The surface gravity on jupiter is about three times as much as the surface gravity on earth. this means

Answers

Answer 1
this means that jupiter gravity pull is 3 times stronger than the earth

Related Questions

According to Binet, mental age relates to chronological age because ___________.
A.
they are the same thing
B.
mental age involves calculating the chronological age at which a person functions
C.
chronological age involves calculating how a person is mentally functioning
D.
they are opposites

Answers

its b good luck!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Answer: The correct answer for the fill in the blank is B.  Mental age involves calculating the chronological age at which a person functions.

Mental age corresponds to the attainment of mental abilities by an individual. It is related to intelligence and based on the chronological age ( calculated from the date on which individual was born) at which any average individual attains the same level of mental abilities.

Therefore, mental age involves calculation of the chronological age at which a person functions and attains mental abilities.

Which theory proposes that the moon was a passing asteroid pulled into orbit by Earth's gravity? impact theory co-formation theory capture theory synchronous theory

Answers

Impact theory is the idea that the moon was formed by a collision between the Earth and another body.

The capture theory is the idea that the moon formed somewhere else in the solar system. The theory proposed that the moon was just an asteroid pulled into orbit by the Earth. 


Co-formation is a theory that proposes that the Earth and the moon formed around the same time as each other from a primitive solar nebulae. 

The answer to your question then is CAPTURE THEORY.

Final answer:

The capture theory suggests the Moon was a passing asteroid that Earth's gravity pulled into orbit, but this theory is challenged by the Moon's orbit and compositional similarities to Earth. The widely accepted explanation is the giant impact hypothesis.

Explanation:

The theory that proposes the Moon was a passing asteroid pulled into orbit by Earth's gravity is known as the capture theory. However, there are significant challenges with this theory, including the need for a substantial loss of energy for a body to achieve orbit, which is difficult to explain for an object of the Moon's size. Moreover, the capture theory does not account for the nearly circular orbit of our Moon, nor does it explain the compositional similarities between the Earth and the Moon, particularly regarding isotopes of oxygen. The currently accepted explanation for the Moon's origin favoring these evidences is the giant impact hypothesis, which suggests the Moon formed from the debris of a collision between Earth and a Mars-sized body.

A baseball is launched horizontally from a height of 1.8 m. The baseball travels 0.5 m before hitting the ground.

How fast is the baseball moving, rounded to the nearest hundredth?
m/s

Answers

Here we’re solving a problem where a ball is projected horizontally from a height of h=1.8 m with a horizontal velocity of Vx. At the impact with the ground, the ball has travelled 0.5 m horizontally.


Solution:


We will need kinematic equations

V1^2-V0^2=2aS ………………….(1)

S=V0*t + (1/2)at^2………………..(2)

Where

S=displacement (distance), m

V0=initial velocity, m/s

V1=final velocity, m/s

a=acceleration, m/s^2

t=time, seconds


At the point of impact, there a vertical velocity (downwards) of Vy.

The horizontal velocity Vx remains constant since projection till impact.


Vertical velocity Vy:

Using equation (1),

V0=0 (projected horizontally, so vertical velocity=0)

S=1.8 m (downwards)

a=9.81 m/s^2 (acceleration due to gravity, downwards)

=>

Vy=V1=sqrt(V0^2+2*a*S)=sqrt90+2*9.81*1.8)=5.9427


Horizontal velocity, Vx:

ball travelled 0.5m in time t it took ball to hit ground.

Using equation (2),

S=1.8m

V0=0

a=9.81

=>

1.8=0*t+(1/2)(9.81)t^2

Solve for t

t=sqrt(2*1.8/9.81)=0.60578 s


Horizontal velocity, Vx = 0.5/0.60578 = 0.82538 s


Speed of ball on impact is the vectorial sum of Vx and Vy:

Speed = sqrt(Vx^2+Vy^2)=sqrt(5.9427^2+0.82538^2)=5.99977 m/s, say 6.0 m/s.


Answer: 0.82

On ED2020

When mass m is tied to the bottom of a long, thin wire suspended from the ceiling, the wire's second-harmonic frequency is 180 hz . adding an additional 1.2 kg to the hanging mass increases the second-harmonic frequency to 270 hz . part a what is m?

Answers

Given second-harmonic frequencies and added mass, solve [tex]\(1.5^2 = \frac{m + 1.2}{m}\) to find \( m = 0.96 \)[/tex] kg.

To find the mass [tex]\( m \)[/tex] that results in the given second-harmonic frequencies, we will use the formula for the frequency of standing waves on a wire under tension.

The second-harmonic frequency for a wire is given by:

[tex]\[f = \frac{2}{L} \sqrt{\frac{T}{\mu}}\][/tex]

where:

- [tex]\( f \)[/tex] is the frequency,

- [tex]\( L \)[/tex] is the length of the wire,

- [tex]\( T \)[/tex] is the tension in the wire,

- [tex]\( \mu \)[/tex] is the linear mass density of the wire.

