The trace of a square n×n matrix A=(aij) is the sum a11+a22+⋯+ann of the entries on its main diagonal. Let V be the vector space of all 2×2 matrices with real entries. Let H be the set of all 2×2 matrices with real entries that have trace 0. Is H a subspace of the vector space V?

Answers

Answer 1

Let [tex]\vec h[/tex] and [tex]\vec\eta[/tex] be two vectors in [tex]H[/tex].

[tex]H[/tex] is a subspace of [tex]V[/tex] if (1) [tex]\vec h+\vec\eta\in H[/tex] and (2) for any scalar [tex]k[/tex], we have [tex]k\vec h\in H[/tex].

(1) True;

[tex]\mathrm{tr}(\vec h+\vec\eta)=\mathrm{tr}(\vec h)+\mathrm{tr}(\vec eta)=0[/tex]

so [tex]\vec h+\vec\eta\in H[/tex].

(2) Also true, since

[tex]\mathrm{tr}(k\vec h)=0k=k[/tex]

Therefore [tex]H[/tex] is a subspace of [tex]V[/tex].

Answer 2

Answer: Yes, H is a subspace of V

Step-by-step explanation:

We know that V is the space of all the 2x2 matrices with real entries.

H is the set of all 2x2 matrices with real entries that have trace equal to 0.

Obviusly the matrices that are in the space H also belong in the space V (because in H you have some selected matrices and in V you have all of them). The thing we need to prove is if H is an actual subspace.

Suppose we have two matrices that belong to H, A and B.

We must see that:

1) if A and B ∈ H, then (A + B)∈H

2) for a scalar number k, k*A ∈ H

lets write this as:

[tex]A = \left[\begin{array}{ccc}a1&a2\\a3&a4\\\end{array}\right] B = \left[\begin{array}{ccc}b1&b2\\b3&b4\\\end{array}\right][/tex]

where a1 + a4 = 0 = b1 + b4

then:

[tex]A + B = \left[\begin{array}{ccc}a1 + b1&a2 + b2\\a3 + b3&a4 + b4\\\end{array}\right][/tex]

the trace is:

a1 + b1 - (a4 + b4) = (a1 - a4) + (b1 - b4) = 0

then the trace is nule, and (A + B) ∈ H

and:

[tex]kA = \left[\begin{array}{ccc}k*a1&k*a2\\k*a3&k*a4\end{array}\right][/tex]

the trace is:

k*a1 - k*a4 = k(a1 - a4) = 0

so kA ∈ H

then H is a subspace of V


Related Questions

Answer all questions: 1) The electric field of an electromagnetic wave propagating in air is given by E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10 t -2z) (V/m). Find the associated magnetic field H(z,t)

Answers

Final answer:

The magnetic field H(z,t) of an electromagnetic wave is related to the electric field E(z,t) by a factor of the speed of light. Therefore, if E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10^8 t -2z), the associated magnetic field would be H(z,t) = (4/c) cos(6 x 10^8 t - 2z) +(3/c) sin(6 x 10^8 t -2z), where c is speed of light, approximately 3 x 10^8 m/s.

Explanation:

The question is asking for the associated magnetic field H(z,t) of an Electromagnetic wave given the electric field E(z,t). A crucial fact to know for this question is that the electric and magnetic fields in an electromagnetic wave are perpendicular to each other and the direction of propagation. They also have a constant ratio of magnitudes in free space or air, which is the speed of light given by c = 1/√εOMO. Because of these relations, we know that we can find the magnetic field by simply dividing the given electric field by the speed of light in units that match the given Electric field.

So, if E(z,t) = 4cos(6 x 10^8 t - 2z) +3 sin(6 x 10^8 t -2z), then the associated magnetic field would be H(z,t) = (4/c) cos(6 x 10^8 t - 2z) +(3/c) sin(6 x 10^8 t -2z), where c is the speed of light, approximately 3 x 10^8 m/s.

Learn more about Electromagnetic Waves here:

https://brainly.com/question/29774932

#SPJ12

Final answer:

To find the associated magnetic field H(z, t), you can use Faraday's law of electromagnetic induction. This law states that the rate of change of magnetic flux through a surface is equal to the induced electromotive force (EMF) along the boundary of the surface. By following a step-by-step process, you can find the magnetic field B(z, t) using the given electric field E(z, t).

Explanation:

The associated magnetic field H(z, t) can be found by using Faraday's law of electromagnetic induction. Faraday's law states that the rate of change of magnetic flux through a surface is equal to the electromotive force (EMF) along the boundary of the surface. In this case, the magnetic field is changing due to the time-dependent electric field, so we can use Faraday's law to find the magnetic field.

Start by finding the magnetic flux through a surface with an area A in the z-direction.The magnetic field B is perpendicular to the surface, so the magnetic flux is given by Φ = B * A.By Faraday's law, the rate of change of magnetic flux is equal to the induced EMF around the boundary of the surface. In this case, the induced EMF is caused by the changing electric field.From the given electric field E(z, t), we can differentiate it with respect to time to find the rate of change, which gives us the induced EMF.Equating the rate of change of magnetic flux to the induced EMF, we can solve for the magnetic field B(z, t).

By following these steps, you can find the associated magnetic field H(z, t) using Faraday's law of electromagnetic induction.

Learn more about Faraday's law here:

https://brainly.com/question/1640558

#SPJ12

d) neither one-to-one nor onto. 15. Determine whether each of these functions is a bijection from R to R. a) f(x)=2x+1 b) f(x)=x2+1 c) f(x) r3 d) f(x) (x2 +1)/(r2 +2) a function f(x)-ex from the set of real

Answers

Answer:

The only bijection is f(x)=2x+1.

