The standard formula for the volume of a rectangular pyramid is . If the pyramid is scaled proportionally by a factor of k, its volume becomes V' = V × k3. Use your algebra skills to derive the steps that lead from to V' = V × k3 for a scaled rectangular pyramid. Show your work.

Answers

Answer 1

Answer:

The answer in the procedure

Step-by-step explanation:

we know that

The volume of a rectangular pyramid is equal to

[tex]V=\frac{1}{3}LWH[/tex]

where

L is the length of the rectangular base

W is the width of the rectangular base

H is the height of the pyramid

If the pyramid is scaled proportionally by a factor of k

then

the new dimensions are

L=kL

W=kW

H=kH

substitute and find the new Volume V'

[tex]V'=\frac{1}{3}(kL)(kW)(kH)[/tex]

[tex]V'=\frac{1}{3}(k^{3})LWH[/tex]

[tex]V'=(k^{3})\frac{1}{3}LWH[/tex]

[tex]V'=(k^{3})V[/tex]

The new volume is equal to the scale factor k elevated to the cube multiplied by the original volume

Answer 2

Answer:

V = πr2h

V' = π × (k × r)2 × (k × h)

   = π × k2 r2 × kh

   = k3 × πr2h

   = k3 × V

Step-by-step explanation:


Related Questions

When a scientist conducted a genetics experiments with​ peas, one sample of offspring consisted of 941941 ​peas, with 715715 of them having red flowers. If we​ assume, as the scientist​ did, that under these​ circumstances, there is a 3 divided by 43/4 probability that a pea will have a red​ flower, we would expect that 705.75705.75 ​(or about 706706​) of the peas would have red​ flowers, so the result of 715715 peas with red flowers is more than expected. a. If the​ scientist's assumed probability is​ correct, find the probability of getting 715715 or more peas with red flowers. b. Is 715715 peas with red flowers significantly​ high

Answers

Answer:

  a) 0.2562

  b) no

Step-by-step explanation:

a) A binomial probability calculator or app can tell you that for bin(941, 0.75) the probability P(X ≥ 715) ≈ 0.2562

__

b) "significantly high" usually means the probability is less than 5%, often less than 1%. An event that occurs when its probability is almost 26% is not that unusual.

Proportions in Triangles

Answers

Answer:

First we need to calculate the height of the triangle ( because from that, we can also calculate both x and y)

We know that: h² = b'c'

And in our case:

b' = 9

c' = 3

=> h² = b'c' = 9 · 3

=> h = √(9 · 3) = √27

Now using pythagorean theorem:

(√27)² + 3² = x²

=> x²           = 27 + 9

=> x             = √(27 + 9) = √36 = 6

So x = 6 and the answer is C.

Final answer:

In a triangle, you can define proportions by setting the length ratios and width ratios equal to each other. For example, if you have a triangle with side lengths of 10, 8, and 6 inches, you can set up the proportion 10/8 = 8/6.

Explanation:

In a triangle, there are two common types of proportions: the length ratios and the width ratios.

To define these proportions, you can set the two length ratios equal to each other and the two width ratios equal to each other.

For example, let's say you have a triangle with side lengths of 10 inches, 8 inches, and 6 inches. You can set up the proportion:

10/8 = 8/6

Similarly, for the width ratios, you can set up the proportion:

w/30 = 0.5/5

A group of entomologists has determined that the population of ladybugs at a local park can be modeled by the equation y = − 1.437 x + 197.686 , where x represents the number of years since 2010 and y represents the number of ladybugs, in thousands.
a) Predict the ladybug population at the park in 2024.
b) Predict the ladybug population at the park in 2060.

Answers

Answer:

A) 177.568 thousand.

B) 125.836 thousand.

Step-by-step explanation:

In this question, it is asking you to use the equation to find the population of ladybugs in a certain year.

Equation we're going to use:

[tex]y = -1.437 x + 197.686[/tex]

We know that the "x" variable represents the number of years since 2010, so that means our starting year is 2010.

Lets solve the question.

Question A:

We need to find the ladybug population is 2024.

2024 is 14 years after 2010, so our "x" variable will be replaced with 14.

Your equation should look like this:

[tex]y = -1.437 (14) + 197.686[/tex]

Now, we solve.

[tex]y = -1.437 (14) + 197.686\\\\\text{Multiply -1.437 and 14}\\\\y=-20.118+197.686\\\\\text{Add}\\\\y=177.568[/tex]

You should get 177.568

This means that the population of ladybugs in 2024 is 177.568 thousand.

Question B:

We need to find the ladybug population is 2060.

2060 is 50 years after 2010, so the "x" variable would be replaced with 50.

Your equation should look like this:

[tex]y = -1.437 (50) + 197.686[/tex]

Now, we solve.

[tex]y = -1.437 (50) + 197.686\\\\\text{Multiply -1.437 and 50}\\\\y=-71.85+197.686\\\\\text{Add}\\\\y=125.836[/tex]

This means that the population of ladybugs in 2060 would be 125.836 thousand.

I hope this helped you out.Good luck on your academics.Have a fantastic day!