The tension [tex]\( T \)[/tex] in the wire is due to the hanging mass [tex]\( m \)[/tex] and is given by:

[tex]\[T = mg\][/tex]

where [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]).

The second-harmonic frequency is given, so for the initial mass [tex]\( m \)[/tex]:

[tex]\[f_1 = 180 \, \text{Hz}\][/tex]

[tex]\[180 = \frac{2}{L} \sqrt{\frac{mg}{\mu}}\][/tex]

When an additional 1.2 kg is added to the mass, the new mass becomes [tex]\( m + 1.2 \)[/tex] kg and the second-harmonic frequency becomes:

[tex]\[f_2 = 270 \, \text{Hz}\][/tex]

[tex]\[270 = \frac{2}{L} \sqrt{\frac{(m + 1.2)g}{\mu}}\][/tex]

To find [tex]\( m \)[/tex], we will set up the ratio of the two frequencies and solve for [tex]\( m \)[/tex]:

[tex]\[\frac{f_2}{f_1} = \frac{270}{180} = 1.5\][/tex]

Using the ratio of the frequencies:

[tex]\[\frac{270}{180} = \frac{\sqrt{\frac{(m + 1.2)g}{\mu}}}{\sqrt{\frac{mg}{\mu}}}\][/tex]

Squaring both sides to eliminate the square roots:

[tex]\[\left(\frac{270}{180}\right)^2 = \frac{(m + 1.2)g}{mg}\][/tex]

[tex]\[\left(1.5\right)^2 = \frac{(m + 1.2)}{m}\][/tex]

[tex]\[2.25 = \frac{m + 1.2}{m}\][/tex]

Multiplying both sides by [tex]\( m \)[/tex]:

[tex]\[2.25m = m + 1.2\][/tex]

Solving for [tex]\( m \)[/tex]:

[tex]\[2.25m - m = 1.2\][/tex]

[tex]\[1.25m = 1.2\][/tex]

[tex]\[m = \frac{1.2}{1.25}\][/tex]

[tex]\[m = 0.96 \, \text{kg}\][/tex]

Therefore, the mass [tex]\( m \)[/tex] is [tex]\( 0.96 \)[/tex] kg.

To what potential should you charge a 0.900 μf capacitor to store 1.50 j of energy

Answers

The energy stored in a capacitor is given by
[tex]U= \frac{1}{2} CV^2[/tex]
where C is the capacitance and V the voltage applied.
In our problem, [tex]C=0.900 \mu F=0.9 \cdot 10^{-6} F[/tex], while the energy is [tex]U=1.5 j[/tex]. We can then solve the formula to find V:
[tex]V= \sqrt{ \frac{2U}{C} }= \sqrt{ \frac{2\cdot 1.5 J}{0.9\cdot 10^{-6} F} }=1826 V [/tex]

Which of the following is the best definition of a short circuit
A. A circuit that has a gap in the wire
B.A circuit that has little or no resistance
C.A circuit that uses little voltage
D.A circuit that uses very little wire

Answers

I think it's a circuit that has little or no resistance :3

Answer:

B.A circuit that has little or no resistance

Explanation: a circuit is said to be short circuit if it has little or no resistance.

Shirt circuiting is very dangerous and can be done intentionally or unintended

D could also be correct if an amount of wire is ought to be used and you use a little wire. Knowing that wires have internal resistance too.

It could lead to short circuit

Three people pull simultaneously on a stubborn donkey. jack pulls directly ahead of the donkey with a force of 97.9 n, jill pulls with 72.7 n in a direction 45° to the left, and jane pulls in a direction 45° to the right with 145 n. (since the donkey is involved with such uncoordinated people, who can blame it for being stubborn?) find the magnitude of the net force the people exert on the donkey.

Answers

We should analyze the forces in two different directions: the forward-backward direction and the left-right direction, and then calculate the resultant of the net forces acting on both directions.

Forward-backward direction. Here we have three forces acting on the monkey: the force applied by Jack, 97.9 N directly ahead; the force applied by Jill, 72.7 N with an angle [tex]45^{\circ}[/tex] to the left; and the force applied by Jane, 145 N with an angle [tex]45^{\circ}[/tex]. Therefore, the resultant on this axis is
[tex]F_x = 97.9 N + 72.7 N\cdot \cos (45^{\circ}) + 145 N \cos (45^{\circ}) = 251.8 N [/tex]