I took r to be a constant.

Step-by-step explanation:

Bijections are both onto and one-to-one.

Onto means every element of the codomain gets hit.  Here the codomain is the set of real numbers.  So you want every y to get hit.

One-to-one means you don't want any y to get hit more than once.

f(x)=2x+1 is a linear function.  It is diagonal line so every element of the codomain will get hit and hit only once so this function is onto and one-to-one.

f(x)=x^2+1 is a quadratic function.  It is parabola so not every element of our codomain will get not get hit and of those that do get hit they get hit more than once.  So this is neither onto or one-to-one.

f(x)=r^3 is a constant function.  It is a horizontal line so not every y will get hit so it isn't onto.  The same y is being hit multiple times so it isn't one-to-one.

f(x)=(x^2+1)/(r^2+2) is a quadratic. It is a parabola. Quadratic functions are not onto or one-to-one.

Find all values of x that are NOT in the domain of h.
If there is more than one value, separate them with commas


h(x) = x + 1 / x^2 + 2y + 1

Answers

Answer:

if x= -1 then its is NOT in the domain of h.

Step-by-step explanation:

Domain is the set of values for which the function is defined.

we are given the function

[tex]h(x) =\frac{x+1}{x^2 + 2x + 1}[/tex]

Solving the denominator by factorization

[tex]h(x) =\frac{x+1}{x^2 + x+x + 1}\\h(x) =\frac{x+1}{x(x+1)+1(x + 1)}\\h(x) =\frac{x+1}{(x+1)(x+1)}\\h(x) =\frac{1}{(x+1)}[/tex]

So, if x = -1 then its is NOT in the domain of h.

Write the equation that passes through the given point and has the slope indicated: (1, -3); with slope (-3/5)

Answers

Answer:

y = -3/5x - 12/5

Step-by-step explanation:

The equation I'm going to give is going to be in slope-intercept form. If you need it in point-slope, I can do so in an edit or the comments.

Slope-intercept form is: y = mx + b where m is the slope, b is the y-intercept.

So let's plug in our given slope:

y = -3/5x + b

Using this, we now plug in our x- and y-coordinates from the given point to solve for b.

-3 = -3/5(1) + b

-3 = -3/5 + b

Add 3/5 to both sides to isolate variable b.

-3 + 3/5 = b

-15/5 + 3/5 = b

-12/5 = b

Plug this new info back into the original equation and your answer is

y = -3/5x - 12/5

Subjects for the next presidential election poll are contacted using telephone numbers in which the last four digits are randomly selected​ (with replacement). Find the probability that for one such phone​ number, the last four digits include at least one 0.

Answers

Answer: 0.3439

Step-by-step explanation:

Total number of digits : 10

The number of digits except zero =9

The probability of selecting non-zero number :-

[tex]\dfrac{9}{10}=0.9[/tex]

Then, the probability that one such phone number , the last four digits do not include any zero:-

[tex]\text{P(no zero )}=(0.9)^4[/tex]

Then , the probability that for one such phone​ number, the last four digits include at least one 0:-

[tex]\text{P(at-least one zero )}=1-(0.9)^4=0.3439[/tex]

Hence, the probability that for one such phone​ number, the last four digits include at least one 0 is 0.3439 .

Final answer:

To find the probability of at least one 0 in a four-digit number, one can use the complement of the probability of no 0s occurring in any of the digits. The probability of at least one 0 is approximately 34.39%.

Explanation:

The student is inquiring about the probability of a certain event, specifically related to randomly generating telephone numbers. To find the probability that at least one digit is a 0 in a randomly generated four-digit number, we can use the complementary probability approach. The probability of not getting a 0 in one digit is 9/10 since there are 9 other possible digits (1-9). Hence, the probability of not getting a 0 in any of the four digits is (9/10)^4. Subtracting this from 1 will give the probability of having at least one 0 in the four-digit sequence:


Probability of at least one 0 = 1 - (Probability of no 0 in any digit)


Probability of at least one 0 = 1 - (9/10)^4


After calculating, we have:


Probability of at least one 0 = 1 - 0.6561 = 0.3439

Therefore, the probability of having at least one 0 in a randomly chosen telephone number with four digits is approximately 34.39%.

Four marbles are to be selected at random with replacement from a jar that contains 10.0 red marbles, 9.0 blue marbles, 6.0 green marbles, and 7.0 yellow marbles. Find the probability of getting exactly 1.0 yellow marbles.

Answers

Answer:

7/32

Step-by-step explanation:

Is the given function phi(x) = x^2 - x^-1 an explicit solution to the linear equation d^2y/dx^2 - 2/x^2 y = 0? Circle your answer. (a) yes (b) no

Answers

Answer:

Yes

Step-by-step explanation:

We are given that a function [tex]\phi(x)=x^2-x^{-1}[/tex]

We have to find that given function is an explicit solution to the linear equation

[tex]\frac{d^2y}{dx^2}-\frac{2}{x^2}y=0[/tex]

If given function is an explicit solution of given linear equation then it satisfied the given differential equation

Differentiate w.r.t x

Then we get [tex]\phi'(x)=2x+x^{-2}[/tex]

Again differentiate w.r.t x

Then we get

[tex]\phi''(x)=2-\frac{2}{x^3}[/tex]

Substitute all values in the given differential equation

[tex]2-\frac{2}{x^3}-\frac{2}{x^2}(x^2-x^{-1})[/tex]

=[tex]2-\frac{2}{x^3}-2+\frac{2}{x^3}=0[/tex]

Hence, given function is an explicit solution of given differential equation.

Therefore, answer is yes.

Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. (Assume that n begins with 1.){1/2,1/4,1/6,1/8,1/10,...}a_n = ?

Answers

Answer:

[tex]a_{n}=\frac{1}{2n}[/tex] [Where a ≥ 1 ]

Step-by-step explanation:

The pattern of the given sequence is {[tex]\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{8},\frac{1}{10},......[/tex]

We have to find a formula for the general term [tex]a_{n}[/tex] of the given sequence.

We can rewrite the terms of the sequence as

[tex]\frac{1}{2}=\frac{1}{(2)(1)}[/tex]

[tex]\frac{1}{4}=\frac{1}{(2)(2)}[/tex]

[tex]\frac{1}{6}=\frac{1}{(2)(3)}[/tex]

[tex]\frac{1}{8}=\frac{1}{(2)(4)}[/tex]

[tex]\frac{1}{10}=\frac{1}{(2)(5)}[/tex]

Now we can write the term [tex]a_{n}[/tex] as

[tex]a_{n}=\frac{1}{2n}[/tex]

Where n = 1, 2, 3, 4, 5......

Calculate the mean, median, and mode for each of the following populations of numbers: (a) 17, 23, 19, 20, 25, 18, 22, 15, 21, 20 N (Population) Mean Median Mode (b) 505, 497, 501, 500, 507, 510, 501 N (Population) Mean Median Mode

Answers

Answer: i dont now

Step-by-step explanation:

u have to add them togther i guess

Find X.
A.124
B.138
C.282
D.69

Answers

To find x, find the difference between the outer angle and middle angle, then divide by two.

X = (210 - 72) / 2

x = 138 / 2

x = 69

The answer is D.

Answer

subtract 210 with 72 and then divide that by 2 and you get 138. so x=138.

Dana leaves Las Vegas for LA at 2 p.m. driving at 55 mph. At 4 p.m. Lance leaves LA for Las Vegas driving at 45 mph along the same route. If the cities are 260 miles, what time do they meet?

Answers

Answer: They meet after 1 hour 42 minutes.

Step-by-step explanation:

Since we have given that

Dana leaves Las Vegas for LA at 2 p.m. driving at 55 mph.

Let the time taken by Dana be 't'.

Distance traveled by Dana would be 55t.

At 4 p.m. Lance leaves LA for Las Vegas driving at 45 mph along the same route.

It means after 2 hours Lance leave for LA.

So, time taken by Lance be 't-2'.

Distance traveled by Lance would be 45(t-2)

Total distance  = 260 miles

According to question, it becomes,

[tex]55t+45(t-2)=260\\\\55t+45t-90=260\\\\100t=260-90\\\\100t=170\\\\t=1.7\ hours=1\dfrac{7}{10}=1\ hour\ and\ \dfrac{7\times 60}{10}\ minutes=1\ hour\ 42\ minutes[/tex]

Hence, they meet after 1 hour 42 minutes.

1000 mL of D5W is ordered to be infused over 5 hours. The drop factor is 10 gtt/mL. How many gtt/min should be given to infuse the 1000 mL over 5 hours?

Answers

Answer:

flow rate of to infuse the 1000 mL over 5 hours is 33.33 gtt/min

Step-by-step explanation:

Given data

volume = 1000 mL

time =  5 hours

drop factor = 10 gtt/min

to find out

flow rate of to infuse the 1000 mL over 5 hours

Solution

we know flow rate formula  i.e.

flow rate =  ( volume × drop factor )  / time   .................1

here time will be in min so time =  5 hours = 5  × 60 = 300 min

put volume, drop factor and time value in equation 1 and we get flow rate

flow rate =  ( volume × drop factor )  / time

flow rate =  ( 1000 × 10 )  / 300

flow rate = 33.33 gtt/min

flow rate of to infuse the 1000 mL over 5 hours is 33.33 gtt/min

what is the solution if the inequality shown below? a-1>11​

Answers

Answer:

a > 12

Step-by-step explanation:

Isolate the variable a. Treat the > sign like the = sign. What you do to one side, you do to the other. Add 1 to both sides:

a - 1 (+1) > 11 (+1)

a > 11 + 1

a > 12

a > 12 is your answer.

~

Answer:

[tex]\huge \boxed{a>12}[/tex]

Step-by-step explanation:

Add by 1 from both sides.

[tex]\displaystyle a-1+1>11+1[/tex]

Simplify, to find the answer.

[tex]\displaystyle 11+1=12[/tex]

[tex]\displaystyle a>12[/tex], which is our answer.

Use a substitution method to solve both of the following DEs, stating the general solution clearly, and showing all work clearly. a. dy/dx - y = e^xy^2 (Solve explicitly for y.) b. dy/dx = x + y/x - y (You can leave the General Solution in implicit form.)

Answers

[tex]1.\rightarrow \frac{dy}{dx}-y=e^x y^2\\\\\rightarrow \frac{1}{y^2}\frac{dy}{dx}-\frac{1}{y}=e^x\\\\ \text{put},\frac{-1}{y}=z\\\\ \frac{dy}{y^2} =d z\\\\ \frac{dy}{dx} \times \frac{1}{y^2}=\frac{dz}{dx}\\\\\frac{dz}{dx} +z=e^x\\\\ \text{Integrating factor}=e^{\int {1} \, dx}\\\\=e^x \\\\ \text{Multiplying both sides by }e^x\\\\e^x(\frac{dz}{dx} +z)=e^{2x}\\\\ \text{Integrating both sides}\\\\z e^x=\frac{e^{2x}}{2}+C\\\\ \frac{-e^x}{y}=\frac{e^{2x}}{2}+C[/tex]

-----------------------------------------------------------------------------------------------------------------