Lisa's penny bank is 1/10 full. After she adds 440 pennies, it is 3/5 full. How many pennies can Lisa's bank hold?

Answers

Answer:

Step-by-step explanation:

After the 440 pennies are added, the bank is 3/5 full.  It started out 1/10 full, so

3/5 - 1/10 is the amount of space in the bank that the 440 pennies took up, or

1/2.  Use proportions to solve this, with number of pennies on the top and the fraction of the bank that is filled on the bottom:

[tex]\frac{440}{\frac{1}{2} }=\frac{x}{1}[/tex]

where x is the number of pennies (our unknown) that it will take to fill the bank (1).  Cross multiply to get

[tex]\frac{1}{2}x=440[/tex]

so x = 880

Given rectangular prism ABCD. Choose all of the terms that best describe each of the sets of lines or points. Points D, G and J collinear intersecting parallel noncollinear noncoplanar

Answers

Answer:

Step-by-step explanation:

The given parallelogram is attached.

First, we have to define some terms:

Collinear means that they are on the same line, non-collinear is the opposite. Intersecting means that the point are touching each other, this apply to segments. Parallel means that they will never intersect, because they have the same slope or inclination, this apply to lines also. Coplanar means that points are in the same plane, non-coplanar is the opposite.

So, if we observe points D, G and J, from given options, they are non-collinear and non-coplanar, because they are not on the same line, nor plane.

Please help!
Identify each example as a discrete random variable or a continuous random variable.

Answers

-- average price of gas ... continuous.  An average can come out to be any number, with a huge string of decimal places.  There are no numbers it CAN'T be.

-- car's speed ... continuous.  Between zero and the car's maximum top speed, there are no numbers it CAN'T be.

-- number of cars ... discrete.  It has to be a whole number.  There can't be a half a car or 0.746 of a car passing through.  

-- number of phone calls ... discrete.  It has to be a whole number.  There can't be a half of a call or 0.318 of a call made.

-- salaries ... I'm a little fuzzy on this one.  The employer can set a person's salary to be anything he wants it to be.  If they want it to be a whole number, or ANY fraction, they can do it ... there's no number it CAN'T be.  BUT ... when it comes time to actually pay him, THAT has to be a whole number of pennies.  There are actually a lot of numbers that they CAN'T pay, because they can't give him half of a penny, or 0.617 of a penny.

So I'm going to say that salary is a discrete variable.  

A researcher wants to make a 99% confidence interval for the population proportion. The most conservative estimate of the sample size that would limit the maximum error of estimate to within .05 of the population proportion is at least:
(A) 1274
(B) 666
(C) 26
(D) 1128

Answers

Answer:

(B) sample size is 666

Step-by-step explanation:

given data

CI = 99%

error = 0.05

to find out

sample size

solution

we know that for CI = 99% and E = 0.05 the value of z = 2.58 from table

and no estimate of proportion is given so it is rule take q = p = 0.5

so now we can calculate sample size i.e.

n = (z/E)² ×p ×q

put the value q and p = 0.5 and z and E so we get sample size

n = (z/E)² ×p ×q

n = (2.58/0.05)² ×0.5 ×0.5

n = 665.64

so sample size is 666

so option (B) is right

Proportions in Triangles (2)

Answers

Answer:

  x = 6

Step-by-step explanation:

An angle bisector divides the segments on either side of it so they are proportional. That is ...

  x/12 = 5/10

  x = 12(5/10) = 6 . . . . . multiply by 12

URGENT WILL GIVE 20 POINTS TO WHOEVER SOLVES THIS MATH PROBLEM

Answers

Answer:

216.4 mm^2

Step-by-step explanation:

The polygon has 9 sides.

Divide the polygon into 9 congruent triangles. Each triangle has 2 sides of length 8.65 mm, so each triangle is isosceles. The measure of each internal angle of the polygon is (9 - 2)(180)/9 = 140 degrees. The base angles of an isosceles triangle measures 70 deg. The vertex angle measures 40 deg. Draw a segment from the center of the polygon to the midpoint of a side. This segment is the altitude of the triangle. Now the triangle has been split into two right triangles. The angles of the right triangle are 70, 90, and 20. 3.65 mm is the length of the hypotenuse. The length of the altitude is found with trig.

sin A = opp/hyp

sin 70 = h/8.65

h = 8.65 sin 70

h = 8.1283 mm

Now with the altitude, we can find the length of half of a side of the polygon.

a^2 + b^2 = c^2

x^2 + h^2 = 8.65^2

x^2 + 8.1283^2 = 8.65^2

x = 2.9585

Half a side measures 2.9585 mm.

The side of the polygon measures 5.9169 mm.

The area of the polygon is 9 times the area of one triangle.

area = 9 * base * height/2

area = 9 * 5.9169 mm * 8.1283 mm / 2

area of polygon = 216.4 mm^2

In the United States, birth weights of newborn babies are approximately normally distributed with a mean of ? = 3,500 g and a standard deviation of ? = 500 g.

According to the empirical rule, 68% of all newborn babies in the United States weigh between ____ and ____.