Left-right direction. In this direction, the force applied by Jack is 0 N, because he is applying his force only ahead. The force applied by Jill is 72.7 N with an angle [tex]45^{\circ}[/tex] to the left, while the force applied by Jane is 145 N with an angle [tex]45^{\circ}[/tex] to the right: this means we should write the two forces with opposite signs, because they have opposite direction in the left-right axis. Therefore,
[tex]F_y = 72.7 N \cdot \sin (45^{\circ})-145 N \cdot \sin (45^{\circ})=-51.1 N[/tex]

The net force acting on the monkey is the resultant of these two forces:
[tex]F= \sqrt{F_x^2+F_y^2}= \sqrt{(251.8N)^2+(-51.1N)^2}=257 N [/tex]

To find the net force on the donkey, we decompose the angled forces into horizontal and vertical components and add them accordingly. Since the vertical components cancel out, the net force is the sum of Jack's force and the combined horizontal components from Jill and Jane, resulting in a net force of 149 N ahead.

The problem presented requires an analysis of forces and vector addition to calculate the net force exerted on a donkey by three different people. We have Jack applying 97.9 N directly ahead, Jill pulling with 72.7 N at a 45° angle to the left, and Jane pulling with 145 N at a 45° angle to the right. To solve this, we must break down Jill's and Jane's forces into their horizontal and vertical components and then combine these with Jack's force.

Jill's horizontal component: 72.7 N × cos(45°) = 51.4 N to the left

Jill's vertical component: 72.7 N × sin(45°) = 51.4 N up

Jane's horizontal component: 145 N × cos(45°) = 102.5 N to the right

Jane's vertical component: 145 N × sin(45°) = 102.5 N up

Now we can subtract Jill's horizontal component from Jane's because they are in opposite directions: 102.5 N (Jane's right) - 51.4 N (Jill's left) = 51.1 N to the right. The vertical components from Jill and Jane will cancel each other since the donkey is stubborn and not moving vertically, hence we are left with only the horizontal forces to combine with Jack's force.

The total horizontal force exerted by Jack and combined with the net horizontal force from Jill and Jane is 97.9 N (Jack's force)+ 51.1 N (net horizontal force) = 149 N.

Thus, the magnitude of the net force the people exert on the donkey is 149 N directly ahead, assuming no vertical movement.

A ferris wheel of radius r speeds up with angular acceleration α starting from rest. part a find an expression for the velocity of a rider after the ferris wheel has rotated through angle δθ.

Answers

The expression for the angular acceleration is:
[tex]\alpha = \frac{\Delta \omega}{\Delta t} [/tex]
where [tex]\Delta \omega = \omega-\omega _0[/tex] is the variation of the angular velocity, with [tex]\omega _0[/tex] being the starting velocity (which in our problem is zero), and [tex]\Delta t[/tex] being the time interval. So we can write the angular velocity after an angle [tex]\delta \theta[/tex] as
[tex]\omega (\delta \theta) = \alpha \Delta t[/tex]
We also know the relationship between tangential velocity, v, and the angular velocity v:
[tex]v=\omega r[/tex]
with r being the radius of the wheel. Substituting [tex]\omega[/tex] into the previous equation, we can write an expression for v:
[tex]v(\delta \theta )= \alpha r \Delta t [/tex]

The expression for the velocity of a rider on the Ferris wheel after it has rotated through an angle [tex]\( \delta \theta \)[/tex] is given by:

[tex]\[ v = r \sqrt{2 \alpha \delta \theta} \][/tex]

To find the expression for the velocity of a rider after the Ferris wheel has rotated through an angle [tex]\( \delta \theta \)[/tex], we can use kinematic equations for rotational motion.

The kinematic equation relating angular displacement [tex](\( \delta \theta \))[/tex], initial angular velocity [tex](\( \omega_0 \))[/tex], angular acceleration [tex](\( \alpha \))[/tex], and time [tex](\( t \))[/tex] is:

[tex]\[ \delta \theta = \omega_0 t + \frac{1}{2} \alpha t^2 \][/tex]

Since the Ferris wheel starts from rest, [tex]\( \omega_0 = 0 \)[/tex], so the equation simplifies to:

[tex]\[ \delta \theta = \frac{1}{2} \alpha t^2 \][/tex]

We're interested in finding the angular velocity [tex](\( \omega \))[/tex] after the Ferris wheel has rotated through an angle [tex]\( \delta \theta \)[/tex]. To find [tex]\( \omega \)[/tex], we can use the kinematic equation relating angular displacement, initial angular velocity, angular acceleration, and final angular velocity:

[tex]\[ \omega^2 = \omega_0^2 + 2 \alpha \delta \theta \][/tex]

Since [tex]\( \omega_0 = 0 \)[/tex], this equation simplifies to:

[tex]\[ \omega^2 = 2 \alpha \delta \theta \][/tex]

Taking the square root of both sides:

[tex]\[ \omega = \sqrt{2 \alpha \delta \theta} \][/tex]

This gives us the angular velocity of the Ferris wheel after it has rotated through an angle [tex]\( \delta \theta \)[/tex].

