):  [tex]Zn\rightarrow Zn^{2+}+2e^-[/tex]

Reduction half reaction (cathode):  [tex]Pb^{2+}+2e^-\rightarrow Pb[/tex]

First we have to calculate the cell potential for this reaction.

Using Nernest equation :

[tex]E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Zn^{2+}]}{[Pb^{2+}]}[/tex]

where,

F = Faraday constant = 96500 C

R = gas constant = 8.314 J/mol.K

T = room temperature = [tex]25^oC=273+25=298K[/tex]

n = number of electrons in oxidation-reduction reaction = 2

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.63 V

[tex]E_{cell}[/tex] = cell potential for the reaction = ?

[tex][Zn^{2+}][/tex] = 3.5 M

[tex][Pb^{2+}][/tex] = [tex]2.0\times 10^{-4}M[/tex]

Now put all the given values in the above equation, we get:

[tex]E_{cell}=(+0.63)-\frac{2.303\times (8.314)\times (298)}{2\times 96500}\log \frac{3.5}{2.0\times 10^{-4}}[/tex]

[tex]E_{cell}=0.50V[/tex]

Therefore, the cell potential for this reaction is 0.50 V


Related Questions

What volume of carbon dioxide is produced when 0.489 mol of calcium carbonate reacts completely according to the following reaction at 0°C and 1 atm? calcium carbonate ( s ) calcium oxide ( s ) + carbon dioxide ( g )

Answers

Answer:

11.0L of carbon dioxide is produced

Explanation:

Balanced equation: [tex]CaCO_{3}(s)\rightarrow CaO(s)+CO_{2}(g)[/tex]

According to balanced equation, 1 mol of [tex]CaCO_{3}[/tex] produces 1 mol of [tex]CO_{2}[/tex]

So, 0.489 mol of [tex]CaCO_{3}[/tex] produces 0.489 mol of [tex]CO_{2}[/tex]

Let's assume [tex]CO_{2}[/tex] behaves ideally.

So, [tex]P_{CO_{2}}V_{CO_{2}}=n_{CO_{2}}RT[/tex]

where P is pressure, V is volume , n is number of moles, R is gas constant and T is temperature in kelvin

Plug-in all the values in the above equation-

[tex](1atm)\times V_{CO_{2}}=(0.489mol)\times (0.0821L.atm.mol^{-1}.K^{-1})\times (273K)[/tex]

or, [tex]V_{CO_{2}}=11.0L[/tex]

So, 11.0L of carbon dioxide is produced

A 275-mL flask contains pure helium at a pressure of 752 torr. A second flask with a volume of 475 mL contains pure argon at a pressure of 722 torr. If the two flasks are connected through a stopcock and the stopcock is opened, what is the partial pressure of each gas and the total pressure.?

Answers

Answer:

Total pressure = 732.9 torr

Partial pressure of helium =275.7 torr

Partial pressure of  argon = 457.2 torr

Explanation:

Given data:

Volume of flask one = 275 mL

Pressure of helium = 752 torr

Volume of second flask = 475 mL

Pressure of argon = 722 torr

What is partial pressure = ?

What is total pressure = ?

Solution:

V₂ = 275 mL + 475 mL = 750 mL

For helium:

P₁V₁ = P₂V₂

P₂ = P₁V₁ /V₂

P₂ =  752 torr. 275 mL /  750 mL

P₂ = 206800 torr. mL  /750 mL

P₂ = 275.7 torr

For argon:

P₁V₁ = P₂V₂

P₂ = P₁V₁ /V₂

P₂ =  722 torr. 475 mL /  750 mL

P₂ = 342950 torr. mL  /750 mL

P₂ = 457.2  torr

Total pressure = P(helium) + P ( argon)

Total pressure = 275.7 torr +  457.2  torr

Total pressure = 732.9 torr

We have a 275-mL flask with helium at 752 torr and a 475-mL flask with argon at 722 torr. If both flasks are connected, the partial pressure of helium will be 276 torr, the partial pressure of argon will be 457 torr and the total pressure will be 733 torr.

We have 2 flasks:

A 275-mL flask contains pure helium at a pressure of 752 torr. A 475-mL flask contains pure argon at a pressure of 722 torr.

If the two flasks are connected through a stopcock and the stopcock is opened, the final volume will be the sum of the initial volumes.

[tex]V_2 = 275mL + 475 mL= 750 mL[/tex]

Assuming ideal behavior and constant temperature, we can calculate the final partial pressure of each gas using Boyle's law.

[tex]P_1 \times V_1 = P_2 \times V_2[/tex]

Helium

[tex]P_2 = \frac{P_1 \times V_1}{V_2} = \frac{752 torr \times 275mL}{750 mL} = 276torr[/tex]

Argon

[tex]P_2 = \frac{P_1 \times V_1}{V_2} = \frac{722 torr \times 475mL}{750 mL} = 457torr[/tex]

Total pressure

The total pressure will be the sum of the partial pressures.

[tex]P = pHe + pAr = 276 torr + 457torr = 733torr[/tex]

We have a 275-mL flask with helium at 752 torr and a 475-mL flask with argon at 722 torr. If both flasks are connected, the partial pressure of helium will be 276 torr, the partial pressure of argon will be 457 torr and the total pressure will be 733 torr.

Learn more: https://brainly.com/question/1437490

An example of a strong _____ agent important in biochemistry is _____. The redox potential for this molecule is _____. Please choose the correct answer from the following choices
a. oxidizing; O2;
b. negative reducing; NADH;
c. positive oxidizing; NADH;
d. positive reducing; O2;
e. negative reducing; NADH;

Answers

Answer:

Option B - reducing; NADH; negative

explanation:

Nicotinamide adenine dinucleotide, or NADH, is a compound, that's more actively used in the transportation of electron chain. It's evident that produced and make use NADH than FADH2 in the process that brings about energy creation.

NADH carries electrons from one reaction to another. Its Cofactor is in two forms in cells: NAD+ accepts electron from other molecule and hence reduced as an oxidizing agent while NADH is formed by this reaction, which can be used to donate electrons because it's a reducing agent. The main function of NAD is to transfer these reactions.

What is the equation for the energy levels of the hydrogen atom

Answers

Answer:     E = (13.6 eV) [1/nf² - 1/ni²]  

En = (-13.6 eV)/n²

where n=1,2,3...

Explanation:

According to Bohr's theory each spcified energy value( E1,E2,E3...) is called energy level of the atom and the only allowable values are given by the equation

En = (-13.6 eV)/n²

The energy change (ΔE) that accompaies the leap of an electron from one energy level to another is given by equation

E = (13.6 eV) [1/nf² - 1/ni²]  

Final answer:

The equation for the energy levels of the hydrogen atom is given by the Bohr formula: En = -13.6 eV / n^2. The energy levels are inversely proportional to the square of the principal quantum number.