Answer Choices for the first part:
1000g
1500g
2000g
2500g
3000g
Answer Choices for the second part:
4000g
4500g
5000g
5500g
6000g

Answers

Answer:

3000 g & 4000 g

Step-by-step explanation:

Edge 2021

According to the empirical rule, 68% of all newborn babies in the United States weigh between 3000 g and 4000 g.

What is empirical rule?

According to the empirical rule, also known as 68-95-99.7 rule, the percentage of values that lie within an interval with 68%, 95% and 99.7% of the values lies within one, two or three standard deviations of the mean of the distribution.

[tex]P(\mu - \sigma < X < \mu + \sigma) = 68\%\\P(\mu - 2\sigma < X < \mu + 2\sigma) = 95\%\\P(\mu - 3\sigma < X < \mu + 3\sigma) = 99.7\%[/tex]

Here, mean of distribution of X is [tex]\mu[/tex]  and standard deviation from mean of distribution of X is [tex]\sigma[/tex]

In the United States, birth weights of newborn babies are approximately normally distributed with a mean of

[tex]\mu = 3,500\rm \;g[/tex]

The standard deviation of the babies is,

[tex]\sigma = 500 g[/tex]

Put the value in the empirical formula for 68% as,

[tex]P(3500-500 < X < 3500+ 500) = 68\%\\P(3000 < X < 4000) = 68\%[/tex]

Hence, according to the empirical rule, 68% of all newborn babies in the United States weigh between 3000 g and 4000 g.

Learn more about empirical rule here:

https://brainly.com/question/13676793

Proportions in Triangles (4)

Answers

Answer:

y = 4.8

Step-by-step explanation:

Since AM is an angle bisector then the following ratios are equal

[tex]\frac{AC}{AB}[/tex] = [tex]\frac{CM}{MB}[/tex], that is

[tex]\frac{9.6}{8}[/tex] = [tex]\frac{y}{4}[/tex] ( cross-  multiply )

8y = 38.4 ( divide both sides by 8 )

y = 4.8

Please Help!
One bag contains a red cube, a yellow cube, and a

blue cube. Another bag contains an orange cube, a

green cube, and a purple cube. What is the

probability of randomly selecting a yellow cube

from the first bag and a cube that is not orange

from the second bag?

Answers

[tex]|\Omega|=3\cdot3=9\\|A|=1\cdot2=2\\\\P(A)=\dfrac{2}{9}\approx22\%[/tex]

Can anyone help me with this pre calc question?

Answers

Answer:

y=4x-4

Step-by-step explanation:

The equation of a line is slope-intercept form is: y=mx+b where m is the slope and b is the y-intercept. This is the required form I think. Your document says write in slope... can't read the rest because it is cut off.

I'm actually going to use point-slope form which is: y-y1=m(x-x1) where m is the slope and (x1,y1) is a point we know that is on the line.

We have m=4.

We can actually find a point on the line. Both the line and the curve y=x^2 cross at x=2.

So we find the corresponding y-coordinate on our line to x=2 by plugging into x^2.

x^2 evaluated at x=2 gives us 2^2=4.

So we have the slope m=4 and a point (x1,y1)=(2,4) on the line.

Let's plug it into the point-slope form:

y-4=4(x-2)

Now the goal was y=mx+b form so let's solve our for y.

y-4=4(x-2)

Distribute 4 to terms in ( ):

y-4=4x-8

Add 4 on both sidea:

y=4x-4

Find the midpoint of the segment between the points (1,1) and (4,−16).

A. (−5,15)
B. (5,−15)
C. (−3/2,17/2)
D. (5/2,−15/2)

Answers

Answer:

D

Step-by-step explanation:

The midpoint formula is

[tex]M=(\frac{x_{1}+x_{2}  }{2},\frac{y_{1}+y_{2}  }{2})[/tex]

Filling in our coordinates where they go gives us:

[tex]M=(\frac{1+4}{2},\frac{1-16}{2})[/tex] so

[tex]M=(\frac{5}{2},\frac{-15}{2})[/tex]

Quadrilaterals are similar if their corresponding sides are proportional. true or false

Answers

Answer:

The given statement is true.

Step-by-step explanation:

Quadrilaterals are similar if their corresponding sides are proportional.

This statement is true.

Quadrilaterals are similar when

a) corresponding angles are equal

b) the corresponding sides are proportional i,e the ratios of corresponding sides are equal

So, the given statement is true.

Answer:

  FALSE

Step-by-step explanation:

Corresponding angles must also be congruent for the figures to be similar. Proportional sides is not a sufficient condition.

In a right triangle the lengths of the legs are 8 and 8 square root 3. Find the length of the hypotenuse.

Answers

Answer:

16

Step-by-step explanation:

Using pythagorean theorem, a^2+b^2=c^2, you can substitute the legs in. 8^2+8sqrt3^2=c^2. C is the hypotenuse. you get 64+64sqrt9=c^2. This simplifies to 64+64(3)=c^2. This equals 256=c^2. Sqrt of 256 is 16, which is C.