However, to find the velocity of a rider at a particular point on the Ferris wheel, we need to convert this angular velocity to linear velocity. The linear velocity [tex](\( v \))[/tex] is related to the angular velocity [tex](\( \omega \))[/tex] by the equation:

[tex]\[ v = r \omega \][/tex]

Where:

- v is the linear velocity.

- r is the radius of the Ferris wheel.

So, substituting the expression for [tex]\( \omega \)[/tex] into this equation:

[tex]\[ v = r \sqrt{2 \alpha \delta \theta} \][/tex]

This is the expression for the velocity of a rider after the Ferris wheel has rotated through an angle [tex]\( \delta \theta \)[/tex].

How do the planets Venus and Neptune differ in terms of atmospheric composition?
(A)Venus has carbon dioxide in its atmosphere, while Neptune has methane in its atmosphere.
(B)Venus has oxygen in its atmosphere, while Neptune has carbon monoxide in its atmosphere.
(C)Venus has hydrogen chloride in its atmosphere, while Neptune has helium in its atmosphere.
(D)Venus has nitrogen in its atmosphere, while Neptune has oxygen and hydrogen in its atmosphere.
(E)Venus has sulfur dioxide in its atmosphere, while Neptune has nitrogen dioxide in its atmosphere.

Answers

(A)Venus has carbon dioxide in its atmosphere, while Neptune has methane in its atmosphere.

Answer: The correct option is Option A.

Explanation:

Atmosphere is defined as the layer of gases which form an envelope around a planet.

Venus is the second and Neptune is the last planet of our solar system.

Venus's atmosphere mainly consists of carbon dioxide with trace amounts of nitrogen, argon , helium and neon.

Neptune's atmosphere mainly consists of helium and hydrogen with 2.5 to 3% of methane gas in it.

From the above information, the correct answer comes out to be Option A.

A ball is tossed from an upper-story window of a building. the ball is given an initial velocity of 7.90 m/s at an angle of 18.0° below the horizontal. it strikes the ground 4.00 s later. (a) how far horizontally from the base of the building does the ball strike the ground? 30.04 correct: your answer is correct. m (b) find the height from which the ball was thrown. incorrect: your answer is incorrect. work only with the vertical components of these quantities. this part of the problem is then a 1-dimensional free-fall example. m (c) how long does it take the ball to reach a point 10.0 m below the level of launching? s

Answers

In order to solve the problem, let's write the equations of motion first. Let's take the x-axis as the horizontal direction, and the y-axis on the vertical direction (pointing downward). Calling [tex]v_0=7.9 m/s[/tex] the initial velocity, and [tex]\alpha=18^{\circ}[/tex] the angle below the horizontal, the equations of motion are
[tex]S_x(t)=v_0 cos (\alpha )t[/tex]
[tex]S_y(t)=v_0 sin (\alpha ) t+ \frac{1}{2}gt^2 [/tex] 
where [tex]g=9.81 m/s^2[/tex] is the gravitational acceleration.

(a) To find the distance covered by the ball horizontally, we must simply calculate Sx at the time the ball hits the ground (t=4.0 s):
[tex]S_x(4.0s)= 7.9 m/s \cdot cos (18^{\circ}) \cdot 4.0s=30.05 m[/tex]

(b) The height from which the ball was thrown is the value of Sy at 4.0s, which is the distance covered by the ball before hitting the ground:
[tex]S_y(4.0 s)=7.9 m/s \cdot sin(18^{\circ}) \cdot 4.0s + \frac{1}{2}(9.81 m/s^2)(4.0s)^2=88.24 m [/tex]

(c) To calculate how long does it take to the ball to reach 10.0 m below the initial point, we have to find the time at which Sy(t)=10.0 m. This means we must solve the following equation:
[tex]10.0m = v_0 sin (\alpha ) t + \frac{1}{2} gt^2 [/tex]
Using the data of the problem, we can solve this equation. We find two solutions for t: one is negative, so we can neglect it. The second one, which is the solution of the problem, is t=1.19 s.

Which statement best compares momentum and kinetic energy? If you double the velocity of an object, its kinetic energy doubles. But for the same increase in velocity, the momentum increases four times. If you double the velocity of an object, its momentum doubles. But for the same increase in velocity, the kinetic energy increases four times. If you double the velocity of an object, its momentum and kinetic energy doubles. If you double the velocity of an object, its momentum and kinetic energy increases four times.

Answers

If you double the velocity of an object, its momentum doubles. But for the same increase in velocity, the kinetic energy increases four times.

Explanation:

We can prove this statement by looking at the formulas for the momentum and kinetic energy of an object.

Momentum: [tex]p=mv[/tex]

Kinetic energy: [tex]K=\frac{1}{2}mv^2[/tex]

where m is the mass of the object and v its velocity.