Explanation:

The question concerns the equation for the energy levels of the hydrogen atom. According to Bohr's model, the energy levels of a hydrogen atom, which consists of a single electron orbiting a single proton, are given by the formula:

En = -13.6 eV / n2

Here, En represents the energy of an electron at a particular level n, which is known as the principal quantum number. This number can be any positive integer (n = 1, 2, 3, ...), and the energy level becomes less negative as n increases. The ground state energy of the hydrogen atom, when n = 1, is

-2.18 x 10-18 joules

Transitions between these energy levels result in the emission or absorption of light at specific wavelengths, giving rise to the hydrogen spectral series. Notably, the Lyman series corresponds to transitions ending at n=1, and the Balmer series ends at n=2.

What is the difference between stating "The electron is located at a particular point in space" and "There is a high probability that the electron is located at a particular point in space"? Choose all that apply. A. In the first statement we know where electron is. B. In the second statement, we are saying that we have no information about the position of the electron. C. In the second statement, we are saying that we know the probability of the electron being at a point, but we dont know exactly where it is. D. In the first statement, we cannot define the exact location of the electron.

Answers

The difference between stating "The electron is located at a particular point in space" and "There is a high probability that the electron is located at a particular point in space" is in the first statement, we cannot define the exact location of the electron.

What is an electron ?

The elementary electric charge of the electron is a negative one, making it a subatomic particle. Due to their lack of known components or substructure, electrons, which are members of the first generation of the lepton particle family, are typically regarded to be elementary particles.

Quarks make up protons and neutrons, but not electrons. As far as we can know, quarks and electrons are basic particles that are not composed of lesser particles.

Thus, option D is correct.

To learn more about electron, follow the link;

https://brainly.com/question/1255220

#SPJ5

Sulfur dioxide has a vapor pressure of 462.7 mm Hg at –21.0 °C and a vapor pressure of 140.5 mm Hg at –44.0 °C. What is the enthalpy of vaporization of sulfur dioxide? (R = 8.314 J/K⋅mol)

Answers

Final Answer:

The enthalpy of vaporization [tex](\( \Delta H_{\text{vap}} \))[/tex]of sulfur dioxide is approximately[tex]\( 28.5 \, \text{kJ/mol} \)[/tex].

Explanation:

To find the enthalpy of vaporization [tex](\( \Delta H_{\text{vap}} \))[/tex], we use the Clausius-Clapeyron equation:

[tex]\[ \ln\left(\frac{P_2}{P_1}\right) = -\frac{\Delta H_{\text{vap}}}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right) \][/tex]

Given vapor pressures:

[tex]\( P_1 = 462.7 \, \text{mm Hg} \) at \( T_1 = -21.0 \, \text{°C} \),[/tex]

[tex]\( P_2 = 140.5 \, \text{mm Hg} \) at \( T_2 = -44.0 \, \text{°C} \).[/tex]

Convert temperatures to Kelvin:

[tex]\[ T_1 = -21.0 \, \text{°C} + 273.15 = 252.15 \, \text{K} \][/tex]

[tex]\[ T_2 = -44.0 \, \text{°C} + 273.15 = 229.15 \, \text{K} \][/tex]

Now, substitute values into the equation:

[tex]\[ \ln\left(\frac{140.5}{462.7}\right) = -\frac{\Delta H_{\text{vap}}}{8.314}\left(\frac{1}{229.15} - \frac{1}{252.15}\right) \][/tex]

Solving for [tex]\( \Delta H_{\text{vap}} \):[/tex]

[tex]\[ \Delta H_{\text{vap}} = -8.314 \times \ln\left(\frac{140.5}{462.7}\right) \times \frac{1}{229.15 - 252.15} \][/tex]

After calculation, [tex]\( \Delta H_{\text{vap}} \)[/tex]is approximately[tex]\( 28.5 \, \text{kJ/mol} \).[/tex]

In conclusion, the enthalpy of vaporization for sulfur dioxide is determined through the Clausius-Clapeyron equation, with precise calculations yielding an enthalpy value of [tex]\( 28.5 \, \text{kJ/mol} \)[/tex].

Solution: The ΔHvap of a certain compound is 48.17 kJ mol-1 and its ΔSvap is 52.91 J mol-1•K-1. What is the boiling point of this compound?

Answers

Answer: 910.44K

Explanation:

From the question, the parameters given are; ∆H(vaporization)= 48.17 kJ/mol and ΔS(vaporization)= 52.91 J mol-1•K.

Using the formula;

dG = dH - TdS -------------------------(1).

Here, dG=0, dG= change in free energy.

dH(vaporization) = 48,170 J/mol

dS(vaporization) = 52.91 J/mol.K

Boiling point of the substance, T=???

Therefore, we solve for T(temperature, that is the boiling point-boiling temperature) of the compound in Kelvin.

Slotting in the parameters given into equation (1). We have;

0= 48,170 J/mol - T× 52.91 J/mol.K

=> 48,170= 52.91T

T= 910.44 K

The boiling point of a compound can be calculated using the formula T = ΔHvap / ΔSvap. For this compound, with ΔHvap of 48.17 kJ mol-1 and ΔSvap of 52.91 J mol-1•K-1, the estimated boiling point is around 908 K.

Boiling point is the temperature at which a substance changes from a liquid to a gas. To calculate it, you can use the formula ΔGvap = ΔHvap - TΔSvap where ΔGvap is Gibbs free energy of vaporization, ΔHvap is enthalpy of vaporization, T is temperature in Kelvin, and ΔSvap is entropy of vaporization.

To find the boiling point of the compound, rearrange the formula as T = ΔHvap / ΔSvap. Substituting the given values, T = 48.17 kJ mol-1 / (52.91 J mol-1*K-1 / 1000) = approximately 908 K.

A 50.00-mL sample containing La31 was treated with sodium oxalate to precipitate La2(C2O4)3, which was washed, dissolved in acid, and titrated with 18.04 mL of 0.006 363 M KMnO4. Write the titration reaction and find [La31] in the unknown.

Answers

Answer:

2KMnO₄ + 5H₂C₂O₄ + 3H₂SO₄ → 2MnSO₄ + 10CO₂ + 8H₂O + K₂SO₄

0,02658g of La in the unknown

Explanation:

The reaction of  La₂(C₂O₄)₃ with acid is:

La₂(C₂O₄)₃ + 6H⁺ → 3H₂C₂O₄ + 2La³⁺

The titration of H₂C₂O₄ with KMnO₄ is:

2KMnO₄ + 5H₂C₂O₄ + 3H₂SO₄ → 2MnSO₄ + 10CO₂ + 8H₂O + K₂SO₄

The moles of KMnO₄ that react are:

0,006363M KMnO₄×0,01804L = 1,148x10⁻⁴moles of KMnO₄

By the titration reaction, 2 moles of KMnO₄ react with 5 moles of H₂C₂O₄, that means:

1,148x10⁻⁴moles of KMnO₄×[tex]\frac{5molesH_{2}C_{2}O_{4}}{2molesKMnO_{4}}[/tex] = 2,870x10⁻⁴ moles of H₂C₂O₄.

In the reaction of La₂(C₂O₄)₃ with acid, 3 moles of H₂C₂O₄ were produced while 2 moles of La³⁺ were produced, that means:

2,870x10⁻⁴ moles H₂C₂O₄× [tex]\frac{2molesLa^{3+}}{3molesH_{2}C_{2}O_{4}}[/tex] = 1,913x10⁻⁴ moles of La³⁺, in grams -Using molar mass of lanthanum-:

1,913x10⁻⁴ moles of La³⁺×[tex]\frac{138,9g}{1mol}[/tex] = 0,02658g of La

There are 0,02658g of La in the unknown

I hope it helps!

At what pressure does ethane (C₂H₆) have a density of 37.2 g/L at 40.0 °C?

Answers

Answer:

At 31.88 atm pressure of ethane will have density of 37.2 g/L at 40.0 °C.

Explanation:

To calculate the pressure of gas, we use the equation given by ideal gas equation:

[tex]PV=nRT[/tex]

Number of moles (n)

can be written as: [tex]n=\frac{m}{M}[/tex]

where, m = given mass

M = molar mass

[tex]PV=\frac{m}{M}RT\\\\PM=\frac{m}{V}RT[/tex]

where,

[tex]\frac{m}{V}=d[/tex] which is known as density of the gas

The relation becomes:

[tex]PM=dRT[/tex]

Where :

P = pressure of the gas

R = universal gas constant

T = temperature of the gas

We are given with:

Density of the gas = d = 37.2 g/L

Molar mass of the ethane gas = M = 30 g/mol

Temperature of the ethane gas = T = 40.0°C= 313.15 K

Pressure of the ethane gas = P

[tex]P=\frac{dRT}{M}=\frac{37.2 g/L\times 0.0821 atm L/mol K\times 313.15 K}{30 g/mol}[/tex]

P = 31.88 atm

At 31.88 atm pressure of ethane will have density of 37.2 g/L at 40.0 °C.

The pressure of an ethane gas with a density of 37.2 g/L at 40.0 °C is equal to 31.87 atm.

Given the following data:

Density = 37.2 g/LTemperature = 40.0 °C

Molar mass ([tex]C_2H_6[/tex]) = [tex](12 \times 2 + 1 \times 6) = (24+6) =30 \;g/mol[/tex]

Ideal gas constant, R = 0.0821L⋅atm/mol⋅K

Conversion:

Temperature = 40.0 °C to K = [tex]273 +40=[/tex] 313K

To find the pressure of ethane gas, we would use the ideal gas law equation;

[tex]PV = nRT[/tex]

Where;

P is the pressure. V is the volume. n is the number of moles of substance. R is the ideal gas constant. T is the temperature.

[tex]Density = \frac{Mass}{Volume}[/tex]

In terms of density, the ideal gas law equation becomes:

[tex]Density = \frac{M_MP}{RT}[/tex]

Where;

[tex]M_M[/tex] is the molar mass.

Making P the subject of formula, we have;

[tex]P = \frac{DRT}{M_M}[/tex]

Substituting the given parameters into the formula, we have;

[tex]P = \frac{37.2 \times 0.0821 \times 313}{30}\\\\P = \frac{955.94}{30}[/tex]

Pressure, P = 31.87 atm.

Read more: https://brainly.com/question/24290885

You would like to induce a transversion mutation into a sequence of dna. Which type of chemical mutagen would give you the best chance of inducing the correct mutation without causing transition mutations as well?

Answers

Answer:

The type of chemical mutagen to choose depends on the intended effect. In this case, the best ones are acridines and nitrous acid.

Explanation:

Brenner et al. proposed that acridines induce mutations by causing deletions or additions of single base pairs during replication. Acridines bind to DNA by intercalation between adjacent base pairs. Acridines inactivate extracellular phage  by photodynamic action but the necessary conditions for this killing

are avoided in the procedure for acridine-induced mutation of reproducing phage. The lack of reported acridine-induced mutation in organisms other than phage raises some questions as to the generality of its

mutagenesis, thus making it a good type of compounds to induce specific mutations.

In the other hand,  nitrous acid deaminates the amino bases adenine, cytosine  (and hydroxymethylcytosine) , and guanine in nucleic acids.

Analysis of the effect of differences of pH during nitrous acid treatment  

of phage DNA showed that the rate of killing was affected similarly to

the rate of guanine deamination, and that the rates of induced r mutation was affected similarly to the rates of adenine and hydroxymethylcytosine deamination. Ascribing the induced mutations to deamination of adenine and cytosine is reasonable in terms of the hydrogen  bonding of their products and the Watson-Crick base pairing schemes. Since this inorganic acid is molecule-specific, it would also be used to induce certain mutations in bacteria without causing transition mutations.

Purification of chromium can be achieved by electrorefining chromium from an impure chromium anode onto a pure chromium cathode in an electrolytic cell. How many hours will it take to plate 11.0 kg of chromium onto the cathode if the current passed through the cell is held constant at 41.5 A? Assume the chromium in the electrolytic solution is present as Cr₃. ______ h.

Answers

Explanation:

It is given that mass is 11 kg. Convert mass into grams as follows.

                [tex]11 kg \times \frac{1000 g}{1 kg}[/tex]

               = 11000 g               (as 1 kg = 1000 g)

Now, calculate the number of moles as follows.

    No. of moles = [tex]\frac{\text{Mass of Cr}}{\text{Molar mass of Cr}}[/tex]

                          = [tex]\frac{11000 g}{52 g/mol}[/tex]

                          = 211.54 mol

For [tex]Cr^{3+}[/tex], 3 moles of electrons are required

Hence,       [tex]3 \times 211.54 mol[/tex]

                  = 634.62 mol

As 1 mol of electrons contain 96500 C of charge. Therefore, charge carried by 634.62 mol of electrons will be calculated as follows.

             Q = [tex]634.62 mol \times 96500 C/mol [/tex]

                  = [tex]61.24 \times 10^{6} C[/tex] of charge

We know that relation between charge, current and time is as follows.

                    Q = [tex]I \times t[/tex]

Current is given as 41.5 A and charge is calculated as [tex]61.24 \times 10^{6} C[/tex]. Therefore, calculate the time as follows.

                Q = [tex]I \times t[/tex]

      [tex]61.24 \times 10^{6} C = 41.5 A \times t[/tex]        

                   t = [tex]1.47 \times 10^{6} sec[/tex]

As there are 3600 seconds in one 1 hour. Therefore, converting [tex]1.47 \times 10^{6} sec[/tex] into hours as follows.

            [tex]\frac{1.47 \times 10^{6} sec}{3600 sec/hr}[/tex]

               = 4.09 hr

Thus, we can conclude that it takes 4.09 hours to plate 11.0 kg of chromium onto the cathode if the current passed through the cell is held constant at 41.5 A.

Final answer:

The process of electrorefining chromium involves oxidation of Chromium III ions at anode and reduction at the cathode. The total charge required for this process can be calculated using Faraday's law, and the time required to pass this charge can be calculated using the formula Q/I. Therefore, it will take approximately 408 hours to plate 11kg of chromium onto the cathode with 41.5 A current.

Explanation:

The process of electrorefining chromium involves two half-reactions at anode and cathode in which chromium is oxidized at the anode and is then reduced at the cathode. Specifically, Chromium III ion (Cr³+) is oxidized at the anode with the reaction Cr³+ (aq) + 3e-, and is then reduced at the cathode. The stoichiometry of this process requires three moles of electrons for each mole of chromium(0) produced. Given this stoichiometry and the current passed through the cell, we can calculate the time required to plate 11kg of chromium.

First, since the molar mass of chromium is approximately 52 g/mol, 11kg is equal to about 211.5 mol. This number of moles of chromium requires [tex]211.5 * 3 = 634.5[/tex] mol of electrons. One mol of electrons carries a charge of approximately 96485 Coulombs (C), so the total charge is approximately [tex]6.115 * 10^7 C.[/tex]

If this charge is being passed at 41.5 C/s, the time required to pass the total amount of charge can be calculated by the formula Q/I, where Q represents the total charge and I represents the current. Therefore, the time required to plate 11kg of chromium onto the cathode with 41.5 A current is approximately [tex]1.47 * 10^6[/tex] seconds which is approximately 408 hours.

Learn more about Electrorefining of Chromium here:

https://brainly.com/question/28464829

#SPJ11

How is carbon moved from the hydrosphere to the atmosphere?

Answers

Answer:

Explained

Explanation:

the various ways of input of CO_2 into the atmosphere.

1.Dissolved  CO 2 in the ocean is released back into the atmosphere by heating ocean surface water

2.Plant and animal respiration, an exothermic reaction involving the breakdown into CO 2 and water of organic molecules.

3. Degradation of fungi and bacteria which are responsible for breaking down carbon compounds in dead animals and plants(fossils) and convert carbon into CO2 when oxygen or methane is present.

4.Combustion of organic matter (that includes deforestation and combustion of fossil fuels) oxidizing to produce CO2;

5. Cement production when calcium carbonate (limestone) is heated to produce calcium oxide(lime), cement component, and CO2 are released;

If the forces acting on an object are unbalanced, what will occur?


Constant speed

Change in mass

Constant velocity

Acceleration

Answers

Answer:

The answer is acceleration.

Explanation:

Acceleration- When it comes to science, Force is defined as a "push or pull" of an object with mass that causes it to change velocity.

Balanced Force- This occurs when two forces of the same mass or size are acting on a particular object in opposite direction. The object being acted upon could either stay in its place or move in a uniform speed and direction.

Unbalanced Force- This occurs when the forces applied are not equal and are of different direction. For example, a 55-kg person pulling a 30-kg cart. The cart will move to the direction of the pull.

Thus, when forces acting on an object are unbalanced, it causes the object to accelerate. This acceleration is directly proportional to the "net force", but is inversely proportional to the mass or size.

A net force is the total amount of force that is acting on the object.

How many grams of silver chloride can be prepared by the reaction of 100.0 mL of 0.20 M silver nitrate with 100.0 mL of 0.15 M calcium chloride? Calculate the concentrations of each ion remaining in solution after precipitation is complete.

Answers

Answer:

Mass of AgCl = 2.87 g

[Ca²⁺] = 0.075 M

[Cl⁻] = 0.05 M

[NO₃⁻] = 0.10 M

Explanation:

The reaction between silver nitrate (AgNO₃) and calcium chloride (CaCl₂) is:

2AgNO₃(aq) + CaCl₂(aq) → 2AgCl(s) + Ca(NO₃)₂(aq)

The number of moles of the reactants are:

AgNO₃ = Volume (L)*concentration (M) = 0.1*0.2 = 0.02 mol

CaCl₂ = 0.1*0.15 = 0.015 mol

First, let's find which reactant is limiting. Testing for AgNO₃, the stoichiometry is:

2 moles of AgNO₃ ------------------------- 1 mol of CaCl₂

0.02 mol ------------------------- x

By a simple direct three rule:

2x = 0.02

x = 0.01 mol of CaCl₂, which is higher than was used, so CaCl₂ is in excess and AgNO₃ is the limiting reactant.

The stoichiometry between AgNO₃ and AgCl is:

2 moles of AgNO₃ ---------------- 2 moles of AgCl

0.02 mol ---------------- x

By a simple direct three rule

x = 0.02 mol of AgCl

The molar mass of AgCl is 143.32 g/mol, so the mass formed is:

m = 143.32*0.02 = 2.87 g

All the silver nitrate had reacted, and by the stoichiometry, only 0.01 mol of CaCl₂ reacted, so the number of moles remaining is:

nCaCl₂ = 0.015 - 0.01 = 0.005 mol

And the number of moles of Ca(NO₃)₂ formed is the same as CaCl₂ that reacted: 0.01 mol.

Both substances are in aqueous form, so, they produce ions:

CaCl₂ → Ca²⁺ + 2Cl⁻

By the stoichiometry: nCa²⁺ = 0.005 mol; nCl⁻ = 0.01 mol

Ca(NO₃)₂ → Ca²⁺ + 2NO₃⁻

By the stoichiometry: nCa²⁺ = 0.01 mol; nNO₃⁻ = 0.02 mol

The total volume is 0.2 L, so the ions concentrantions are:

[Ca²⁺] = (0.005 + 0.01)/0.2 = 0.075 M

[Cl⁻] = 0.01/0.2 = 0.05 M

[NO₃⁻] = 0.02/0.2 = 0.10 M

The concentrations of each ion remaining in solution after precipitation is complete is Mass of AgCl = 2.87 g, [Ca²⁺] = 0.075 M, [Cl⁻] = 0.05 m, [NO₃⁻] = 0.10 M.

What is silver chloride?

Silver chloride is an ionic compound in which the silver is cation and the chloride is anion.

The reaction is

[tex]2AgNO_3(aq) + CaCl_2(aq) = 2AgCl(s) + Ca(NO_3)_2(aq)[/tex]

The number of moles of the reactants are:

[tex]AgNO_3 = Volume (L) \times concentration (M) \\\\= 0.1 \times 0.2 = 0.02 mol[/tex]

[tex]CaCl_2 = 0.1 \times 0.15 = 0.015 mol[/tex]

Now, finding the limiting reactant.

Testing for AgNO₃,

The stoichiometry is:

2 moles of AgNO₃  = 1 mol of CaCl₂

0.02 mol = x

By direct three rule:

2x = 0.02

[tex]AgNO_3[/tex] is the limiting reactant.

The stoichiometry between [tex]AgNO_3[/tex] and AgCl is:

2 moles of [tex]AgNO_3[/tex] =  2 moles of AgCl

0.02 mol = x

By a simple direct three rule

x = 0.02 mol of AgCl

The mass formed is

If the molar mass of AgCl is 143.32 g/mol

[tex]m = 143.32\times0.02 = 2.87 g[/tex]

Remaining number of moles are

nCaCl₂ = 0.015 - 0.01 = 0.005 mol

The substances will produce ions, because they are aqueous form.

[tex]CaCl_2 = Ca^2^++ 2Cl^-[/tex]

By the stoichiometry

nCa²⁺ = 0.005 mol

nCl⁻ = 0.01 mol

[tex]Ca(NO_3)_2 = Ca^2^+ + 2NO_3^-[/tex]⁻

By the rule of stoichiometry

nCa²⁺ = 0.01 mol

nNO₃⁻ = 0.02 mol

The volume is 0.2 L,

The concentration of ions are

[Ca²⁺] =[tex]\dfrac{(0.005 + 0.01)}{0.2} = 0.075 M[/tex]

[Cl⁻] = [tex]\dfrac{0.01}{0.2} = 0.05 M[/tex]

[NO₃⁻] = [tex]\dfrac{0.02}{0.2} = 0.10\; M[/tex]

Thus, the concentrations of each ion remaining in solution after precipitation is complete is Mass of AgCl = 2.87 g, [Ca²⁺] = 0.075 M, [Cl⁻] = 0.05 m, [NO₃⁻] = 0.10 M.

Learn more about silver chloride, here:

https://brainly.com/question/12912140

What is the specific heat capacity of a metal if it requires 177.5 J to change the temperatures of 15.0g of the metal from 25.00 degree celcius to 34 degree celcius

Answers

Answer:

The specific heat capacity of a metal is 1.31 J/g°C = C

Explanation:

A classical excersise of calorimetry to apply this formula:

Q = m . C . ΔT

177.5 J = 15 g . C (34°C - 25°C)

177.5 J = 15g . 9°C . C

177.5 J /15g . 9°C = C

1.31 J/g°C = C

Final answer:

To find the specific heat capacity of the metal, the heat energy absorbed is divided by the product of mass and temperature change, which yields a specific heat capacity of 1.315 J/g\u00b0C.

Explanation:

To calculate the specific heat capacity of a metal with the given data, we can use the formula:

q = m \\cdot c \\cdot \\Delta T,

where q is the heat energy absorbed (in joules), m is the mass of the substance (in grams), c is the specific heat capacity (in J/g\u00b0C), and \\Delta T is the change in temperature (in degrees Celsius).

Rearranging the formula to solve for c gives:

c = q / (m \\cdot \\Delta T)

Substituting the given values:

q = 177.5 J,

m = 15.0 g,

\\Delta T = 34\u00b0C - 25\u00b0C = 9\u00b0C.

Therefore:

c = 177.5 J / (15.0 g \\cdot 9\u00b0C)

c = 177.5 J / 135 g\u00b0C

c = 1.315 J/g\u00b0C

The specific heat capacity of the metal is 1.315 J/g\u00b0C.

Which of the following processes have a ΔS > 0? A. N2(g) + 3 H2(g) → 2 NH3(g) B. Na2CO3(s) + H2O(g) + CO2(g) → 2 NaHCO3(s) C. CH3OH(l) → CH3OH(s) D. All of these processes have a ΔS > 0. E. CH4(g) + H2O (g) → CO(g) + 3 H2(g)

Answers

Answer:

ΔS > 0 only for choice E: CH4(g) + H2O (g) → CO(g) + 3 H2(g)

Explanation:

Our strategy in this question is to use the trend in entropies :

S (solids)  less than S (liquids) less than S (gases)

Also we have to look for the  molar quanties involved of each state and their change to answer the question:

A. N2(g) + 3 H2(g) → 2 NH3(g)

Here we have 4 moles gases going to 2 moles of products, so the change in entropy is negative.

B. Na2CO3(s) + H2O(g) + CO2(g) → 2 NaHCO3(s)

The change in entropy is negative since we have 2 mol gases in the reactants and zero in the products.

C. CH3OH(l) → CH3OH(s)

A liquid has a higher entropy than a solid so ΔS is negative

D. False see A,B,C

E. The change in moles of gases is 4 - 2= 2, therefore  ΔS is greater than O.

The reaction CH4(g) + H2O (g) → CO(g) + 3 H2(g) will have ΔS > 0.

The term entropy refers to the degree of disorder of a system. Hence, the change in entropy is positive (greater than zero) when there is an increase in the degree of disorderliness of the system.

As such, the reaction;

CH4(g) + H2O (g) → CO(g) + 3 H2(g)

will experience an increase in entropy since there is an increase in the number of molecules of  gaseous species from left to right.

Learn more about entropy: https://brainly.com/question/1217654

Answer the following questions: On a 10-fold dilution of a weak acid, the pH will ___________________. On a 10-fold dilution of a buffered solution, the pH will ______________. If one adds a small amount of strong base to a buffered solution, the pH will _______________. Can you make a buffer using a strong acid? Explain. How can you adjust the pH of a buffer solution? Explain.

Answers

Answer:

Increase; remain constant, remain constant; No; by adjusting the acid:base ratio of the buffer.

Explanation:

On a 10-fold dilution of a weak acid, the pH will INCREASE and that is because strong acids are not found in buffers, therefore, diluting a strong acid reduces the amount of hydrogen ions,H^+ present, consequently increasing the pH.

On a 10-fold dilution of a buffered solution, the pH will REMAIN CONSTANT because diluting a buffer does not affect the pH of the buffer.

If one adds a small amount of strong base to a buffered solution, the pH will REMAIN CONSTANT because the buffer will equalize the strong base, however, the pH may increase just a little.

One can not make a buffer solution using a strong acid because  Buffers are composed of a weak acid and its conjugate base or a weak base and its conjugate acid, and weak acids or bases only dissociate partially. Strong acids dissociate completely, they overpower the reaction and move the reaction to completion.

pH of a buffer solution can be adjusted using by adjusting the acid:base ratio of the buffer.

Final answer:

Diluting a weak acid increases its pH, while a buffered solution maintains a consistent pH upon dilution or the addition of a small amount of strong base. Buffers cannot be made with strong acids, and adjusting a buffer's pH involves altering the weak acid to conjugate base ratio.

Explanation:

Changes in pH with Dilution and Additions:

On a 10-fold dilution of a weak acid, the pH will increase, because the concentration of hydrogen ions decreases, making the solution less acidic.On a 10-fold dilution of a buffered solution, the pH will remain relatively constant. This stability is due to the presence of both a weak acid and its conjugate base which can absorb added acids or bases without significantly changing the pH.If one adds a small amount of strong base to a buffered solution, the pH will increase slightly. However, due to the buffering action, this change is much less than it would be in an unbuffered solution.

One cannot make a buffer using a strong acid because strong acids fully dissociate in water, and a buffer relies on the equilibrium between a weak acid and its conjugate base to maintain pH. To adjust the pH of a buffer solution, one can vary the ratio of the weak acid to its conjugate base. The pH of a buffer is ideally maintained within ±1 unit of the pKa of the weak acid.

An open-tube manometer is used to measure the pressure in flask. The atmospheric pressure is 756 torr and the Hg column is 10.5 cm higher on the open end. What is the pressure in the flask?

Answers

Answer:

P flask = 860.966 torr

Explanation:

⇒ P open tube = Patm + (δHg)(g)(h) = P flask

∴ δHg = 13.6 g/cm³

∴ g = 980 cm/s²

∴ h = 10.5 cm

⇒ (δHg)(g)(h) = (13.6 g/cm³)(980 cm/s²)(10.5 cm) = 139944 g/cm.s²

⇒ (δHg)(g)(h) = (13994.4 Kg/m.s²(Pa))×( 0.00750062 torr/Pa)

⇒ (δHg)(g)(h) = 104.966 torr

⇒ P flask = 756 torr + 104.966 torr

⇒ P flask = 860.966 torr

Using the manometer equation, the pressure in the flask is calculated as 898.8 torr. The height difference of the mercury columns, 10.5 cm, is converted to torr using the density of mercury.

- Atmospheric pressure [tex](\(P_{\text{atm}}\))[/tex] = 756 torr

- Height difference = 10.5 cm

Convert the height difference to torr using the density of mercury [tex](\(13.6 \, \text{g/cm}^3\)):\[ \text{height difference in torr} = 10.5 \, \text{cm} \times \left(\frac{13.6 \, \text{g/cm}^3}{1 \, \text{cm}}\right) = 142.8 \, \text{torr} \][/tex]

Now, apply the manometer equation:

[tex]P_{flask} - P_{atm}[/tex] = height difference in torr

P_flask - 756 torr = 142.8 torr

Solve for P_flask:

[tex]\[ P_{\text{flask}} = 756 \, \text{torr} + 142.8 \, \text{torr} = 898.8 \, \text{torr} \][/tex]

Therefore, the pressure in the flask is 898.8 torr.

For more questions on mercury :

https://brainly.com/question/31995704

#SPJ3

covalent bonds are formed from the sharing of valence electrons
true or false give a brief simple explanation

Answers

Answer:true

Explanation:

In covalent bond, lone pair of electrons are shared by the reacting species inorder to achieve a stable duplet or octet condition.as a result, molecules and not ions are formed

Calculate the ph of a buffer that is 0.145 m hc2h3o2 and 0.202 m kc2h3o2. The ka for hc2h3o2 is 1.8 × 10-5.

Answers

Answer:

pH = 4.8

Explanation:

A buffer is formed by a weak acid (0.145 M HC₂H₃O₂) and its conjugate base (0.202 M C₂H₃O₂⁻ coming from 0.202 M KC₂H₃O₂). The pH of a buffer system can be calculated using Henderson-Hasselbalch's equation.

[tex]pH = pKa + log\frac{[base]}{[acid]} \\pH = -log(1.8 \times 10^{-5} )+log(\frac{0.202M}{0.145M} )\\pH=4.8[/tex]

mastering chemistry hat do you predict for the height of a barometer column based on 1-iodododecane, when the atmospheric pressure is 751 torr ? Note that 1 torr corresponds to 1 mm of a liquid mercury column.

Answers

Answer:

the height of a iodododecane barometer column =66.46mm

Explanation:

we will the density of liquid 1-iodododecane and the density of mecury (compare with the given value of mercury)

when the atmospheric pressure is 751 torr ?

the compound 1-iodododecane has a density of 1.2g/mL

the density of mercury is 13.56g/mL

for mercury at

1 torr corresponds to 1 mm of a liquid mercury column= 13.56g/ml

for 1-iodododecane

751toor = ? at 1.2g/mL

1 torr = 1mm = 13.56

751 torr of mercury = 751mm = 13.56

751 toor of iodo = ? = 1.2

751mm = 13.56

?  ====1.2

1.2 * 751)/13.56 =66.46mm

the height of a iodododecane barometer column =66.46mm

Final answer:

The height of a barometer column with 1-iodododecane at 751 torr would depend on the density of 1-iodododecane relative to mercury. Using the hydrostatic pressure formula, the height can be determined with the known density of 1-iodododecane.

Explanation:

When considering the height of a barometer column based on 1-iodododecane at an atmospheric pressure of 751 torr, it's important to account for the density of 1-iodododecane relative to that of mercury. Since the density of the 1-iodododecane will be different from mercury (13.6 g/cm³), the height of the barometer column for the same atmospheric pressure would also be different. To find the height, one would need to use the formula for hydrostatic pressure, p = ρgh, where ρ is the density of the fluid, g is the acceleration due to gravity, and h is the height of the column. With the density of 1-iodododecane known, one could rearrange the formula to solve for h to find the expected height of the barometer column at 751 torr.

The valve between a 2.00-L bulb, in which the gas pressure is 1.80 atm, and a 3.00-L bulb, in which the gas pressure is 3.40 atm, is opened. What is the final pressure in the two bulbs, the temperature remaining constant?

Answers

Answer:

2.76 atm

Explanation:

Boyle's law states that, for an isothermic process (temperature remaining the same), the product of the pressure and volume is constant.

Dalton's law states that in a gas mixture, the total pressure is the sum of the partial pressure of the components.

So:

P1*V1 + P2*V2 = P*V

Where P1 is the pressure in the bulb 1, V1 is the volume in the bulb 1, P2 is the pressure in the bulb 2, V2 is the volume in the bulb 2, P is the pressure at the mixture after the valve was opened, and V is the final volume (5.00 L).

1.80*2.00 + 3.40*3.00 = P*5.00

5P = 13.80

P = 2.76 atm

We have that for the Question "The valve between a 2.00-L bulb, in which the gas pressure is 1.80 atm, and a 3.00-L bulb, in which the gas pressure is 3.40 atm, is opened. What is the final pressure in the two bulbs, the temperature remaining constant?" it can be said that the final pressure in the two bulbs, the temperature remaining constant

P_f=2.44atm

From the question we are told

The valve between a 2.00-L bulb, in which the gas pressure is 1.80 atm, and a 3.00-L bulb, in which the gas pressure is 3.40 atm, is opened. What is the final pressure in the two bulbs, the temperature remaining constant?

Generally the equation for the ideal gas  is mathematically given as

[tex]Pv=nRT[/tex]

Where

[tex]n_1=\frac{PV}{RT}\\\\n_1=\frac{1.80*3}{RT}\\\\n_1=\frac{5.4}{RT}\\\\[/tex]

[tex]n_2=\frac{PV}{RT}\\\\n_2=\frac{3.4*2}{RT}\\\\n_2=\frac{5.4}{RT}+\frac{6.8}{RT}\\\\[/tex]

Where

[tex]the total moles =\frac{5.4}{RT}+\frac{6.8}{RT}\\\\the total moles =\frac{12.2}{RT}[/tex]

Therefore

[tex]P_f*5=\frac{12.2}{RT}*RT[/tex]

P_f=2.44atm

Hence, the final pressure in the two bulbs, the temperature remaining constant

P_f=2.44atm

For more information on this visit

https://brainly.com/question/23379286

Consider the following reaction to generate hydrogen gas: Zn(s) + 2 HCl(aq) → ZnCl2(aq) + H2(g) The hydrogen gas is collected by displacement of water at 35.0 °C at a total pressure of 745 torr. The vapor pressure of water at 35.0 °C is 42 torr. Calculate the partial pressure of H2 (in atm) if 353.2 mL of gas is collected over water from this method.

Answers

Answer:

0.925 atm

Explanation:

By Dalton's Law, the total pressure of a gas mixture is the sum of the partial pressure of its components. The vapor pressure of the water is the pressure that some molecules that evaporated do under the liquid surface. The gas and the liquid are at equilibrium. So, the gas mixture is water vapor and hydrogen gas.

Ptotal = Pwater + PH₂

745 = 42 + PH₂

PH₂ = 703 torr

Transforming to atm:

1 atm ------------------760 torr

x ------------------ 703 torr

By a simple direct three rule

760x = 703

x = 0.925 atm

Which of the following observations indicates that an atom has neutrons?
A. Some uncharged particles are scattered by a beryllium atom when it hits a gold foil.
B. Some uncharged particles bounce back from a gold foil when it is bombarded with alpha particles.
C. A radiation with neutral particles is emitted when alpha particles strike beryllium atoms.
D. A radiation which attracts electrons is produced when a beryllium atom is bombarded with alpha particles.

Answers

C

When the alpha particle hits the beryllium atoms at high speeds, it splits the atomic nuclei hence causing the nuclei particles flying. When exposed to an electric field, the path of the proton is curved towards the negative pole while neutrons are unaffected.  

Explanation:

Neutrons are found in the dense part of atoms (the nucleus) along with protons. Unlike protons, however, that are positively charged, neutrons are uncharged particles. Neutrons are important in the stability of the atomic nuclei because they ensure that the positively charged particles (protons), which are cramped together in a tight space, do not repel each other because like-charges repel.

Learn More:

For more on neutrons check out;

https://brainly.com/question/13370178

https://brainly.com/question/1264222

#LearnWithBrainly

Without doing any calculations, determine which sample contains the most atoms.
a. a 1-g sample of thorium
b. a 1-g sample of boron
c. a 1-g sample of zinc

Answers

Answer:

B.

Explanation:

1g of Boron has the most number of atoms. This is simply because it has the highest number of moles.

Since 1 mole contain 6.22 × 10^23 atoms, the atom that has most moles closer to 1 will contain most atoms.

This in fact can be calculated from the fact that the number of moles equal mass divided by the atomic mass.

The mass here is equal I.e 1g and thus the dividing factor will be the atomic mass. The atom with the highest atomic mass here us thorium and thus will give the lowest number of moles. Zinc follows suit in that order with Boron at the top of the other and thus will contain the highest number of atoms.

An experiment reacts 20.4 g of zinc metal with a solution containing an excess of iron (III) sulfate. After the reaction, 10.8 grams of iron metal are recovered. What is the percent yield of the experiment?

Answers

Answer:

The answer to your question is 92.7%

Explanation:

Balanced Chemical reaction

                             3 Zn  + Fe₂(SO₄)₃   ⇒   2Fe   +   3ZnSO₄

Molecular weight

Zinc = 65.4 x 3 = 196.2g

Iron (III) = 56 x 2 = 112 g

Proportions  

                           196.2 g of Zinc ------------------ 112 g of Iron

                            20.4 g of Zinc  -----------------   x

                            x = (20.4 x 112) / 196.2

                            x = 2284.8/196.2

                            x = 11.65 g of Iron

% yield = [tex]\frac{10.8}{11.65}  x 100[/tex]

% yield = 0.927 x 100

% yield = 92.7

Answer:

93.1%

Explanation:

As with all stoichometry problems, you must start by writing a balanced equation.

3 Zn (s) + Fe2O3 (s) → 2 Fe (s) + 3 ZnO (s)

Since you are given that there is 20.4g of Zinc metal as a reactant, that is your given. You will use this number to calculate your theoretical yield by using the mole ratio between Zinc and Iron.

20.4 g Zn • 1 mol Zn/65.38 g Zn • 2 mol Fe/3 mol Zn • 55.85g Fe/1 mol Fe = 11.6g Fe

Therefore, your theoretical yield is 11.6g.

Now, you divide your actual yield (10.8g) by your theoretical yield (11.6g) and multiply by 100 to get a percentage.

10.8g/11.6g • 100 = 93.1%

Therefore, your percent yield is 93.1%.

Which pair of molecules has the strongest dipole-dipole interactions?
CH4 and CH4 NH3 and CH4 CO2 and CH4 NH3 and NH3 CO2 and CO2

Answers

Answer: NH3 and NH3

Explanation:

If hydrogen is bonded to a highly electronegative element, a strong dipole-dipole attraction is set up with strength ten times greater than normal dipole-dipole attractions, and it is crystal clear that electronegativity increase from left to right across the period and it decreases down the group. Nitrogen being electronegative more than Oxygen will exhibit a greater dipole-dipole attraction. As such, NH3 and NH3 is  the right answer.

Final answer:

The pair of molecules with the strongest dipole-dipole interactions among the given options is NH3 and NH3 due to the molecule's polar nature and resultant net dipole.

Explanation:

Among the options listed, the pair of molecules with the strongest dipole-dipole interactions is NH3 and NH3. Dipole-dipole interactions are attractive forces between the positive end of one polar molecule and the negative end of another polar molecule. They occur when the molecule is polar, meaning there is an unequal distribution of electrons and hence a net dipole. NH3, or ammonia, is a polar molecule because it has a pyramidal shape with a net dipole. This results in strong dipole-dipole interactions between NH3 molecules, stronger than CH4 (methane) with CH4, CO2 (carbon dioxide) with CO2, or NH3 with CH4 as these molecules are nonpolar and thus exhibit weaker London dispersion forces and not dipole-dipole interactions.

Learn more about Dipole-dipole interactions here:

https://brainly.com/question/4160423

#SPJ6

A spectrophotometer measures the transmittance or the absorbance, or both, of a particular wavelength of light after it has passed through a liquid sample. Before the transmittance or absorbance of the sample is measured, a cuvette filled only with solvent, called the blank, is placed in the spectrophotometer and measured. Select the reason that, after the blank is measured, the cuvette must be placed in the spectrophotometer in the same orientation each time that it is used.
a. The spectrophotometer will break if the cuvette position is changed during the experiment.
b. The transmittance of the cuvette must be measured in the same place each time.
c. The cuvette will only fit into the spectrophotometer in one orientation.
d. The transmittance of the liquid must be measured in the same place each time.

Answers

Answer:

b. The transmittance of the cuvette must be measured in the same place each time.

Explanation:

When using a spectrophotometer, light passes not only through the liquid sample, it also passes through the cuvette. This means that each time a reading is made, you not only measure the transmittance/absorbance of the sample, but of the cuvette as well.

For this reason it's important that the reading of the cuvette's absorbance remains the same through all the process, so the answer is b), because different faces of the cuvette may have different absorbances.

The energy change, ∆H, associated with the following reaction is +81 kJ.
NBr3(g) + 3 H2O(g) → 3 HOBr(g) + NH3(g)
What is the expected energy change for the reverse reaction of nine moles of HOBr and two moles of NH3?
1.) -81 kJ
2.) +162 kJ
3.) +243 kJ
4.) -365 kJ
5.) -243 kJ
6.) +365 kJ
7.) +81 kJ
8.) -162 kJ

Answers

Answer:

Expected energy change is -162kJ

Explanation:

For the reaction:

NBr₃(g) + 3H₂O(g) → 3HOBr(g) + NH₃(g) ΔH = +81kJ

For the reverse reaction, ΔH changes sign, thus:

3HOBr(g) + NH₃(g) → NBr₃(g) + 3H₂O(g) ΔH = -81kJ

If 2 moles of NH₃ react, the ΔH must be multiplied twice:

6HOBr(g) + 2NH₃(g) → 2NBr₃(g) + 6H₂O(g) ΔH = -162kJ

As you have 9 moles of HOBr, the limitng reactant is NH₃. Thus, expected energy change is -162kJ

I hope it helps!

In a solution, the solvent In a solution, the solvent can be a liquid or gas. A. is the substance present in the smallest concentration. B. can be a solid, liquid, or gas. C. is a liquid. D. is never a solid.

Answers

Answer:

Can either be a solid, a liquid or a gas

Explanation:

A solvent can either be a solid, liquid or a gas. It is the carrier medium in a solution. It is the one in which the solute is dissolved.

Although quite unusual, a solvent might also be a solid. An important application of this can be seen in the production of alloys. Alloys are mixture of metals. To produce let’s say an alloy containing just two metals, the use of a solid solvent is needed. Here, one of the two metals is known as the base metal. It is this base metal that will serve as the carrier medium for the other metal

Other Questions
Mrs. Wadley is tie-dying t-shirts for her AP Stats class. White shirts cost $4 each and black shirts are $5 each. There are 18 students in the class, and she spent $75. How many white shirts did she buy ? how many black shirts? A body moves in circle cover half of revolution in 10 sec its linear distance became 10m along circumference of circle than its centripetal acceleration Embassy Club Condominium, located on the west coast of Florida, is undertaking a summer renovation of its main building. The project is scheduled to begin May 1, and a September 1 (17-week) completion date is desired. The condominium manager identified the following renovation activities and their estimated times:Draw a project network. What are the critical activities? What activity has the most slack time? Will the project be completed by September 1? Hi Ethan,As you may know, Macys is in a battle with Abercrombie & Fitch for sales among 15- to 20-year-old female customers. We are relocating our Junior department to the basement of our store to give young people a separate entrance and place to call their own. We want to beat Abercrombie & Fitch, and well all need to work together to make that happen.Thanks for your hard work. Together we can do this!Best regards,WilliamDo you think some kind of reward would be appropriate to motivate Ethan? If so, what should it be?1. A choice of work assignments2. Two days off with pay3. A $200 bonus Blanchard Company manufactures a single product that sells for $280 per unit and whose total variable costs are $224 per unit. The company's annual fixed costs are $879,200. Management targets an annual pretax income of $1,400,000. Assume that fixed costs remain at $879,200.1) Compute the unit sales to earn the target income.2) Compute the dellar sales to earn the target income? [hg](x,) if g(x)=x-5 and h(x)=|x| A water park charges a rental fee plus $1.50 per hour to rent inflatable rafts. The total cost to rent a raft for 6 hours is $15. Assume the relationship is linear. Find and interpret the rate of change and the initial value. Miguel took a taxi to the beach 23 miles from his hotel. After his day at the beach, he took a bus back for 11 miles. Then a friend pick him up and drove another 12 miles towards the hotel. How many more miles does Magill need to go until he is back at his hotel Cellular reactions can be made spontaneous by At Lorenzo's workplace, the performance appraisal process includes measurements of organizational citizenship behaviors, such as volunteering for unpleasant tasks and helping new employees socialize into the work team. Lorenzo's employer is___________.a. enforcing job requirements.b. using inappropriate information.c. committing a halo error.d. relying on a ranking method.e. rating contextual performance. i just made this account and forgot the password and im subscribed to plus and the change password isnt sending a mail to my email im too scared to close my computer incase it kicks me off Suppose you purchase one WFM May 100 call contract at $5 and write one WFM May 105 call contract at $2. The maximum loss you could suffer from your strategy is Select one: a.$200. b.$300. c.zero. d.$500. math! About 3 percent of Earth's wateris fresh water. Of that 3 percent, about69 percent is ice. About what percent ofEarth's total water supply is ice?Help (2x + 6y = -28(x+3y=-14YOUhow do u solve this Olivia is single, 66 years old, and not blind.She paid all the cost of keeping up her home. She earned $55,000 in wages for 2019.Olivia provided all the support for her two grandchildren who lived with her all year. Cora is 11 years old and Jack is 15 years old.She does not have enough deductions to itemize.Olivia, Cora, and Jack are all U.S. citizens with valid Social Security numbers.2. The maximum amount of child tax credit that Olivia is able to claim per qualifying child for 2019 is:A. $500B. $1,000C. $1,400D. $2,000 An example of a categorical variable is the A) duration of a song (in seconds) on my MP3 player. B) composer of a song on my MP3 player. C) title of a song on my MP3 player. D) number of songs on my MP3 player. E) Both title of a song on my MP3 player and composer of a song on my MP3 player are correct. which situation is an example of a citizen paticipating in the political process? Emma Peterson is a worker for ABC Inc. She has an effort cost function of C = 2e^2 and a monthly reservation wage of $3,500. Her wage function is W = 3,500 + 0.4Q. If the incentive coefficient is equal to 0.4 then Q = 400e. Q is Emmas output. Assume that the incentive coefficient increases from 0.4 to 0.5 and Emmas base salary decreases from $3,500 to $3,000.a. What will happen to her level of effort? b. How will this change XYZ Companys profits? Which nation has had a long history of good relations with the United States, and rejects the useof terrorism and extremism?A. LebanonB. JordanC. IranD. Syria Eras are divisions in geologic time divided into periods and epochs. any time periods in the past. divisions of time based on cultural standards, as in "Stone Age." the time frames during which a certain fossil species existed.