Step-by-step explanation:

using a^2 = b^2+c^2

=> a^2 = 8^2 + 8×root3

=> a^2 = 64 + 64×3

=> a^2 = 64 + 192 = 256

=> a = 16

can someone help me find the median mode and mean

Answers

Answer:

i think its C

Step-by-step explanation:

the frequency is in median form and the speed is in mean form

Answer:

median: 15mode: 15mean: 16

Step-by-step explanation:

There are 40 numbers in your data set. (This is the sum of the numbers in the Frequency column.) This is an even number, so the median is the average of the middle two Speed values when they are sorted from lowest to highest. The frequency chart already tells you the result of that sorting. From the chart, we can see that there are 9 Speed values below 15, and 12 values that are 15. That tells us that Speed values number 20 and 21 on the list both have a value of 15, so that is the value of the median.

__

The mode is the value that occurs most frequently. Obviously that value is 15, since it occurs 12 times and no other number occurs more than 6 times.

__

Finding the mean is a little more work. For that, we have to add up the 40 numbers and divide by 40. The fact that some numbers are repeated can help shorten that effort.

  sum of all values = 12×1 + 13×2 + 14×6 + 15×12 + 16×6 + 17×5 + 18×1 + 19×2 + 20×4 + 21×1 = 640

  mean = (sum of all values)/(number of values) = 640/40

  mean = 16

Explain how to use the vertex and the value of a to determine the range of an absolute value function.

Answers

Explanation:

An absolute value function in the form ...

  f(x) = a|x -h| +k

will have its vertex at (x, y) = (h, k). The sign on scale factor "a" will tell you whether it opens upward (a > 0) or downward (a < 0).

If a is positive, the vertex is a minimum, and the range is [k, ∞).

If a is negative, the vertex is a maximum, and the range is (-∞, k].

Final answer:

The range of an absolute value function is determined by its vertex and the value of 'a'. If 'a' is positive, the function opens upwards and the minimum of the range is the y-coordinate of the vertex. If 'a' is negative, the function opens downwards, the maximum of the range is the y-value of the vertex.

Explanation:

The range of an absolute value function can be determined using the vertex and the value of 'a' in the function’s equation. In an absolute value function, the vertex is the lowest or highest point on the graph, depending on whether the function opens upwards or downwards. The value 'a' influences the direction of the opening: if 'a' > 0, the graph opens upwards, and if 'a' < 0, it opens downwards.

For example, consider the function |a(x-h)|+k, where (h,k) is the vertex. If 'a' is positive, then the minimum range of the function will be 'k', and the function will extend to positive infinity, making the range [k, ∞). If 'a' is negative, the function will extend towards negative infinity, making its maximum value 'k', and thereby setting the range to (-∞, k].

This means, for instance, if we have a function like y = 3|x - 2| + 1, the value of 'a' is 3, which is positive, thus the function opens upwards, and the vertex is (2,1), which indicates that the range of this function is [1,∞).

Learn more about Absolute Value Function here:

https://brainly.com/question/11212326

#SPJ11

Find the markup and the cost of the following item. Round answers to the nearest cent.

A mirror selling for $98.00, marked up 30% on cost.

M=
C=


Find the markup and the cost of the following item. Round answers to the nearest cent.

A ream of paper selling for $2.19, marked up 11% on cost.

M=
C=

Answers

Answer:

1st question: M=22.62 while C=75.38

2nd question: M=.22 while C=1.97

Step-by-step explanation:

If a mirror costing x dollars is marked up 30%, then we have to find x such that 30%x+x is 98 dollars.

We are solving:

.3x+x=98

Combine like terms:

1.3x=98

Divide both sides by 1.3:

x=75.38

M=98-75.38=22.62

C=75.38

So M=22.62 while C=75.38.

If ream of paper cost x and is marked up 11%, then we have to find x such that 11%x+x is 2.19.

We are solving:

.11x+x=2.19

1.11x=2.19

x=1 97

M=2.19-1.97=.22

So M=.22 while C=1.97

Answer:

A mirror selling for $98, marked up 30%;

M = $22.62

C = $75.38

A ream of paper selling for $2.19, marked up 11%;

M = $0.22

C = $1.97

Step-by-step explanation:

Hope it helps.

Match each description when z = 9 + 3i. 1. Real part of z, 3 2. Imaginary part of z, 9 - 3i 3. Complex conjugate of z, 3i 4. 3i - z -3i 5. Z - 9, -9 6. 9 - z, 9

Answers

Answer:

see below

Step-by-step explanation:

z = 9 + 3i

This is in the form a+bi   where a is the real part and b is the imaginary part

1.The real part is 9

2. The imaginary part is 3

The complex conjugate is a-bi

3. complex conjugate 9-3i

4. 3i - z = 3i - (9+3i) = 3i -9 - 3i = -9

5. z-9 = 9+3i - 9 = 3i

6.  9-z = 9- (9+3i) = 9-9-3i = -3i

Baseball Ichiro Suzuki holds the American League record for the most hits in a single baseball season. In 2004, Suzuki had a total of 262 hits for the Seattle Mariners. He hit three fewer triples than home runs, and he hit three times as many doubles as home runs. Suzuki also hit 45 times as many singles as triples. Find the number of singles, doubles, triples, and home runs hit by Suzuki during the season.

Answers

Let Home runs = X

Triples would be X-3 ( 3 less triples than home runs)

Doubles would be 3x ( 3 times as many doubles as home runs)

Singles would be 45(x-3) ( 45 times as many singles as triples)

Simplify the equation for singles to be 45x-153

Now you have X + x-3 + 3x + 4x-135 = 262

Simplify:

50x - 138 = 262

Add 138 to both sides:

50x = 400

Divide both sides by 50:

x = 400/50

x = 8

Home runs = x = 8

Triples = x-3 = 8-3 = 5

Doubles = 3x = 3(8) = 24

Singles = 45(x-3) = 45(8-3) = 45(5) = 225

By setting up a system of equations using the given relationships between the types of hits, we can calculate that Ichiro Suzuki hit 225 singles, 24 doubles, 5 triples, and 8 home runs in the 2004 season.

To solve this problem, we will set up a system of equations based on the information given:

Let H be the number of home runs.Let T be the number of triples, so T = H - 3.Let D be the number of doubles, so D = 3H.Let S be the number of singles, so S = 45T.

The total number of hits is the sum of singles, doubles, triples, and home runs, which gives us the equation:

S + D + T + H = 262

Substitute the expressions for T, D, and S in terms of H into this equation:

45(H - 3) + 3H + (H - 3) + H = 262

This simplifies to:

45H - 135 + 3H + H - 3 + H = 262

Combining like terms yields:

50H - 138 = 262

Add 138 to both sides to get:

50H = 400

Divide by 50 to find H:

H= 8

Using H, we can find T, D, and S:

T = H - 3 = 8 - 3 = 5 triplesD = 3H = 3 \(\times\) 8 = 24 doublesS = 45T = 45 \(\times\) 5 = 225 singles

Therefore, Ichiro Suzuki hit 225 singles, 24 doubles, 5 triples, and 8 home runs in the 2004 season.

what is the solution set of the quadratic inequality x^2-5<_0

Answers

Answer:

-sqrt(5) ≤ x ≤ sqrt(5)

Step-by-step explanation:

x^2-5≤0

Add 5 to each side

x^2-5+5≤0+5

x^2 ≤5

Take the square root of each side, remembering to flip the inequality for the negative sign.  Since this is less than we use and in between

sqrt(x^2) ≤ sqrt(5)   and sqrt(x^2) ≥ -sqrt(5)  

x ≤ sqrt(5) and x ≥- sqrt(5)  

-sqrt(5) ≤ x ≤ sqrt(5)

The assumptions made are: The gas molecules from Caesar's last breath are now evenly dispersed in the atmosphere. The atmosphere is 50 km thick, has an average temperature of 15 °C , and an average pressure of 0.20 atm . The radius of the Earth is about 6400 km . The volume of a single human breath is roughly 500 mL . Perform the calculations, reporting all answers to two significant figures. Calculate the total volume of the atmosphere.

Answers

Answer:

[tex]2.6\times 10^{19}m^{3}[/tex]

Step-by-step explanation:

we have given thickness of atmosphere =50 km

radius of earth =6400 km

average temperature of atmosphere=15°C

Average pressure of atmosphere= 0.20 atm

we have to calculate the volume of atmosphere

so the we have to calculate the volume of atmosphere = ( volume of earth +atmosphere) - volume of earth

volume of atmosphere =[tex]\frac{4}{3}\times\pi \times \left ( 6400+50 \right )^{3}-\frac{4}{3}\times \pi\times 6400^3[/tex]

=[tex]2.6\times 10^{19}m^{3}[/tex]

Final answer:

To calculate the total volume of the Earth's atmosphere, one has to use the principles of geometry for spheres and subtract the volume of the Earth from the volume of the Earth and its atmosphere.

Explanation:

The volume of the Earth's atmosphere can be calculated by using the geometry of spheres and the characteristics provided: the average thickness of the Earth's atmosphere (50 km) and Earth's radius (6,400 km). We model Earth and its atmosphere as a larger sphere encapsulating a smaller one and define the larger sphere's radius as the Earth's radius plus the thickness of the atmosphere.

First, calculate the radii in comparable units, so convert the atmosphere's thickness from kilometers (km) to meters (m) because Earth's radius is given in km but we need it in meters (m): 50 km * 1000 = 50,000 m. Now, add this to Earth's radius (also in meters): 6,400,000 m + 50,000 m = 6,450,000 m.Then, calculate the volume of the larger sphere (Earth plus atmosphere) using the formula for the volume of a sphere, V = 4/3*pi*r^3: V_large = 4/3 * π * (6,450,000 m)^3.Next, find the volume of Earth without the atmosphere (the smaller sphere) using the same formula: V_small = 4/3 * π * (6,400,000 m)^3.Finally, subtract the smaller volume from the larger one to get the volume of the atmosphere: V_atmosphere = V_large - V_small.