From the two formulas, we see that the momentum is directly proportional to the velocity, while the kinetic energy is proportional to the square of the velocity. Therefore, if we double the velocity, the momentum increases by a factor 2, while the kinetic energy increases by a factor [tex]2^2=4[/tex].

Final answer:

Momentum is directly proportional to an object's mass and velocity, while kinetic energy is directly proportional to an object's mass and the square of its velocity. When velocity is doubled, kinetic energy increases four times, while momentum doubles.

Explanation:

Momentum and kinetic energy are both physical quantities that describe the motion of an object. Momentum is directly proportional to an object's mass and velocity, while kinetic energy is directly proportional to an object's mass and the square of its velocity.

In terms of velocity, if you double the velocity of an object, its kinetic energy increases four times (K = (1/2)mv²), but its momentum doubles. This is because momentum is equal to mass times velocity (p = mv), so when velocity doubles, momentum also doubles. However, since kinetic energy is proportional to the square of velocity, when velocity doubles, kinetic energy increases by a factor of four.

Therefore, the statement that best compares momentum and kinetic energy is: If you double the velocity of an object, its kinetic energy increases four times. But for the same increase in velocity, the momentum doubles.

Learn more about Momentum and Kinetic Energy here:

https://brainly.com/question/35479656

#SPJ11

What must the charge (sign and magnitude) of a particle of mass 1.42 g be for it to remain stationary when placed in a downward-directed electric field of magnitude 610 n/c ? use 9.81 m/s2 for the magnitude of the acceleration due to gravity. view available hint(s)?

Answers

We have two forces acting on the particle: the weight of the particle, downward, with intensity W=mg, and the Coulomb's force due to the electric field, with intensity F=qE. 

In order to keep the particle in equilibrium, F must point upward. The direction of F depends on the sign of the charge. The electric field's direction is downward, so if we want F to point upward, the charge q must have negative sign.

Then, to find the magnitude of the charge, we should require that the intensity of the two forces acting on the particle is equal:
[tex]mg=qE[/tex]
from which we find q:
[tex]q= \frac{mg}{E} = \frac{(1.42 \cdot 10^{-3}kg)(9.81 m/s^2)}{610 N/C}=2.28 \cdot 10^{-5}C [/tex]

A car drives over the top of a hill that has a radius of 30 m . part a what maximum speed can the car have without flying off the road at the top of the hill?

Answers

The answer i got was 50 miles per hour

At 600.0 k the rate constant is 6.1× 10–8 s–1. what is the value of the rate constant at 785.0 k?

Answers

Missing details. Complete text is:"The following reaction has an activation energy of 262 kJ/mol:
C4H8(g) --> 2C2h4(g)
At 600.0 K the rate constant is 6.1× 10–8 s–1. What is the value of the rate constant at 785.0 K?"
To solve the exercise, we can use Arrhenius equation:
[tex]\ln( \frac{K_2}{K_1} ) = \frac{Ea}{R} ( \frac{1}{T_1}- \frac{1}{T_2} ) [/tex]
where K are the reaction rates, Ea is the activation energy, R=8.314 J/mol*K and T are the temperatures. Using T1=600 K and T2=785 K, and Ea=262 kJ/mol = 262000 J/mol, on the right side of the equation we have
[tex] \frac{Ea}{R}( \frac{1}{T_1}- \frac{1}{T_2} )=12.38 [/tex]
And so
[tex]\ln( \frac{K_2}{K_1})=12.38 [/tex]
And using [tex]K_1=6.1\cdot 10^{-8} s^{-1}[/tex] , we find K2:
[tex]K_2=K_1 e^{12.38}=0.0145 s^{-1}[/tex]


Which part of a wind-powered system ultimately produces the electricity? A. nacelle B. blade C. turbine D. generator

Answers

The correct answer is: (D) Generator

Explanation:
In wind-powered systems, the wind energy turns the blades around the rotor of a wind turbine. That rotor is connected to a generator that generates electricity. In other words, the kinectic energy of the wind is converted into electrical energy by using the generator in the wind-powered systems.

Answer:

C) TURBINE

Explanation:

As we know that wind powered system is used to generate electricity using wind energy.

Here wind powered system has different components

1) Blades: these are long plates connected to the turbine. when these plates encountered high speed wind they start rotating on its axle.

This will produce kinetic energy in the axle which is transferred to the turbine.

2) Turbine: It is used to convert mechanical energy of the wind into useful electrical energy.

This is continuously driven by the kinetic energy of wind

So here correct answer is

C) Turbine

Maglev trains, like the one shown in the picture, use magnet fields to travel up to 600 miles per hour. Magnets on the bottom of the train and on the tops of the rails have similar magnetic poles. Based on properties of magnets, how do these magnets affect the train?