[tex]\rightarrow \frac{dy}{dx}=x+\frac{y}{x}-y\\\\\rightarrow \frac{dy}{dx}-x=\frac{y}{x}-y\\\\\rightarrow \frac{dy}{dx}+y(1-\frac{1}{x})=x\\\\\text{Integrating factor}=e^{\int{1-\frac{1}{x}}\,dx}\\\\=e^{x-\log x}\\\\ \text{Multiplying both sides by} e^{x-\log x}\\\\e^{x-\log x}\times[\frac{dy}{dx}+y(1-\frac{1}{x})]=x \times e^{x-\log x}\\\\y\times e^{x-\log x} =\int x \times e^{x-\log x} \, dx}\\\\y\times e^{x-\log x}=\int x \times \frac{e^x}{e^{\log x}}\,dx\\\\y\times e^{x-\log x}=\int x \times \frac{e^x}{x} \, dx\\\\y\times e^{x-\log x}=e^x+K[/tex]

Find the least squares approximation of the the data (0, 1), (1, 2), (2, 1/2) (3, 3) using the quadratic function p(x) = a_0 + a_1 x + a_2 x^2. Plot p(x) along with the data to compare.

Answers

Answer:

The required function is [tex]p\left(x\right)=1.325-0.675x+0.375x^2[/tex].

Step-by-step explanation:

The given data points are (0, 1), (1, 2), (2, 1/2) and (3, 3).

Let the quadratic function is defined as

[tex]p(x)=a_0+a_1x+a_2x^2[/tex]              .... (1)

Using graphing calculator, we get

[tex]a_0=1.325[/tex]

[tex]a_1=-0.675[/tex]

[tex]a_2=0.375[/tex]

Substitute [tex]a_0=1.325[/tex], [tex]a_1=-0.675[/tex] and [tex]a_2=0.375[/tex] in function (1), to find the quadratic function.

[tex]p\left(x\right)=1.325-0.675x+0.375x^2[/tex]

Therefore the required function is [tex]p\left(x\right)=1.325-0.675x+0.375x^2[/tex].

The graph of data points and quadratic function is shown below.

â(Future valueâ) Sarah Wiggum would like to make a singleâ lump-sum investment and have â$ 1.7 million at the time of her retirement in 34 years. She has found a mutual fund that expects to earn 8 percent annually. How much must Sarah investâ today? If Sarah earned an annual return of 16 16 âpercent, how much must she investâ today? a. If Sarah can earn 8 percent annually for the next 34 âyears, how much will she have to investâ today? â $ nothing â(Round to the nearestâ cent.)

Answers

Answer:

  a) at 16%: $10,936.47

  b) at 8%: $124,177.02

Step-by-step explanation:

At annual rate of return "r", the multiplier of Sarah's initial investment will be ...

  k = (1+r)^34

For r = 0.16, k ≈ 155.433166, and Sarah's investment needs to be ...

  $1.7·10^6/k ≈ $10,936.47

__

For r= 0.08, k ≈ 13.6901336, and Sarah's investment needs to be ...

  $1.7·10^6/k ≈ $124,177.02

Find the? inverse, if it? exists, for the given matrix.

@MATX{{3;3;-1};{-12;-12;4};{2;6;0}}

Answers

Answer:

Step-by-step explanation:

The Inverse of the matrix doesn't exist because the determinant is equal to 0.

Answer:

The inverse of given matrix is not exist, since determinant is 0.

Step-by-step explanation:

The inverse of a square matrix [tex]A[/tex] is [tex]A^{-1}[/tex] such that

[tex]A A^{-1}=I[/tex] where I is the identity matrix.

Consider, [tex]A = \left[\begin{array}{ccc}3&3&-1\\-12&-12&4\\2&6&0\end{array}\right][/tex]

[tex]\mathrm{Matrix\:can\:only\:be\:inverted\:if\:it\:is\:non-singular,\:that\:is:}[/tex]

[tex]\det \begin{pmatrix}3&3&-1\\ -12&-12&4\\ 2&6&0\end{pmatrix}\ne 0[/tex]

[tex]\det \begin{pmatrix}3&3&-1\\ -12&-12&4\\ 2&6&0\end{pmatrix}[/tex]

[tex]\mathrm{Find\:the\:matrix\:determinant\:according\:to\:formula}:\quad \:[/tex]

[tex]\det \begin{pmatrix}a&b&c\\ d&e&f\\ g&h&i\end{pmatrix}=a\cdot \det \begin{pmatrix}e&f\\ h&i\end{pmatrix}-b\cdot \det \begin{pmatrix}d&f\\ g&i\end{pmatrix}+c\cdot \det \begin{pmatrix}d&e\\ g&h\end{pmatrix}[/tex]

[tex]=3\cdot \det \begin{pmatrix}-12&4\\ 6&0\end{pmatrix}-3\cdot \det \begin{pmatrix}-12&4\\ 2&0\end{pmatrix}-1\cdot \det \begin{pmatrix}-12&-12\\ 2&6\end{pmatrix}[/tex]

[tex]=3\left(-24\right)-3\left(-8\right)-1\cdot \left(-48\right)[/tex]

[tex]3\left(-24\right)-3\left(-8\right)-1\cdot \left(-48\right)=0[/tex]

Therefore, the inverse of given matrix is not exist, since determinant is 0.

M1Q7.) Construct a box plot from the data below

Answers

There are 16 numbers.

The median is 92.5 ( find the middle two values and divide by 2).

Minumum is 81

Maximum is 109

First quartile is 88.25 (Find median of the lower half of numbers).

Third quartile is 97.75 (Find median of the upper half of numbers.)

The interquartile range is 9.5 ( Difference between the first and third quartile).

Plotting that data in a box plot, the correct one looks like #1

Find the median.

92 and 93 are both middle numbers so add and divide by two.

92 + 93 = 185

185 / 2 = 92.5

Minimum (smallest number): 81

Maximum (largest number): 109

Find the median of the lower values behind the median.

88.25

Find the mean of the higher values ahead of the median.

97.75

Subtract to find the interquartile range.

97.75 - 88.25 = 9.5

The only option with these characteristics is Option A.

Best of Luck!

A new drug on the market is known to cure 20% of patients with breast cancer. If a group of 20 patients is randomly

selected, what is the probability of observing, at most, one patient who will be cured of breast cancer?

A• (20)/1 (0-20)^1 (0.80)^19

B. 1-(20)/1 (.20)'(0.230)

C. (20)/0( .80)^20+(20/1)(.20)^1(.80)^19

D • (20)/0 (.80)^20

E. 1-(20/0)(.80)^20


01-(20)10.2010

Answers

Answer:

It's actually C

Step-by-step explanation:

don't forget about the probability of 0 too

you have to add the two probability formulas

The probability of observing, at most, one patient who will be cured of breast Cancer will be P = (20 / q²⁰) + 20 / (0.20 x 0.80¹⁹). Then the correct option is C.

What is probability?

Its basic premise is that something will almost certainly happen. The percentage of favorable events to the total number of occurrences.

A new drug on the market is known to cure 20% of patients with breast cancer.

p = 0.20

q = 1 – 0.20

q = 0.80

If a group of 20 patients is randomly selected.

The probability of observing, at most, one patient who will be cured of breast Cancer will be

P = (20 / q²⁰) + 20 / (0.20 x 0.80¹⁹)

Then the correct option is C.

More about the probability link is given below.

https://brainly.com/question/795909

#SPJ2

A medical laboratory tested 8 samples of human blood for acidity on the pH​ scale, with the results below. 7.1 7.5 7.6 7.4 7.3 7.3 7.3 7.5 a. Find the mean and standard deviation. b. What percentage of the data is within 2 standard deviations of the​ mean?

Answers

Answer:

Mean = 7.38

SD = 0.148

b. 95%

Step-by-step explanation:

Given data is:

7.1 7.5 7.6 7.4 7.3 7.3 7.3 7.5

Mean:

Mean = Sum/No. of values

= (7.1+7.5+7.6+7.4+7.3+7.3+7.3+7.5)/8

=59/8

=7.38

Standard Deviation:

x                  x-x'           (x-x')^2

7.1               -0.28           0.0784

7.5              0.12            0.0144

7.6              0.22           0.0484

7.4              0.02           0.0004

7.3             -0.08           0.0064

7.3             -0.08            0.0064

7.3              -0.08            0.0064

7.5              0.12              0.0144

                      Total :     0.1752

Variance = Sum of squares/No of items

= 0.1752/8 = 0.0219

SD =√0.0219 = 0.148

b. What percentage of the data is within 2 standard deviations of the​ mean?

95% of data is within two standard deviations of mean in a standard normal distribution ..

Final answer:

The mean of the pH test results is 7.375, and the standard deviation is approximately 0.086.

Explanation:

To find the mean and standard deviation of the pH test results, we can use the following formulas:

Mean: Add up all the pH values and divide by the total number of samples (in this case, 8). So, (7.1 + 7.5 + 7.6 + 7.4 + 7.3 + 7.3 + 7.3 + 7.5) / 8 = 7.375.

Standard Deviation: Calculate the difference between each pH value and the mean, square each difference, calculate the mean of those squared differences, and then take the square root. Let's break it down into steps: Subtract the mean from each pH value: (7.1 - 7.375), (7.5 - 7.375), (7.6 - 7.375), (7.4 - 7.375), (7.3 - 7.375), (7.3 - 7.375), (7.3 - 7.375), (7.5 - 7.375). Square each difference: (0.0425)^2, (0.125)^2, (0.225)^2, (0.025)^2, (-0.075)^2, (-0.075)^2, (-0.075)^2, (0.125)^2. Calculate the mean of the squared differences: (0.0018 + 0.0156 + 0.0506 + 0.000625 + 0.005625 + 0.005625 + 0.005625 + 0.0156) / 8 = 0.0074. Take the square root of the mean: √0.0074 ≈ 0.086.

Learn more about pH test results here:

https://brainly.com/question/28198477

#SPJ3

If possible, find a matrix B such that AB = A2 + 2A.

Answers

Answer:

[tex]\large\boxed{B=A+2I}[/tex]

Step-by-step explanation:

It's possible if dimensions of a matrix A and matrix B are n × n

[tex]AB=A^2+2A\qquad\text{multiply both sides on the left by}\ A^{-1}\\\\A^{-1}AB=A^{-1}A^2+A^{-1}(2A)\qquad\text{we know}\ A^{-1}A=I\\\\IB=A^{-1}A\cdot A+2A^{-1}A\\\\IB=IA+2I\qquad\text{we know}\ IA=A\\\\B=A+2I[/tex]

Matrices is an array of numbers, usually 2 dimensional, but can be single dimensional too.

A matrix B such that [tex]AB = A^2 + 2A[/tex] is given as

[tex]B = A + 2I = \left[\begin{array}{cc}4&0\\0&4\end{array}\right][/tex]

(Assuming A is left invertible and  [tex]A = \left[\begin{array}{cc}2&0\\0&2\end{array}\right][/tex])

When can we cancel out matrix multiplied on both sides of an equation?

Suppose that there is an equation

[tex]AB = AC[/tex]

We cannot always say that [tex]B = C[/tex]

If we assume that A is left invertible, then only we can surely say that we have got [tex]B = C[/tex]

Similarly, for [tex]BA = CA[/tex] to imply  [tex]B = C[/tex], we need A to be right invertible.

Assuming that we have A as a left invertible matrix, say

[tex]A = \left[\begin{array}{cc}2&0\\0&2\end{array}\right][/tex]

and [tex]L_A[/tex] be its left inverse, then [tex]L_A A = I[/tex] ([tex]I[/tex] is identity matrix)

Then,

[tex]AB = A^2 + 2A\\A(B) = A(A + 2I_2)\\\\\Multiplying L_{A}\text{ on left side of both terms,}\\\\L_{A} AB = L_{A}A(A + 2I_2)\\B = A + 2I_2\\\\B = \left[\begin{array}{cc}2&0\\0&2\end{array}\right] + \left[\begin{array}{cc}2&0\\0&2\end{array}\right] = \left[\begin{array}{cc}4&0\\0&4\end{array}\right] = 4I_2\\\\B = 4I_2[/tex]

Thus, i

A matrix B such that [tex]AB = A^2 + 2A[/tex] is given as

[tex]B = \left[\begin{array}{cc}4&0\\0&4\end{array}\right][/tex]

(Assuming A is left invertible and  [tex]A = \left[\begin{array}{cc}2&0\\0&2\end{array}\right][/tex])

Learn more about invertible matrices here:

https://brainly.com/question/17027442


Show that the differential equation (on the left) is a solution of the function (on the right)

d^2u/dt^2 = a^2 * (d^2u/dx^2) u(x,t) = f(x-at) + g(x+at)

Answers

We have to show that

[tex]\frac{\partial ^{2}u}{\partial t^{2}}=a^{2}\frac{\partial ^{2}u}{\partial x^{2}}[/tex]

for [tex]\frac{\partial ^{2}u}{\partial t^{2}}[/tex] we have

[tex]\frac{\partial ^{2}u}{\partial t^{2}}=a^{2}\frac{\partial ^{2}u}{\partial x^{2}}[/tex]

[tex]\frac{\partial ^{2}u}{\partial t^{2}}=\frac{\partial ^{2}[f(x-at)+g(x+at)]}{\partial t^{2}}[/tex]

[tex]=\frac{\partial }{\partial t}[\frac{\partial[f(x-at)+g(x+at)] }{\partial t}][/tex]

[tex]\frac{\partial }{\partial t}[-a\cdot f'(x-at)+a\cdot g'(x+at)][/tex]

[tex]=a^{2}f''(x-at)+a^{2}g''(x+at)[/tex]

[tex]=a^{2}[f''(x-at)+g''(x+at)].............(i)[/tex]

similarly,

[tex]\frac{\partial ^{2}u}{\partial x^{2}}=\frac{\partial ^{2}[f(x-at)+g(x+at)]}{\partial x^{2}}[/tex]

[tex]=\frac{\partial }{\partial x}[\frac{\partial[f(x-at)+g(x+at)] }{\partial x}][/tex]

[tex]=\frac{\partial }{\partial x}[f'(x-at)+g'(x+at)][/tex]

[tex]=f''(x-at)+g''(x+at).......(ii)[/tex]  

Comparing i and ii we get  

[tex]a^{2}\frac{\partial ^{2}u}{\partial x^{2}}=\frac{\partial ^{2}u}{\partial t^{2}}[/tex]

Hence proved

A 20% TIP ON A MEAL THAT COSTS $29.17. CHOOSE THE CORRECT ESTIMATE BELOW. A.$ 58.00 B.$ 5.80 C.$ 0.58 D. $ 8.70

Answers

Answer:

$5.80 Option B.

Step-by-step explanation:

It is given that a 20% tip on a meal that costs $29.17.

The cost of the meal = $29.17

Tip on a meal = 20%

Therefore, 20% of $29.17

= [tex]\frac{20}{100}[/tex] × 29.17

= 0.20 × 29.17

= 5.834

= $5.80

The correct estimate would be $5.80 Option B.

Assume that when adults with smartphones are randomly​ selected, 51​% use them in meetings or classes. If 11 adult smartphone users are randomly​ selected, find the probability that fewer than 5 of them use their smartphones in meetings or classes.

Answers

Answer:

The probability is 0.2356.

Step-by-step explanation:

Let X is the event of using the smartphone in meetings or classes,

Given,

The probability of using the smartphone in meetings or classes, p = 51 % = 0.51,

So, the probability of not using smartphone in meetings or classes, q = 1 - p = 1 - 0.51 = 0.49,

Thus, the probability that fewer than 5 of them use their smartphones in meetings or classes.

P(X<5) = P(X=0) + P(X=1) + P(X=2) + P(X=3)+P(X=4)

Since, binomial distribution formula is,

[tex]P(x) = ^nC_r p^x q^{n-x}[/tex]

Where, [tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex]

Here, n = 11,

Hence,  the probability that fewer than 5 of them use their smartphones in meetings or classes

[tex]=^{11}C_0 (0.5)^0 0.49^{11}+^{11}C_1 (0.5)^1 0.49^{10}+^{11}C_2 (0.5)^2 0.49^{9}+^{11}C_3 (0.5)^3 0.49^{8}+^{11}C_4 (0.5)^4 0.49^{7} [/tex]

[tex]=(0.5)^0 0.49^{11}+11(0.5)0.49^{10} + 55(0.5)^2 0.49^{9}+165 (0.5)^3 0.49^{8} +330(0.5)^4 0.49^{7} [/tex]

[tex]=0.235596671797[/tex]

[tex]\approx 0.2356[/tex]

A chef is going to use a mixture of two brands of Italian dressing. The first brand contains 7% vinegar, and the second brand contains 12% vinegar. The chef wants to make 270 milliliters of a dressing that is 9% vinegar. How much of each brand should she use?

Answers

Answer: There is 162 ml of first brand and 108 ml of second brand.

Step-by-step explanation:

Since we have given that

Percentage of vinegar that the first brand contains = 7%

Percentage of vinegar that the second brand contains = 12%

Percentage of vinegar in mixture = 9%

Total amount of dressing = 270 ml

We will use "Mixture and Allegation":

First brand                  Second brand

     7%                                12%

                       9%

--------------------------------------------------------

12%-9%             :                9%-7%

 3%                   :                    2%

So, ratio of first brand to second brand in a mixture is 3:2.

So, Amount of first brand she should use is given by

[tex]\dfrac{3}{5}\times 270\\\\=162\ ml[/tex]

Amount of second brand she should use is given by

[tex]\dfrac{2}{5}\times 270\\\\=108\ ml[/tex]

Hence, there is 162 ml of first brand and 108 ml of second brand.

Completion time (from start to finish) of a building remodeling project is normally distributed with a mean of 200 work-days and a standard deviation of 10 work-days. To be 99% sure that we will not be late in completing the project, we should request a completion time of _______ work-days.

Answers

We should request a completion time of

223 work-days.

Answer:

233 days.

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 200, \sigma = 10[/tex]

To be 99% sure that we will not be late in completing the project, we should request a completion time of ...

This is the value of X when Z has a pvalue of 0.99. So X when Z = 2.325.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]2.325 = \frac{X - 200}{10}[/tex]

[tex]X - 200 = 10*2.325[/tex]

[tex]X = 232.5[/tex]

So the correct answer is 233 days.

The manufacturer of a certain engine treatment claims that if you add their product to your​ engine, it will be protected from excessive wear. An infomercial claims that a woman drove 33 hours without​ oil, thanks to the engine treatment. A magazine tested engines in which they added the treatment to the motor​ oil, ran the​ engines, drained the​ oil, and then determined the time until the engines seized. Determine the null and alternative hypotheses that the magazine will test.

Answers

Answer: [tex]H_0:\mu\geq33[/tex]

[tex]H_a:\mu<33[/tex]

Step-by-step explanation:

Let [tex]\mu[/tex] be the average number of hours a person drive without adding the product.

Given claim : An infomercial claims that a woman drove 33 hours without​ oil.

i.e. [tex]\mu\geq33[/tex]

It is known that the null hypothesis always contains equal sign and alternative hypothesis is just opposite of the null hypothesis.

Thus the null and alternative hypothesis for the given situation will be :-

[tex]H_0:\mu\geq33[/tex]

[tex]H_a:\mu<33[/tex]


Give the largest interval I over which the general solution is defined. PLEASE EXPLAIN HOW!!!

(x^2-1)dy/dx+2y=(x+1)^2

Answers

Divide both sides by [tex]x^2-1[/tex] to get a linear ODE,

[tex]\dfrac{\mathrm dy}{\mathrm dx}+\dfrac2{x^2-1}y=\dfrac{x+1}{x-1}[/tex]

In order for this operation to be valid in the first place, we require that [tex]x\neq\pm1[/tex] (since that would make [tex]\dfrac1{x^2-1}[/tex] undefined, which we don't want to happen). Then we are forcing any solution to the ODE to exist on any of the three intervals, [tex](-\infty,-1)[/tex], [tex](-1, 1)[/tex], or [tex](1,\infty)[/tex], and either the first or third of these can be chosen as the largest interval.

In case you also need to solve the ODE: Multiply both sides by [tex]\dfrac{1-x}{1+x}[/tex], so that

[tex]\dfrac{1-x}{1+x}\dfrac{\mathrm dy}{\mathrm dx}-\dfrac2{(1+x)^2}y=-1[/tex]

Then the left side can be condensed as the derivative of a product, since

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac{1-x}{1+x}\right]=-\dfrac2{(1+x)^2}[/tex]

and we have

[tex]\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac{1-x}{1+x}y\right]=-1[/tex]

Integrate both sides:

[tex]\displaystyle\int\frac{\mathrm d}{\mathrm dx}\left[\frac{1-x}{1+x}y\right]\,\mathrm dx=-\int\mathrm dx[/tex]

[tex]\dfrac{1-x}{1+x}y=-x+C[/tex]

[tex]\implies\boxed{y=\dfrac{(-x+C)(1+x)}{1-x}}[/tex]

The largest interval over which the general solution is defined for the given differential equation is [-1, ∞).

Here's how:

Rewrite the differential equation in proper form.Analyze the coefficients to determine the interval of definition.In this case, the interval is determined by the denominator of the coefficient of dy/dx.

. CAR WASH Shea and Tucker are washing their father's car. Shea can wash it by herself in 20 minutes. Tucker can wash it by himself in 30 minutes. 19 How long does it take them to wash the car if they work together?

Answers

Answer:

12 minutes

Step-by-step explanation:

First we figure out how much of a car each person can wash in 1 minute.

Shea can wash the car by herself in 20 minutes

Therefore, she can wash a car in 1 minute = [tex]\frac{1}{20}[/tex]

Tucker can wash a car in 30 minutes.

Tucker can wash the car in 1 minute = [tex]\frac{1}{30}[/tex]

Thus, in one minute together they wash a car

[tex]\frac{1}{20}[/tex] + [tex]\frac{1}{30}[/tex] = [tex]\frac{50}{600}[/tex] = [tex]\frac{1}{12}[/tex]

In one minute together they can wash  = [tex]\frac{1}{12}[/tex] of a car

Time needed to wash entire car together = 12 minutes.

It takes them 12 minutes to wash the car.

Final answer:

Shea and Tucker can wash their father's car in 12 minutes if they work together.

Explanation:

To find out how long it takes Shea and Tucker to wash the car together, we can use the concept of work rates.

Shea can wash the car by herself in 20 minutes, so her work rate is 1/20 of the car per minute.

Tucker can wash the car by himself in 30 minutes, so his work rate is 1/30 of the car per minute.

When two people work together, their work rates are additive. So, if Shea and Tucker work together, their combined work rate is 1/20 + 1/30 = 1/12 of the car per minute.

Since the work rate is the reciprocal of the time taken, the time it takes them to wash the car together is 12 minutes. Therefore, it takes Shea and Tucker 12 minutes to wash their father's car if they work together.

A civil service exam yields scores which are normally distributed with a mean of 81 and a standard deviation of 5.5. If the civil service wishes to set a cut-off score on the exam so that 15% of the test takers fail the exam, what should the cut-off score be? Remember to round your z-value to 2 decimal places.

Answers

Answer:

The cutoff score should be 75.8 marks

Step-by-step explanation:

The cut-off should be set as the value corresponding to an area 15% in the normal distribution diagram.

Using the standard distribution tables we have value of standard normal deviate (Z) corresponding to area of 15% = -1.04

Thus we have

[tex]-1.04=\frac{X-\bar{X}}{\sigma }\\\\X=-1.04\times 5.5+81\\X=75.8[/tex]

Other Questions
I could use some help! During the day, Lisas dog is tied by rope to a tree in the center of her yard. The scale drawing below shows the area that the dog has to run. If the actual length of the rope is 4 5/6 feet, what is the scale used in the drawing? What is BHC in benzene? A roller coaster car of mass M is on a track that forms a circular loop of radius R in the vertical plane. If the car is to just maintain contact with the track at the top of the loop, what is the minimum value for its speed at that point? When you begin to analyze your data, you should consider Given the frequency of an electromagnetic wave, what else can you find immediately? Read the passage.(1) William Shakespeare was born in 1564 in Stratford-upon-Avon. (2) It is a town in England. (3) He is believed to have attended the Kings New School there from age seven to age fourteen. (4) Teachers were strict in Shakespeares day. (5) The school day was long. (6) In the summer, school started at 6 a.m. (7) School did not end until 5 p.m. (8) In the winter, the school day was an hour or two shorter. (9) At age nine, students began learning Latin. (10) It was the language of international affairs. (11) In school, students spoke Latin. (12) Teachers also spoke Latin. (13) Students caught speaking English in school were punished.a. Which is the most effective way to combine sentences (6) and (7)?b. Starting at 6 a.m. and not ending until 5 p.m. was school in the summer.c. In the summer, school started at 6 a.m. and did not end until 5 p.m. A wire with mass 60.0 g is stretched so that its ends are tied down at points 80.0 cm apart. The wire vibrates in its fundamental mode with frequency 65.0 Hz and with an amplitude of 0.500. What is the speed of propagation of transverse waves in the wire? Given memory partitions of 100K, 600K, 400K, 500K, and 300K (inorder), how would each of the First-fit, Best-fit, and Worst-fitalgorithms place processes of 117K, 412K, 325K, and 510K (inorder)? An umbrella manufacturing company's fixed costs are $275,000. The variable cost per unit is $5 and each umbrella is sold at $10. How many units should the firm sell in order to break even? what can be found if the apparent magnitude and the distance to a star are known?A. velocityB. ageC. absolute magnitudeD. color Ben has 30 pencils in a box. Each of the pencils is one of 5 different colors, and there are 6 pencils of each color. If Ben selects pencils one at a time from the box without being able to see the pencils, what is the maximum number of pencils that he must select in order to ensure that he selects at least 2 pencils of each color? what effect did printing with movable type have on people during the renaissance? a. women were allowed the same education as men b. education focused less on religion c. books became shorter but more interesting d. people became more educated Fuel systems of modern cars are designed so thermal expansion of gasoline doesn't result in wasteful and polluting fuel spills. As an engineer, you're asked to specify the size of an expansion tank that will handle this overflow. You know that gasoline comes from its underground tank at 10C, and your tank must handle the expansion of a full 76 L gas tank when the gas reaches a hot summer day's temperature of 32C. How large an expansion tank do you specify? Buddy Corporation uses the allowance method to account for uncollectible receivables. At the beginning of the year, Allowance for Bad Debts had a credit balance of $ 800. During the year Buddy wrote off uncollectible receivables of $ 1 , 700. Buddy recorded Bad Debts Expense of $ 3 , 400. What is Buddy's year-end balance in Allowance for Bad Debts? Find the area under the standard normal probability distribution between the following pairs of z-scores. a. z=0 and z=3.00 e. z=-3.00 and z=0 b. z=0 and z=1.00 f. z=-1.00 and z=0 c. z=0 and z=2.00 g. z=negative 1.19 and z=0 d. z=0 and z=0.61 h. z=-0.61 and z=0 Find the measure of angle Z Given the Arithmetic series A1+A2+A3+A4 13 + 18 + 23 + 28 + . . . + 113 What is the value of sum? In ABC,a=13, b=21, and c=27. Find mA.A. 18.4B. 31.5C. 28.0D. 103.0 Given an integer K, find the KthFibonacci number using recursion.Write a function that accepts an integer K. The function should return Kth Fibonacci number using recursion.Input:10 where:First line represents a value of KOutput:55 what do you mean by carrying capacity