To get the most accurate results, use the accurate value of π and proper bracket organization for your calculations.

Learn more about Volume of Earth's Atmosphere here:

https://brainly.com/question/34413127

#SPJ3

Use special right triangles to solve for the exact value of x.
A- 7
B- 7sqrt2
C- sqrt of 14
(couldn't copy image so ill describe)
Right triangle with X, Y, 7 being side lengths... and 45 degrees for an angle

Answers

Answer:

Option B  7sqrt2

Step-by-step explanation:

I assume that in the right triangle y and 7 are the legs and x is the hypotenuse

so

we know that

In the right triangle

cos(45)=7/x ----> the cosine of angle of 45 degrees is equal to divide the adjacent side to angle of 45 degrees by the hypotenuse

In this problem y=7 because is a 45-90-45 triangle

Remember that

cos(45)=√2/2

equate the equations

√2/2=7/x

x=14/√2

x=14/√2*(√2/√2)=14√2/2=7√2 units

A given line has the equation .
2X - 12Y = -1
What is the equation, in slope-intercept form, of the line that is perpendicular to the given line and passes through the point (0, 9)?

A. Y = -6X + 9
B. Y = - 1/6X + 9
C. Y = 1/6X +9
D. 6X+ 9


Answers

Answer:

  A.  Y = -6X + 9

Step-by-step explanation:

Solving for y, we can find the slope of the given line. It is the coefficient of x, 1/6.

  -12y = -2x -1

  y = 1/6x +1/12

The perpendicular line will have a slope that is the negative reciprocal of this:

  m = -1/(1/6) = -6

The y-intercept will be the y-value corresponding to x=0. That value is b=9, given to us by the point the line is to go through. So, we have the slope-intercept form ...

  y = mx + b

  y = -6x + 9

A student wanted to construct a 95% confidence interval for the mean age of students in her statistics class. She randomly selected nine students. Their mean age was 19.1 years, with a sample standard deviation of 1.5 years. What is the 95% confidence interval for the population mean?

Answers

Answer:

95% confidence interval for the population mean is 20.255 and 17.945

Step-by-step explanation:

given data

mean = 19.1

standard deviation = 1.5

n = 9

to find out

95% confidence interval for the population mean

solution

we know 95% confidence interval formula i.e.

mean +/- t * standard deviation/[tex]\sqrt{n}[/tex]   .............1

here t for 9 students 2.31 ( from t table)

so put all value n t standard deviation and mean in equation 1

= mean +/- t * standard deviation/[tex]\sqrt{n}[/tex]

= 19.1 +/- 2.31 * 1.5/[tex]\sqrt{9}[/tex]

= 19.1 +/- 2.31 * 1.5/[tex]\sqrt{9}[/tex]  

= 20.255 and 17.945

95% confidence interval for the population mean is 20.255 and 17.945

Final answer:

The 95% confidence interval for the population mean of student ages, based on a sample mean of 19.1, standard deviation of 1.5, and a sample size of 9, is approximately (17.95, 20.25).

Explanation:

To construct a 95% confidence interval for the sample mean, first you need to know the sample mean, the sample standard deviation, and the sample size. In this case, the pertinent information is as follows: the sample mean (X) is 19.1 years, the sample standard deviation (s) = 1.5 years, and the sample size (n) = 9. The formula used for a 95% confidence interval is X ± t*(s/√n). In this case, the value for 't' with 8 degrees of freedom (n-1) is approximately 2.306 from the t-distribution table.

To calculate the 95% confidence interval, we then substitute the known values into the formula: 19.1 ± 2.306*(1.5/√9), yielding an interval of 19.1 ± 1.15, so the 95% confidence interval for the population mean is approximately (17.95, 20.25). This means that we estimate with 95% confidence that the true average age of all students in the class is between 17.95 and 20.25 years.

Learn more about 95% Confidence Interval here:

https://brainly.com/question/35347305

#SPJ3

Use interval notation to represent all values of x satisfying the given conditions.

y=StartAbsoluteValue 3 x minus 8 EndAbsoluteValue plus 6 and y less than 12

Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice.

A.

The solution set in interval notation


​(Simplify your​ answer.)

B.

The solution set is empty set.

Answers

A because it has a set between the whole numbers 1 and 4 (and slightly beyond those in decimals)

Enter the amplitude of the function f(x) .

f(x) = 5 sin x

Answers

Answer:

5

Step-by-step explanation:

The amplitude is the distance from the highest to lowest points divided that by 2.

Or the simpliest way when given the function

f(x) = A sin(x)

Where A is the amplitude

To determine the amplitude of the function \( f(x) = 5 \sin x \), let's review the concept of amplitude in the context of sinusoidal functions like sine and cosine.
The general form of a sine function is:
\[ f(x) = A \sin(Bx + C) + D \]
- \( A \) is the amplitude of the function, which determines the height of the wave's peak or the depth of its trough, relative to the center line of the wave.
- \( B \) affects the period of the function, which is the distance over which the wave pattern repeats.
- \( C \) is the phase shift, which determines where the function starts on the x-axis.
- \( D \) is the vertical shift, which moves the wave up or down on the y-axis.
The amplitude \( A \) is always a non-negative number. It represents the maximum value that the function reaches from its middle position (equilibrium). In other words, it's the distance from the middle of the wave to its peak or trough.
In the function you've provided, \( f(x) = 5 \sin x \), there's no phase shift (\( C \)) or vertical shift (\( D \)), and since there's no coefficient multiplying \( x \) inside the sine function, the period is not affected (\( B = 1 \)). The coefficient of \( \sin x \), here \( 5 \), is the amplitude of the function.
So, the amplitude of the function \( f(x) = 5 \sin x \) is simply the coefficient in front of the sine term, which in this case is \( 5 \). Therefore, the amplitude of \( f(x) \) is \( 5 \).

Jamie is hiking up a small mountain. He climbs up at a constant rate of 300 feet/hour until he reaches the peak at 1,500 feet. After that, he hikes down at the same rate to the base of the mountain. The equation that models Jamie's elevation, e, after t hours is e = . Jamie's elevation will be 600 feet after hours and after hours.

Answers

Final answer:

Jamie's elevation during a hike is modeled with a piece-wise function depicting a constant rate of ascent and descent at 300 feet/hour up to a peak at 1,500 feet. He reaches 600 feet elevation at 2 and 8 hours, during his ascent and descent, respectively.

Explanation:

The subject of this question is Jamie's hiking adventure up and down a mountain, modeled by a mathematical equation. Since Jamie is hiking at a constant rate of 300 feet per hour, he reaches the peak of 1,500 feet in 5 hours (1,500 / 300). His elevation, e, can be calculated as e = 300t for t <= 5 because this represents his ascent. For the descent, the equation would be e = 1500 - 300(t - 5) for t > 5. This is because for every hour after the 5th hour, he will be descending at the same constant rate.

Therefore, if we were trying to calculate when his elevation would be 600 feet, there would be two possible answers: one during his ascent, and the other during his descent. For the ascent, we would solve 300t = 600, resulting in t = 2 hours. For the descent, we would solve 1500 - 300(t - 5) = 600, giving us t = 8 hours. So, Jamie is at 600 feet elevation both 2 hours into his hike (on his way up) and 8 hours into his hike (on his way down).

Learn more about Rate Problems here:

https://brainly.com/question/29624094

#SPJ12

Final answer:

The question involves creating a mathematical model for a hiking scenario, considering time and distance. Jamie hikes at a rate of 300 feet/hour for 5 hours up and 5 hours down, making a piecewise function the best way to model his elevation at any part of his journey.

Explanation:

The subject of the question is about understanding how to create a mathematical model for a hiking scenario. A key point is understanding that the rate of climbing and descending is the same and that time and distance are both relevant in this case.

Jamie climbs upwards at 300 feet/hour, making it to 1,500 feet, which means it took him (1,500 feet / 300 feet per hour) = 5 hours. After reaching the peak, he descends at the same rate. So his total journey time is 5 hours upwards + 5 hours downwards = 10 hours.

To model Jamie's elevation at any given time, we'd use a piecewise function because his elevation changes direction at the peak of the mountain. When t ≤ 5, we can define his elevation as e = 300t. After reaching the peak, his elevation drops at the same rate: when t > 5, e = 3000 - 300t. This gives us his elevation at any time during his hike.

Learn more about Jamie's elevation during a hike here:

https://brainly.com/question/11294899

#SPJ12

A box contains five slips of paper. Each slip has one of the number 4, 6, 7, 8, or 9 written on it and all numbers are used. The first player reaches into the box and draws two slips and adds the two numbers. If the sum is even, the player wins. If the sum is odd, the player loses.

Answers

Answer: 70% chance of winning

Step-by-step explanation: What is your question? Are you trying to ask the probability of winning? (I will assume this and answer)

The whole case of selecting to numbers : 5C2 = 5 X 4 / 2 = 10

the cases of getting a odd sum : select 1 odd number and 1 even number

=> select 1 odd number : 7 or 9 => 2 cases

=> select 1 even number: 4,6,8 => 3 cases

you multiply 2 and 3 and divide it by 2 because order doesn't matter

so the answer is 1 - (3/10) = 0.7  

Final answer:

The player in the game has an equal chance of winning or losing.

Explanation:

In this problem, we are given a box containing five slips of paper, each with a number written on it. The first player draws two slips and adds the two numbers together. To determine if the player wins or loses, we need to determine if the sum of the two numbers is even or odd.

To solve this problem, we can list all the possible pairs of numbers and find out if the sum of each pair is even or odd. If the sum is even, the player wins; if the sum is odd, the player loses. We can do this by considering the possible outcomes:

(4, 6) - sum is 10 (even)(4, 7) - sum is 11 (odd)(4, 8) - sum is 12 (even)(4, 9) - sum is 13 (odd)(6, 7) - sum is 13 (odd)(6, 8) - sum is 14 (even)(6, 9) - sum is 15 (odd)(7, 8) - sum is 15 (odd)(7, 9) - sum is 16 (even)(8, 9) - sum is 17 (odd)

From the listed outcomes, we can see that there are 5 even sums and 5 odd sums.