Answers

They cause the levitation of the train.
In fact, magnets with same polarity repel each other. So, the magnets on the tops of the rails repel the magnets on the botton of the train: this repulsive force is strong enough to win the weight of the train, and the train levitates in air. As a consequence, the frictional forces acting on the train are very small compared to the forces experienced by normal trains (that should win the frictional forces of the railway), and therefore this Maglev train can reach a huge speed.

the 2 magnetic fields repel eachother

You are walking in the forest and see a bear. According to the Cannon-Bard theory, what happens next?

Answers

for the whole quiz of intro to psychology ;)

1. Stimulus--> Physiological changes--> emotion

2. Darwin

3.You experience physiological changes and a feeling of fear simultaneously

4. Cannon-Bard theory

5. James-Lange theory

6. David G. Myers

7. Happiness

8. Acting happy

9. negative and dysfunctional aspects of emotion and behavior.

10. an aspect of consciousness characterized by a certain physical arousal involving facial and bodily changes, brain activation, and tendencies toward action, all shaped by cultural rules.

I do this cause i wished someone did this for me. So stress no more from falling behind and Ace that quiz. your welcome comrades

-10/11/18

According to the Cannon-Bard theory, physiological changes and the feeling of fear occur simultaneously.

What is Cannon-Bard theory?

The Cannon–Bard theory is also called the thalamic theory of emotion which is related to the thalamus. It is a part of the brain that deals with sensory and motor functions. The main concepts of this theory are that emotional expression arises from the function of hypothalamic structures while emotional feeling arises from stimulation of the dorsal thalamus.

This theory states that the lower part of the brain controls the experience of emotion while the upper part of the brain, called the cortex, controls the expression of emotion. These two parts of the brain react together

In this theory, stimulating events trigger emotions and physiological responses that occur at the same time. For example, seeing a bear in the woods can cause both a feeling of fear (an emotional response) and a faster heartbeat (a physical response).

Thus, according to the Cannon-Bard theory, physiological changes and the feeling of fear occur simultaneously.

Learn more about Cannon-Bard theory, here:

https://brainly.com/question/29103620

#SPJ3

A small object carrying a charge of -2.50 nc is acted upon by a downward force of 18.0 nn when placed at a certain point in an electric field

Answers

Missing question in the text:
"A.What are the magnitude and direction of the electric field at the point in question?

B.What would be the magnitude and direction of the force acting on a proton placed at this same point in the electric field?"

Solution:

A) A charge q under an electric field of intensity E will experience a force F  equal to:

[tex]F=qE[/tex]

In our problem we have [tex]q=-2.5 nC=-2.5\cdot 10^{-9} C[/tex] and [tex]F=18 nN = 18 \cdot 10^{-9} N[/tex], so we can find the magnitude of the electric field:

[tex]E= \frac{F}{q}= \frac{18\cdot 10^{-9}N}{2.5\cdot 10^{-9}C}=7.2 V/m [/tex]

The charge is negative, therefore it moves against the direction of the field lines. If the force is pushing down the charge, then the electric field lines go upward.

B) The proton charge is equal to

[tex]e=1.6\cdot 10^{-19} C[/tex]

Therefore, the magnitude of the force acting on the proton will be

[tex]F=eE=1.6\cdot 10^{-19} C \cdot 7.2 V/m=1.15 \cdot 10^{-18} N[/tex]

And since the proton has positive charge, the verse of the force is the same as the verse of the field, so upward.

Which best characterizes a crystal? a number of high speed particles moving randomly a dense substance that is hard and incompressible a high-energy state of matter made up of a swirling, ionized gas a loose association of particles moving past one another Mark this and return

Answers

The answer is a dense substance that is hard and incompressible.

A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions.

Hoped I helped!

a dense substance that is hard and incompressible

​ ampere. What is the resistance of the radio A radio operating at 3.0 volts and a constant temperature draws a current of 1.8 x 10​ -4​ circuit?

Answers

The resistance of the radio circuit is 16.7 kΩ.

To calculate the resistance of the radio circuit when it operates at 3.0 volts and draws a current of 1.8 x 10-4 amperes, we can use Ohm's Law, which states that Resistance (R) equals Voltage (V) divided by Current (I), or R = V/I. Plugging in the given values, R = 3.0 V / (1.8 x 10-4 A), we find that the resistance is approximately 16,666.67 Ω, or 16.7 kΩ when rounded to three significant digits. When dealing with electrical circuits, it is important to understand concepts like resistance, voltage, and current, as they are fundamental to analyzing and predicting the behavior of the circuit.

An ideal monatomic gas at 300 k expands adiabatically and reversibly to twice its volume. what is its final temperature?

Answers

In an adiabatic process, the following relationship holds:
[tex]TV^{\gamma -1} = cost.[/tex]
where T is the gas temperature, V is the volume and [tex]\gamma[/tex] is the adiabatic index, which is equal to [tex]\gamma = \frac{5}{3} [/tex] for a monoatomic gas.

We can re-write the equation as
[tex]T_1 V_1^{\gamma -1} = T_2 V_2^{\gamma -1}[/tex]
where the labels 1,2 refer to the initial and final conditions of the gas.
Let's rewrite it for [tex]T_2[/tex], the final temperature:
[tex]T_2 = T_1 ( \frac{V_1}{V_2} )^{\gamma-1}[/tex]

We can now substitute the initial temperature, T1=300 K, and [tex]V_2 = 2V_1[/tex], because the final volume is twice the initial one. So we find the value of the final temperature:
[tex]T_2 = 300 K( \frac{1}{2})^{ \frac{2}{3} } =189 K[/tex]

Two identical charges are separated by a distance d. If the distance between them is increased to 3d, what will happen to the force of repulsion between them? A) It will be one-ninth the original force. B) It will be one-third the original force. C) It will be nine times the original force. D) It will be three times the original force.

Answers

Answer:

A

Explanation:

If the distance between them is increased to 3d then the force of repulsion between them is,  It will be one-ninth the original force

What is electric force ?

The force of repulsion between two identical charges is given by Coulomb's law, which states that the force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, it can be expressed as:

F = k x (q₁ x q₂) / d²

where F is the force of repulsion, q₁ and q₂ are the magnitudes of the charges, d is the distance between the charges, and k is the Coulomb constant.

When the distance between the charges is increased to 3d,

the force of repulsion will decrease,

since the denominator in the above equation will increase.

Specifically, the force will become one-ninth the original force, since the square of 3 is 9.

So the answer to the question is (A) It will be one-ninth the original force.

To know more about electric force check:

https://brainly.com/question/29141236

#SPJ6

A large jet flying overhead is low enough so that a man on the ground can hear its engines. The man sees the jet before he hears the engines because

Answers

Because the speed of light through air is more than 800 thousand times faster than the speed of sound through air. So the sight of anything reached him well before the sound of it.

A monatomic ideal gas expands slowly to twice its original volume, doing 370 j of work in the process. part a find the heat added to the gas if the process is isothermal.

Answers

The first law of thermodynamics says that the variation of internal energy [tex]\Delta U[/tex] of a gas is equal to the amount of heat Q supplied to the gas minus the work W done by the gas:
[tex]\Delta U = Q-W[/tex]

The variation of internal energy of a gas is:
[tex]\Delta U = \frac{3}{2} n R \Delta T [/tex]
As it can be seen, it depends only on the variation of temperature [tex]\Delta T[/tex]. Since for an isothermal process [tex]\Delta T=0[/tex], then [tex]\Delta U=0[/tex]. This means that the first law of thermodynamics becomes
[tex]Q=W[/tex]
and since the work done is 370 J, then the amount of heat is also 370 J: [tex]Q=370 J[/tex].

In the process of nuclear fusion, large amounts of energy, at temperatures of approximately 120 million Kelvin, are required to join two nuclei into a single, heavier nucleus. Why does the process of fusion require so much energy in order to take place?

Answers

The reason for this huge amount of energy is that the nuclear fusion requires two nuclei to come close enough to be within the range of the strong nuclear interaction, which is responsible for the fusion. But in order to come so close, the two nuclei have to overcome the electrostatic repulsion between them, which becomes stronger as they get closer. In fact, considering two nuclei of hydrogen (two protons), the barrier that  they have to overcome to reach a distance r is equal to the electric potential energy:
[tex]U=k \frac{q^2}{r} [/tex]
And since the range of the nuclear strong interaction is very short, r must be very small, and so the amount of energy required U can be huge.

In 1665 Sir Isaac Newton proposed the fundamental law of gravitation as a universal force of attraction between any two bodies. What does this theory state about the force that makes an apple fall and the force that keeps the moon in its orbit?

Answers

Final answer:

Newton's universal law of gravitation states that the force that makes an apple fall and the force that keeps the moon in its orbit are both caused by gravity. The force of gravity is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

Explanation:

Newton's universal law of gravitation states that every object in the universe attracts every other object with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. This means that the force that makes an apple fall and the force that keeps the moon in its orbit are both caused by gravity. In both cases, the force of gravity is acting between two bodies and is dependent on their masses and the distance between them.

Learn more about Newton's Universal Law of Gravitation here:

https://brainly.com/question/858421

#SPJ12

What has MOST LIKELY caused a change in the soil in the wheat field shown?

Answers

Same person? no wheat field

Erosion removes rocks and soil by wind, water, ice, and gravity.