Therefore, the player has an equal chance of winning or losing in this game.

Learn more about Game Probability here:

https://brainly.com/question/35420575

#SPJ2

Other Questions
Drops of rain fall perpendicular to the roof of a parked car during a rainstorm. The drops strike the roof with a speed of 15 m/s, and the mass of rain per second striking the roof is 0.071 kg/s. (a) Assuming the drops come to rest after striking the roof, find the average force exerted by the rain on the roof. (b) If hailstones having the same mass as the raindrops fall on the roof at the same rate and with the same speed, how would the average force on the roof compare to that found in part (a)? Fluorescent light bulbs have lifetimes that follow a normal distribution, with an average life of 1,685 days and a standard deviation of 1,356 hours. In the production process the manufacturer draws random samples of 197 light bulbs and determines the mean lifetime of the sample. What is the standard deviation of the sampling distribution of this sample mean? A new manager has just arrived at your firm, and she has just finished taking an operations management class. Your company produces widgets on a moving assembly line. Most of the employees have specialized on one specific task on the assembly line, and they are good at performing their assigned task. However, as she walks around the production floor, she notices that many of the employees do not seem to be very satisfied with their job. She has a great idea on how to improve the quality of work life and thinks that the employees should be allowed to move from one specialized job to another.What type of job expansion would this be considered? __________ A company manufactures and distributes replacement parts for various industries. As of December 31, year 1, the following amounts pertain to the company's inventory: Item Cost Net replacement cost Sale price Cost to sell or dispose Normal profit margin Blades $41,000 $ 38,000 $ 50,000 $ 2,000 $15,000 Towers 52,000 40,000 54,000 4,000 14,000 Generators 20,000 24,000 30,000 2,000 6,000 Gearboxes 80,000 105,000 120,000 12,000 8,000 What is the total carrying value of the company's inventory as of December 31, year 1, under IFRS? 3. In which activity is no work done? Sarah is the Colton familys 23-year-old daughter. She is a full-time student at an out-of-state university (for 8 months of the year) but plans to return home when the school year ends. During the year, Sarah earned $4,500 of income working part-time. Her support totaled $20,000 for the year. Of this amount, Sarah paid $7,000 with her own funds, her parents paid $12,000, and Sarahs grandparents paid $1,000. Which of the following statements most accurately describes whether Sarahs parents can claim a dependency exemption for her?A. Yes, Sarah is a qualifying child of her parents.B. No, Sarah fails the support test for both qualifying children and qualifying relativesC. No, Sarah does not pass the gross income testD. Yes, Sarah is a qualifying relative of her parentsE. None of the Above What is your opinion about weapon The reaction of ethyl acetate with sodium hydroxide, CH3COOC2H5(aq)+NaOH(aq)CH3COONa(aq)+C2H5OH(aq) is first order in CH3COOC2H5 and first order in NaOH. If the concentration of CH3COOC2H5 was increased by half and the concentration of NaOH was quadrupled, by what factor would the reaction rate increase? If this is the graph of f(x) = a^(x+h)+k -50 Points-Find the distance from point B to point C.Enter as a decimal rounded to the nearest tenth. Take these sentences and turn them into PRESENT TENCE.In French.a 5:30 de l'aprs-midi dans l'aprs-midi, ma famille et moi aller mangera 4:00 de l'aprs-midi on choisissait ce qu'on mangeaita 7:00 du soir nous avons fini de manger.a 8:00 du matin nous avons pris le petit djeunera midi, ma famille et moi allons la plage.\a 2:30 de l'aprs-midi, ma famille et moi allons faire du shopping.a 10:00 du soir, on va se coucher. Sandra Kristof sells furniture for McKinney Furniture Company. Kristof is having financial problems and takes $650 that she received from a customer. She rang up the sale through the cash register. What will alert Megan McKinney, the controller, that something is wrong? An _____ reaction results when the energy released by the formation of products is greater than the energy required to break the bonds in the reactants. When Julius hears that there are going to be cutbacks in his department, he immediately calls his supervisor and asks for an appointment. During that meeting he presents a very straightforward list of the ways in which he has been an asset to the company, proposes ways that he can help the company overcome its economic difficulties, and emphasizes his dedication and loyalty to the company. Julius is using ____-focused coping to deal with his employment uncertainty. What different between 'flow analysis using control volume method' and 'flow analysis using differential method'? x^2+2x+1 is a perfect square trinomial True of False? The circle below is centered at the point (8,4) and has a radius of length 4 what is the equation Write a paragraph in Spanish about the different types of housing in Ecuador. Also give your opinions (likes and dislikes) about the housing in Ecuador compared to the housing in the area in which you live, in the U.S. What is the average de Broglie wavelength of oxygen molecules in air at a temperature of 27C? Use the results of the kinetic theory of gases The mass of an oxygen molecule is 5.31 x 1026 kg What chemical mediator initiates an inflammatory reaction?