In Robin’s linguistics class, the teacher and students are discussing how the word “nice” once meant “foolish” and how “awful” used to mean “full of awe.” They are most likely discussing ______

A.
morphemes
B.
semantics
C.
phonemes
D.
syntax

Answers

The answer would be B.

Semantics means the study of words and their meanings.

Hope this helped!
The answer should be B 

What is most likely to happen to light that hits an opaque object?
A. All of the light passes through the object.
B. None of the light passes through the object.
C. Most of the light disappears.
D. Some of the light passes through the object.

Answers

B. is the answer.

C is not correct because the light is actually reflected off of an opaque object.

When the light hits an opaque object, none of the light will pass through the object. Hence, option B is correct.

What is light?

Electromagnetic radiation that the human eye can detect as light. From radio waves with wavelengths measured in meters to gamma rays with wavelengths shorter than roughly 1 1011 meter, electromagnetic radiation occurs throughout a very broad range of wavelengths.

The wavelengths of light that are visible to humans fall into a very small range within that wide spectrum, ranging from about 700 nanometers for red light to roughly 400 nm for violet light.

Infrared and ultraviolet are two spectral bands that are close to the visible region and are repeatedly alluded to as light as well.

Anything that doesn't let any light through is opaque. Instances of opaque materials include concrete, wood, and metal.

To know more about Light:

https://brainly.com/question/15200315

#SPJ2

what are the inner planets relative distance from the Sun

Answers

Closer than the outer planets, inside the Asteroid Belt between Mars and Jupiter.

There are two types of planets as classifieds by astronomers in our solar system.

The classification is based on the asteroid belt present in our solar system.

These are named as - [1] inner planets

                                    [2]outer planets

The inner planets are the planets which are  very close to the sun and present before the asteroid belt starting from sun.

The outer planets which are present after the asteroid belt are Jupiter,Uranus,Neptune and Pluto[if we consider Pluto as a planet]

There are four planets considered as inner planets. These are arranged from closest to the farthest as Mercury,Venus,Earth ad Mars.

The distance of Mercury from the sun is 57.91 million km

The distance of Venus from sun is 108.2 million km

The distance of Earth from sun  is 149.6 million km

Finally the distance of Mars from the sun is 227.9 million km


Other Questions
Use slope formula m= y2-y1/x2-x1 to find the slope of a line that passes through the points (3, 8) and (4, 6). An owl eats its prey whole or in large pieces. Summarize what is found in an owl pellet and why it is regurgitated. What is The growth of the brain during adolescence caused by? When you take the cube root of a positive or negative integer, how many possible answers are there? You are mad, and gone the wrong way. You take falsehood for truth and ugliness for beauty. You would marvel if suddenly apple and orange trees should bear frogs and lizards instead of fruit, and if roses should begin to breathe the odor of a sweating horse. So do I marvel at you, who have bartered heaven for earth. I do not want to understand you . . . . Identify how Chekhovs background and beliefs may have influenced his short story The Bet. The writer of the feature story looked up the word xeriscape in the dictionary. Which of these BEST describes how the information in the dictionary entry is different from the information in the feature story? A)The dictionary entry contains up-to-date data, and the feature story provides outdated information. B)The dictionary entry provides synonyms for the term, and the feature story offers opinions about the term. C)The dictionary entry explains the origins of the term, and the feature story describes how it is used today. D)The dictionary entry contains detailed information about the term, and the feature story contains general information about the term. Meaurements, monuments, compass reading, and pob is called what word do longer adjectives use to form the comparative Help, what even is this? Elio makes candles that are 14 cm tall. Each candle burns 8 hours before going out. He is wondering how many hours a 21 cm tall candle can burn for. He assumes that the relationship between the height of a candle and number of hours it burns (h) is proportional. How long can a 21 cm tall candle burn for? Traditionally, if sam, who is 17 years old, purchases a television from a store, signs a 11-month contract, and then drops it on the way home, sam could return the television and be entitled to the return of his down payment. Which change of state is shown in the model?condensationdepositionboilingfreezing A drawer contains 9 black socks, 8 gray socks, and 7 blue socks. Without looking, you draw out a sock and then draw out a second sock without returning the first sock. What is the probability that the two socks you draw are the same color? Tai ran from his home to a position 300 m south of his home in 100 seconds. What was his velocity? A.0.33 m/s south B.0.33 m/s north C.3 m/s north D.3 m/s south What is the surface area of this right rectangular prism? Enter your answer in the box. Which rule describes the translation? T3, 2(x, y) T3, 2(x, y) T3, 2(x, y) T3, 2(x, y)SOMEONE PLEASE ANSWER PLEASE Which level of Georgia courts has MOST number of active courts? This figure shows circle O with diameter QS . mRSQ=290 What is the measure of ROQ ? Enter your answer in the box. Simplify the answer 1 - 5/6? Anticipating future outcomes or behaviors is at the heart of psychology's goal of: