The vertical component of the magnetic induction in the Earth's magnetic field at Hobart is approximately 6×10-5T upward. What electric field is set up in a car travelling on a level surface at 100 km h-1due to this magnetic field? Which side or end of the car is positively charged? Approximately what p.d. is created across a car of typical size?

Answers

Answer 1

Answer:

Explanation:

Magnetic field B = 6 X 10⁻⁵ T.

Width of car = L (Let )

Velocity of car v  = 100 km/h

= 27.78 m /s

induced emf across the body ( width )  of the car

= BLv

= 6 X 10⁻⁵ L X 27.78

166.68 X 10⁻⁵ L

Induced electric field across the width

= emf induced / L

E =  166.68 X 10⁻⁵ N/C

We suppose breadth of a typical car = 1.5 m

potential difference induced

= 166.68 x 1.5 x 10⁻⁵

250 x 10⁻⁵ V

= 2.5 milli volt.

The side of the car which is positively charged depends on the direction in which car is moving , whether it is moving towards the north or south.


Related Questions

Starting from rest, a runner reaches a speed of 2.8 m/s in 2.1 s. In the same time 2.1 s time, a motorcycles increases speed from 37. 0 to 43.0 m/s. In both cases, assume the acceleration is constant: (a). What is the acceleration (magnitude only) of the runner?(b). What is the acceleration (magnitude only) of the motorcycle?(c). Does the motorcycle travel farther than the runner during the 2.1 s? (yes or no)If som how much father? (if not, enter zero)?

Answers

Answer:

a) Acceleration of runner is 1.33 m/s²

b)  Acceleration of motorcycle is 2.85 m/s²

c) The motorcycle moves 84.21-2.94 = 81.06 m farther than the runner.

Explanation:

t = Time taken

u = Initial velocity = 0

v = Final velocity

s = Displacement

a = Acceleration

Equation of motion

[tex]v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{2.8-0}{2.1}\\\Rightarrow a=1.33\ m/s^2[/tex]

Acceleration of runner is 1.33 m/s²

[tex]v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{43-37}{2.1}\\\Rightarrow a=2.85\ m/s^2[/tex]

Acceleration of motorcycle is 2.85 m/s²

[tex]v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{2.8^2-0^2}{2\times 1.33}\\\Rightarrow s=2.94\ m[/tex]

The runner moves 2.94 m

[tex]v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{43^2-37^2}{2\times 2.85}\\\Rightarrow s=84.21\ m[/tex]

The motorcycle moves 84.21 m

The motorcycle moves 84.21-2.94 = 81.06 m farther than the runner.

A busy chipmunk runs back and forth along a straight line of acorns that has been set out between its burrow and a nearby tree. At some instant, it moves with a velocity of −1.29 m/s−1.29 m/s . Then, 2.91 s2.91 s later, it moves with a velocity of 1.77 m/s1.77 m/s . What is the chipmunk's average acceleration during the 2.91 s2.91 s time interval?

Answers

Answer:

1.05 ms⁻²

Explanation:

Acceleration = change in velocity / Time

Change in velocity = Final velocity - initial velocity

= 1.77 - (-1.29)

= 1.77 + 1.29

= 3.06 m/s

Time = 2.91

Acceleration = 3.06 / 2.91

= 1.05 ms⁻² .

A woman on a bridge 90.0 m high sees a raft floating at
aconstant speed on the river below. She drops a stone fromrest in
an attempt to hit the raft. The stone is releasedwehn the raft has
6.00 m more to travel before passing under thebridge. The stone
hits the water 2.00 m in front of theraft. Find the speed of the
raft.

Answers

Answer:

0.93 m/s

Explanation:

t = Time taken

u = Initial velocity = 0

v = Final velocity

s = Displacement = 90 m

a = Acceleration = 9.81 m/s²

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 90=0\times t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{90\times 2}{9.81}}\\\Rightarrow t=4.3\ s[/tex]

So, the raft covered 6-2 = 4 m in 4.3 seconds

Speed = Distance / Time

[tex]\text{Speed}=\frac{4}{4.3}=0.93\ m/s[/tex]

Speed of the raft is 0.93 m/s

Final answer:

To find the speed of the raft, we can use the principle of conservation of energy. When the woman drops the stone, it starts with potential energy due to its height and then converts to kinetic energy as it falls.

Explanation:

To find the speed of the raft, we can use the principle of conservation of energy. When the woman drops the stone, it starts with potential energy due to its height and then converts to kinetic energy as it falls. The kinetic energy of the stone when it hits the water is equal to the potential energy it had initially. We can use the equation:

mgh = 0.5mv^2

Where m is the mass of the stone, g is the acceleration due to gravity, h is the height of the bridge, and v is the speed of the stone when it hits the water. Rearranging the equation, we can solve for v:

v = √(2gh)

Substituting the given values h = 90.0 m and g = 9.8 m/s^2, we can calculate the speed of the stone when it hits the water. This speed is equal to the speed of the raft.

A motorboat is moving at 4.0 m/s when it begins to accelerate at 1.0 m/s^2. To the nearest tenth of a second, how long does it take for the boat to reach a speed of 17.0 m/s? Please show work.

Answers

Answer:

Time taken by motorboat to reach [tex]17.0m/s[/tex] equals 13 seconds.

Explanation:

From the first equation of kinematics we have

[tex]v=u+at[/tex]

where,

'v' is the final speed of the accelerating object

'u' is the initial speed of the object

'a' is the accleration of the object

't' is the time for which the object accelerates

Applying the given values in the equation above we get

[tex]17=4+1.0\times t\\\\\\\therefore t=17-4=13seconds[/tex]

A hippo drives 42 km due East. He then turns and drives 28 km at 25° East of South. He turns again and drives 32 km at 40° North of East. a) Sketch a plot of the vector sum of this motion. b) Use vector math to find his total displacement in component form. c) Convert to magnitude and direction form. d) How far is the hippo from his starting point? Note: this is distance, a scalar. What total distance has the hippo traveled?

Answers

Answer:

a) Please, see the attched figure

b) Total displacement R = (78.3 km; -4.8 km)

c) R = (78.4 km * cos (-3.5°); 78.4 km * sin (-3.5°))

d) The hippo is 78.4 km from his starting point.

The total distance traveled is 102 km

Explanation:

a)Please, see the attached figure.

b) The vector A can be expressed as:

A = (magnitude * cos α; magnitude * sin α)

Where

magnitude = 42 km

α= 0

Then,

A = (42 km ; 0) or 42 km i

In the same way, we can proceed with the other vectors:

B = ( Bx ; By)

where

(apply trigonometry of right triangles: sen α = opposite / hypotenuse and

cos α = adjacent / hypotenuse. See the figure to determine which component of vector B is the opposite and adjacent side to α)

Bx = 28 km * sin 25 = 11.8 km

By = 28 km * cos 25 = -25.4 km (it has to be negative since it is directed towards the negative vertical region according to our reference system)

B = (11.8 km; -25.4 km) or 11.8 km i - 25.4 km j

C = (Cx; Cy)

where

Cx = 32 km * cos 40° = 24.5 km

Cy = 32 km * sin 40 = 20.6 km

C = (24.5 km; 20.6 km)

Then:

R = A+B+C = (42 km + 11.8 km + 24.5 km; 0 - 25.4 km + 20.6 km)

= (78.3 km; -4.8 km) or 78.3 km i -4.8 km j

c) R = (78.3 km; -4.8 km)

The magnitude of R is:

[tex]magnitude = \sqrt{(78.3)^{2 }+ (-4.8)^{2}}= 78.4 km[/tex]

Using trigonometry, we can calculate the angle:

Knowing that

tan α = opposite / adjacent

and that

opposite = Ry = -4.8 km

adjacent = Rx = 78.3 km

Then:

tan α = -4.8 km / 78.4 km

α = -3.5°

We can now write the vector R in magnitude and direction form:

R = (78.4 km * cos (-3.5°); 78.4 km * sin (-3.5°))

d) The displacement of the hipo relative to the starting point is the magnitude of vector R calculated in c):

magnitude R = 78. 4 km

The total distance traveled is the sum of the magnitudes of each vector:

Total distance = 42 km + 28 km + 32 km = 102 km  

Tom Sawyer runs 10 m/s down the dock and leaps on to his floating raft already moving 1.5 m/s away from shore. If Tom weighs 70 kg and the raft weighs 130 kg, what speed will they both be moving? A. 895 kg m/sB. 11.5 m/sC. 6.4 m/sD. 5.75 m/s

Answers

Answer:

Not the right answer in the options, speed is 4.47 m/s, and the procedure is coherent with option A

Explanation:

Answer A uses mass and velocity units, which are momentum units. By using the conservation of momentum:

.[tex]p_{initial} =p_{final} \\m_{Tom}*v_{Tom}+m_{raft}*v_{raft}=(m_{Tom}+m_{raft})*v_{both} \\70*10+130*1.5 kg*m/s=895kg*m/s\\v_{both}=\frac{895 kg*m/s}{200 kg} =4.47 m/s[/tex]

Since Tom stays in the raft, then both are moving with the same speed. From the options, the momentum is in agreement with option A, however, the question asks for speed.

The best rebounders in basketball have a vertical leap (that is, the vertical movement of a fixed point on their body) of about 100 cm . a) What is their initial "launch" speed off the ground?
b)How long are they in the air?

Answers

Answer:

a) 4.45 m/s

b) 0.9 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

[tex]v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -9.81\times 1}\\\Rightarrow u=4.45\ m/s[/tex]

a) The vertical speed when the player leaves the ground is 4.45 m/s

[tex]v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-4.45}{-9.81}\\\Rightarrow t=0.45\ s[/tex]

Time taken to reach the maximum height is 0.45 seconds

[tex]s=ut+\frac{1}{2}at^2\\\Rightarrow 1=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{1\times 2}{9.81}}\\\Rightarrow t=0.45\ s[/tex]

Time taken to reach the ground from the maximum height is 0.45 seconds

b) Time the player stayed in the air is 0.45+0.45 = 0.9 seconds

Suppose your hair grows at the rate of 1/26 inches per day. Find the rate at which it rows in nanometers per second. Because the distance between atoms in a molecule is on the order of 0.1 nm, you answer suggests how rapidly layers of atoms are assembled in this protein synthesis. Your units should be "atomic layers/sec" Hint : Use dimensional analysis

Answers

Answer:

11.306 nm/s

or

113.06 atomic layers/sec

Explanation:

Hello!

First we need to know how much an inch equals in nanometers and a day in seconds:

Since 1inch = 2.54cm and 1cm=10^7nm

     1 inch = 2.54 * 10^7 nm

Also 1day = 24hours = 24*60minutes = 24*60*60seconds

   1 day = 86.4 * 10^3 s

Therefore the rate at which the hair grows in nanometers per seconds is:

    1/26 in/day = (1/26) * (2.54*10^7)/(86.4*10^3) = 11.306 nm/s

 

Now, if 1 atomic layer = 0.1 nm this means that 1 nm = 10 atomic layers.

Therefore:

The rate in atomic layers is

11.306 nm/s = 11.306 (10 atomic layers)/s = 113.06 atomic layers/sec

13. You throw a ball vertically upward, and as it leaves your hand, its speed is 37.0 m/s. How long (in s) does the ball take to return to the level where it left your hand after it reaches its highest point? (A) 1.38 seconds (B) 2.28 seconds (C) 3.78 seconds (D) 4.38 seconds (E) 5.18 seconds

Answers

Answer:

(C) 3.78 seconds

Explanation:

At the highest point, the velocity is equal to 0m/s

[tex]v_{f}=v_{o}-gt[/tex]

[tex]t=\frac{v_{o}}{g}[/tex]  ; t is the time to reach the highest point

The  time the ball takes to return to its starting point after the ball  reach its maximum height is the same:

[tex]T_{descent}=t=\frac{v_{o}}{g}=\frac{37}{9.81}=3.78s[/tex]

If the length of a wire is increased by 20% keeping its volume constant. what will be the % change in heat produced when connected across same potential difference. please explain properly!!

Answers

Answer:decreases by 30.55%

Explanation:

Given

length of wire is increased by 20 % keeping volume constant

Let the length of wire be L and its area of cross section be A

Thus new length=1.2 L

Volume is constant

[tex]AL=1.2 L\times A'[/tex]

A'=0.833 A

and resistance is given by

[tex]R=\frac{\rho L}{A}[/tex]

where [tex]\rho [/tex]=resistivity

New resistance [tex]R'=\frac{\rho\times 1.2L}{0.833A}[/tex]

R'=1.44 R

heat produced for same potential

[tex]H_1=\frac{V^2t}{R}[/tex]

[tex]H_2=\frac{V^2t}{1.44R}=0.694H_1[/tex]

% change in heat

[tex]\frac{H_2-H_1}{H_1}\times 100[/tex]

[tex]=\frac{0.694-1}{1}[/tex]

=30.55 decreases

Answer:

30.55 %

Explanation:

Assumptions:

l = initial length of the wireL = final length of the wirev = initial volume of the wireV = final volume of the wirea = initial cross sectional area of the wireA = final cross sectional area of the wireh = initial heat of generated by the wireH = final heat generated by the wireP = potential difference across the wiret = time for which the potential difference is created across the wirer = initial resistance of the wireR = final resistance of the wire[tex]\Delta H[/tex] = change in heat produced

According to the question, we have

[tex]L = l + 20\ \% l = \dfrac{120l}{100}\\V=v\\\Rightarrow LA=la\\\Rightarrow A= \dfrac{la}{L}\\\Rightarrow A= \dfrac{la}{\dfrac{120l}{100}}\\\Rightarrow A= \dfrac{100a}{120}[/tex]

Using the formula of resistance of a wire in terms of its length, cross sectional area and the resistivity of the material, we have

[tex]r =  \dfrac{\rho l}{a}\\R=\dfrac{\rho L}{A}=\dfrac{\rho\times \dfrac{120l}{100} }{\dfrac{100a}{120}}=(\dfrac{120}{100})^2\dfrac{\rho l}{a}= 1.44r\\[/tex]

Using the formula of heat generated by the wire for potential diofference created across its end for time t, we have

[tex]h = \dfrac{P^2}{r}t\\H = \dfrac{P^2}{R}t= \dfrac{P^2}{1.44r}t\\\therefore \Delta H = h-H\\\Rightarrow \Delta H = \dfrac{P^2}{r}t-\dfrac{P^2}{1.44r}t\\\Rightarrow \Delta H = \dfrac{P^2t}{r}(-\dfrac{1}{1.44})\\\Rightarrow \Delta H = \dfrac{P^2t}{r}(\dfrac{0.44}{1.44})\\\therefore \textrm{Percentage change in the heat produced}= \dfrac{\Delta H}{h}\times 100\ \%= \left (\dfrac{\dfrac{P^2t}{r}(\dfrac{0.44}{1.44})}{\dfrac{P^2}{r}t}  \right )\times 100\ \% = 30.55\ \%[/tex]

Hence, the percentage change in the heat produced in the wire is 30.55 %.

If a lens has a power of -14.50, what is the focal length in mm?

Answers

Answer:

Focal length of the lens, f = - 68 mm

Explanation:

Given that,

Power of a lens, P = -14.50 D

We need to find the focal length of the lens. We know that the focal length and the power of lens has inverse relationship. Mathematically, it is given by :

[tex]f=\dfrac{1}{P}[/tex]

f is the focal length of the lens

[tex]f=\dfrac{1}{-14.50}[/tex]

f = -0.068 m

or

f = -68 mm

So, the focal length of the lens is (-68 mm). Hence, this is the required solution.

An apple falls (from rest) from a tree. It hits the ground at a speed of about 4.9 m/s. What is the approximate height (in meters) of the tree above the ground? The magnitude of the gravitational acceleration g = 9.8 m/s2 Enter your answer in meters. Keep 2 decimal places.

Answers

Answer:

The inicial height of the apple is 1.22 meters

Explanation:

Using the equation for conservarion of mechanical energy:

[tex]E=V+K=constant[/tex]

[tex]K_i=\frac{1}{2}mv_i^2[/tex] where v is the velocity

[tex]V=mgh[/tex]where h is the height

We equate the initial mechanical energy to the final:

Since [tex]v_0=0\ and h_f=0 [/tex]:

[tex]\frac{1}{2}mv_0^2+mgh_0= \frac{1}{2}mv_f^2+mgh_f\\gh_0= \frac{1}{2}v_f^2[/tex]

Solving for h:

[tex]h_0=\frac{4.9^2}{2g}= 1.22 m[/tex]

For a positive point charge, the electric field vectors point in what direction? a) Point charges cannot create an electric field.
b) Along a circle around it.
c) Toward it.
d) Away from it.
e) None of the above.

Answers

Answer:d- Away from it

Explanation:

For a positive point charge, the electric field vectors point away from the charge. Electric field line radiates out of positive charge and could terminate to a  negative charge if it is placed in its vicinity.

Similarly for negative charge electric field lines seems to come inside of negative charge. It is basically opposite of positive charge.

The density of a rock will be measured by placing it into a graduated cylinder partially filled with water, and then measuring the volume of water displaced. The density D is given by D = m/(V1 − V0), where m is the mass of the rock, V0 is the initial volume of water, and V1 is the volume of water plus rock. Assume the mass of the rock is 750 g, with negligible uncertainty, and that V0 = 500.0 ± 0.1 mL and V1 = 813.2 ± 0.1 mL. Estimate the density of the rock, and find the uncertainty in the estimate.

Answers

Answer:

[tex]\rho = 2.39 g/mL[/tex]

[tex]\Delta \rho = 1.53 \times 10^{-3} mL[/tex]

Explanation:

As we know that density is the ratio of mass and volume of the object

here we know that

mass of the rock is

[tex]m = 750 g[/tex]

volume of the rock is given as

[tex]V = V_1 - V_o[/tex]

here we know that

[tex]V_1 = 813.2 \pm 0.1 mL[/tex]

[tex]V_2 = 500.0 \pm 0.1 mL[/tex]

now we have

[tex]V = 313.2 \pm 0.2 mL[/tex]

now density is given as

[tex]\rho = \frac{750}{313.2}[/tex]

[tex]\rho = 2.39 g/mL[/tex]

now uncertainty of density is given as

[tex]\Delta \rho = \frac{\Delta V}{V} \rho[/tex]

[tex]\Delta \rho = \frac{0.2}{313.2}(2.39)[/tex]

[tex]\Delta \rho = 1.53 \times 10^{-3} mL[/tex]

The density of the rock, given its mass is 750 g and the volume of water displaced is 313.2 mL, is 2.394 g/mL. The uncertainty in this measurement is ± 0.0015 g/mL, considering an uncertainty of ± 0.1 mL for both the initial and final volume measurements.

Given that the mass (m) of the rock is 750 g, the initial volume of water (V0) is 500.0 mL, and the volume of water plus the rock (V1) is 813.2 mL, we can determine the density (D) and the uncertainty in the density.

Using the formula:

D = m / (V1 - V0)

Therefore, D = 750 g / (813.2 mL - 500.0 mL)

= 750 g / 313.2 mL

= 2.394 g/mL.

Using the uncertainties in V0 and V1, which are both ± 0.1 mL. Since we subtract these volumes, the total volume uncertainty is ± (0.1 mL + 0.1 mL) = ± 0.2 mL. Thus, the uncertainty in the density (ΔD) can be approximated by the formula:

ΔD = D × (ΔV / (V1 - V0))

where ΔV is the total volume uncertainty. Substituting the values, we get ΔD = 2.394 g/mL × (0.2 mL / 313.2 mL) = ± 0.00153 g/mL (rounded to four significant figures).

Therefore, the estimated density of the rock is 2.394 ± 0.0015 g/mL.

A car is driven east for a distance of 47 km, then north for 23 km, and then in a direction 32° east of north for 27 km. Determine (a) the magnitude of the car's total displacement from its starting point and (b) the angle (from east) of the car's total displacement measured from its starting direction.

Answers

Answer:

(a). The car's total displacement from its starting point is 76.58 m.

(b). The angle of the car's total displacement measured from its starting direction is 36.81°.

Explanation:

Given that,

Distance = 47 km in east

Distance = 23 km in north

Angle = 32° east of north

Distance = 27 km

According to figure,

Angle = 90-32 = 58°

(a). We need to calculate the magnitude of the car's total displacement from its starting point

Using Pythagorean theorem

[tex]AC=\sqrt{AB^2+BC^2}[/tex]

[tex]AC=\sqrt{(47+27\cos58)^2+(23+27\sin58)^2}[/tex]

[tex]AC=76.58\ m[/tex]

The magnitude of the car's total displacement from its starting point is 76.58 m.

(b). We need to calculate the angle (from east) of the car's total displacement measured from its starting direction

Using formula of angle

[tex]\tan\theta=\dfrac{y}{x}[/tex]

put the value into the formula

[tex]\theta=tan^{-1}\dfrac{23+27\sin58}{47+27\cos58}[/tex]

[tex]\theta=tan^{-1}0.7486[/tex]

[tex]\theta=36.81^{\circ}[/tex]

Hence, (a). The car's total displacement from its starting point is 76.58 m.

(b). The angle of the car's total displacement measured from its starting direction is 36.81°.

What is the acceleration of a 20 kg cart if the net force on it is 40 N?

Answers

Answer:

Acceleration of the cart will be [tex]a=2m/sec^2[/tex]

Explanation:

We have given force F = 40 N

Mass of the cart = 20 kg

From newton's second law we know that force, mass and acceleration are related to each other

From second law of motion force on any object moving with acceleration a is given by

F = ma, here m is mass and a is acceleration

So [tex]40=20\times a[/tex]

[tex]a=2m/sec^2[/tex]

A ball is thrown vertically into the air with a initial velocity of 20 m/s. Find the maximum height of the ball and find the amount of time needed to reach the maximum height.

Answers

Answer:

The maximum height of the ball is 20 m. The ball needs 2 s to reach that height.

Explanation:

The equation that describes the height and velocity of the ball are the following:

y = y0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

y = height of the ball at time t

y0 = initial height

v0 = initial velocity

t = time

g = acceleration

v = velocity at time t

When the ball is at its maximum height, its velocity is 0, then, using the equation of the velocity, we can calculate the time at which the ball is at its max-height.

v = v0 + g · t

0 = 20 m/s - 9.8 m/s² · t

-20 m/s / -9.8 m/s² = t

t = 2.0 s

Then, the ball reaches its maximum height in 2 s.

Now,  we can calculate the max-height obtaining the position at time t = 2.0 s:

y = y0 + v0 · t + 1/2 · g · t²

y = 0 m + 20 m/s · 2 s - 1/2 · 9,8 m/s² · (2 s)²

y = 20 m

The maximum height reached by the ball is 20.4 meters, and it takes approximately 2.04 seconds to reach this height.

When a ball is thrown vertically into the air with an initial velocity of 20 m/s, we can calculate the maximum height using the kinematic equation:

[tex]v^2 = u^2 + 2gh,[/tex]

where v is the final velocity (0 m/s at the highest point), u is the initial velocity (20 m/s), g is the acceleration due to gravity (9.81 m/s2), and h is the maximum height. Solving for h gives us:

[tex]h = u^2 / (2g).[/tex]

By substituting the values we get:

[tex]h = (20 m/s)^2 / (2 * 9.81 m/s^2) = 20.4 m.[/tex]

To find the time needed to reach the maximum height, we use the equation:

v = u + gt,

Solving for t when v is 0 m/s, we get:

t = u / g = 20 m/s / 9.81 m/s2 = approx. 2.04 seconds.

Thus, the maximum height of the ball is 20.4 meters and the time needed to reach the maximum height is approximately 2.04 seconds.

Which of the following combinations of position (x) and direction of motion would give a velocity in the x-direction that has a negative value? a. Positive x, moving towards the origin.b. Negative x, moving away from the origin.c. Both a and b.d. Positive x, moving away from the origin.e. Negative x, moving towards the origin.

Answers

Answer:

c) Both a) and b) are the combinations that have a negative velocity.

Explanation:

The velocity is given by this equation:

v = Δx / Δt

Where

Δx = final position - initial position

Δt = elapsed time

Now let´s evaluate the options. We have to find those combinations in which  Δx < 0 since Δt is always positive.

a) If the initial position, x, is positive and you move towards the origin, the final position will be a smaller value than x. Then:

                          final position < initial position

final position - initial position < 0 The velocity will be negative.

b) If x is negative and you move away from the origin, the final position will be a more negative number than x. Again:

                          final position < initial position

final position - initial position < 0 The velocity will be negative.

Let´s do an example to show it:

initial position = -5

final position = -10 (since you moved away from the origin)

final position - initial position = -10 -(-5) = -5

d) If x is positive and you move away from the origin, the final position will be a greater value than the initial position. Then:

                          final position > initial position

final position - initial position > 0 The velocity will be positive.

e) If x is negative and you move towards the origin, the final position will be a greater value than the initial position. Then:

                          final position > initial position

final position - initial position > 0 The velocity will be positive.

Let´s do an example:

initial position = -10

final position = -5

final postion - initial position = -5 - (-10) = 5

or with final position = 0

final postion - initial position = 0 -(-10) = 10

And so on.

The right answer is c) Both a) and b) are the combinations that have a negative velocity.

A thin metal bar, insulated along its sides, is composed of five different metal connected together. The left end bar is immersed in a heat bath at 100°C and right end in a heat bath at 0°C. Starting at the left end, the pieces and lenghts are steel(2cm), brass(3cm), copper(1cm), aluminum(5cm) and silver(1cm). What is the temperature of the steel/brass interface?

Answers

Answer:

T = 61.06 °C  

Explanation:

given data:

a thin metal bar consist of 5 different material.

thermal conductivity of ---

K {steel} = 16 Wm^{-1} k^{-1}

K brass = 125 Wm^{-1} k^{-1}

K copper = 401 Wm^{-1} k^{-1}

K aluminium =30Wm^{-1} k^{-1}

K silver = 427 Wm^{-1} k^{-1}

[tex]\frac{d\theta}{dt} = \frac{KA (T_2 -T_1)}{L}[/tex]

WE KNOW THAT

[tex]\frac{l}{KA} = thermal\ resistance[/tex]

total resistance of bar = R steel + R brass + R copper + R aluminium + R silver

[tex]R_{total} =\frac{1}[A} [\frac{0.02}{16} +\frac{0.03}{125} +\frac{0.01}{401} +\frac{0.05}{30} +\frac{0.01}{427}][/tex]

[tex]R_{total} =\frac{1}[A} * 0.00321[/tex]

let T is the temperature at steel/brass interference

[tex]\frac{d\theta}{dt}[/tex] will be constant throughtout the bar

therefore we have

[tex]\frac{100-0}{R_{total}} = \frac{100-T}{R_{steel}}[/tex]  

[tex]\frac{100-0}{0.00321} *A = \frac{100-T}{0.00125} *A[/tex]

solving for T  we get

T = 61.06 °C  

A vacuum gage attached to a power plant condenser gives a reading of 27.86 in. of mercury. The surrounding atmospheric pressure is 14.66 lbf/in. Determine the absolute pressure inside the condenser, in lbf/in. The density of mercury is 848 lb/ft and the acceleration of gravity is g = 32.0 ft/s?.

Answers

Answer:

absolute pressure =  1.07 lbft/in^2

Explanation:

given data:

vaccum gauge reading h = 27.86 inch = 2.32 ft

we know that

gauge pressure p is given as

[tex]p = \rho gh[/tex]

[tex]p = 848 \ lb/ft^3 * 32 \ ft/s^2 *2.32 ft  = 62955.52 \ lbft/s^2 * 1/ft^2[/tex]

we know that  [tex]1\  lb ft\s^2 = \frac{1}{32.174}\  lbft[/tex]

1 ft = 12 inch

therefore [tex]p = 62955.52 * \frac{1}{32.174} * \frac{1}{12^2}\ lbf/in^2[/tex]

               [tex]p = 13.59\  lbft/in^2[/tex]

[tex]P_{atm} = 14.66\  lbf/in^2[/tex]

so absolute pressure = [tex]P_{atm} - p[/tex]

                                   = 14.66 - 13.59 = 1.07 lbft/in^2

Consider steady heat transfer between two large parallel plates at constant temperatures of T1 = 210 K and T2 = 150 K that are L = 2 cm apart. Assume that the surfaces are black (emissivity ε = 1). Determine the rate of heat transfer between the plates per unit surface area assuming the gap between the plates is filled with atmospheric air.

Answers

Answer:

[tex]Q=81.56\ W/m^2[/tex]

Explanation:

Given that

[tex]T_1= 210 K[/tex]

[tex]T_2= 150 K[/tex]

Emissivity of surfaces(∈) = 1

We know that heat transfer between two surfaces due to radiation ,when both surfaces are black bodies

[tex]Q=\sigma (T_1^4-T_2^4)\ W/m^2[/tex]

So now by putting the values

[tex]Q=\sigma (T_1^4-T_2^4)\ W/m^2[/tex]

[tex]Q=5.67\times 10^{-8}(210^4-150^4)\ W/m^2[/tex]

[tex]Q=81.56\ W/m^2[/tex]

So rate of heat transfer per unit area

[tex]Q=81.56\ W/m^2[/tex]

An object is dropped from rest and falls through height h. It travels 0.5h in the last 1 second of fall. Find the total time & height of the fall. (Hint: use two triangles!)

Answers

Answer:

3.41 s

114 m

Explanation:

The object is falling in free fall, accelerated by the surface gravity of Earth. We can use the equation for position under constant acceleration:

X(t) = X0 + V0 * t + 1/2 * a * t^2

We set up a frame of reference with the origin at the point the object was released and the X axis pointing down. Then X0 = 0. Since the problem doesnt mention an initial speed we assume V0 = 0.

It travels 0.5h in the last 1 second of the fall. This means it also traveled in the rest of the time of the fall. t = t1 is the moment when it traveled 0.5*h.

0.5*h = 1/2 * a * t1^2

h = a * t1^2

It travels 0.5*h in 1 second.

h = X(t1 + 1) = 1/2 * a * (t1+1)^2

Equating both equations:

a * t1^2 = 1/2 * a * (t1+1)^2

We simplify a and expand the square

t1^2 = 1/2 * (t1^2 + 2*t1 + 1)

t1^2 - 1/2 * t1^2 - t1 - 1/2 = 0

1/2 * t1^2 - t1 - 1/2 = 0

Solving electronically:

t1 = 2.41 s

total time = t1 + 1 = 3.41.

Now

h = a * t1^2

h = 9.81 * 3.41^2 = 114 m

A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wall to break apart the wall. The machine was not placed near the wall because then arrows could reach it from the castle wall. Instead, it was positioned so that the stone hit the wall during the second half of its flight. Suppose a stone is launched with a speed of v0 = 25.0 m/s and at an angle of θ0 = 41.0°. What is the speed of the stone if it hits the wall (a) just as it reaches the top of its parabolic path and (b) when it has descended to half that height? (c) As a percentage, how much faster is it moving in part (b) than in part (a)?

Answers

(a) 18.9 m/s

The motion of the stone consists of two independent motions:

- A horizontal motion at constant speed

- A vertical motion with constant acceleration ([tex]g=9.8 m/s^2[/tex]) downward

We can calculate the components of the initial velocity of the stone as it is launched from the ground:

[tex]u_x = v_0 cos \theta = (25.0)(cos 41.0^{\circ})=18.9 m/s\\u_y = v_0 sin \theta = (25.0)(sin 41.0^{\circ})=16.4 m/s[/tex]

The horizontal velocity remains constant, while the vertical velocity changes due to the acceleration along the vertical direction.

When the stone reaches the top of its parabolic path, the vertical velocity has became zero (because it is changing direction): so the speed of the stone is simply equal to the horizontal velocity, therefore

[tex]v=18.9 m/s[/tex]

(b) 22.2 m/s

We can solve this part by analyzing the vertical motion only first. In fact, the vertical velocity at any height h during the motion is given by

[tex]v_y^2 - u_y^2 = 2ah[/tex] (1)

where

[tex]u_y = 16.4 m/s[/tex] is the initial vertical velocity

[tex]v_y[/tex] is the vertical velocity at height h

[tex]a=g=-9.8 m/s^2[/tex] is the acceleration due to gravity (negative because it is downward)

At the top of the parabolic path, [tex]v_y = 0[/tex], so we can use the equation to find the maximum height

[tex]h_{max} = \frac{-u_y^2}{2a}=\frac{-(16.4)^2}{2(-9.8)}=13.7 m[/tex]

So, at half of the maximum height,

[tex]h = \frac{13.7}{2}=6.9 m[/tex]

And so we can use again eq(1) to find the vertical velocity at h = 6.9 m:

[tex]v_y = \sqrt{u_y^2 + 2ah}=\sqrt{(16.4)^2+2(-9.8)(6.9)}=11.6 m/s[/tex]

And so, the speed of the stone at half of the maximum height is

[tex]v=\sqrt{v_x^2+v_y^2}=\sqrt{18.9^2+11.6^2}=22.2 m/s[/tex]

(c) 17.4% faster

We said that the speed at the top of the trajectory (part a) is

[tex]v_1 = 18.9 m/s[/tex]

while the speed at half of the maximum height (part b) is

[tex]v_2 = 22.2 m/s[/tex]

So the difference is

[tex]\Delta v = v_2 - v_2 = 22.2 - 18.9 = 3.3 m/s[/tex]

And so, in percentage,

[tex]\frac{\Delta v}{v_1} \cdot 100 = \frac{3.3}{18.9}\cdot 100=17.4\%[/tex]

So, the stone in part (b) is moving 17.4% faster than in part (a).

An electron is released from rest at the negative plate of a parallel plate capacitor. The charge per unit area on each plate is = 2.1 × 10^-7 C/m^2, and the plates are separated by a distance of 1.2 × 10^-2 m. How fast is the electron moving just before it reaches the positive plate?

Answers

Explanation:

An electron is released from rest, u = 0

We know that charge per unit area is called the surface charge density i.e. [tex]\sigma=\dfrac{q}{A}=2.1\times 10^{-7}\ C/m^2[/tex]

Distance between the plates, [tex]d=1.2\times 10^{-2}\ m[/tex]

Let E is the electric field,

[tex]E=\dfrac{\sigma}{\epsilon_o}[/tex]

[tex]E=\dfrac{2.1\times 10^{-7}}{8.85\times 10^{-12}}[/tex]

E = 23728.81 N/C

Now, [tex]ma=qE[/tex]

[tex]a=\dfrac{qE}{m}[/tex]

[tex]a=\dfrac{1.6\times 10^{-19}\times 23728.81}{9.1\times 10^{-31}}[/tex]

[tex]a=4.17\times 10^{15}\ m/s^2[/tex]

Let v is the speed of the electron just before it reaches the positive plate. So, third equation of motion becomes :

[tex]v^2=2ad[/tex]

[tex]v^2=2\times 4.17\times 10^{15}\times 1.2\times 10^{-2}[/tex]

[tex]v=10.003\times 10^6\ m/s[/tex]

Hence, this is the required solution.

A 3.0 mg bead with a charge of 2.9 nC rests on a table. A second bead, with a charge of -5.3 nC is directly above the first bead and is slowly lowered toward it. What is the closest the centers of the two beads can be brought together before the lower bead is lifted off the table?

Answers

Answer:

6.86 cm

Explanation:

Given:

q = charge on the first bead on the table= [tex]2.9\ nC = 2.9\times 10^{-9}\ C[/tex]m = mass of bead on the table = [tex]3.0\ mg = 3.0\times 10^{-6}\ kg[/tex]Q = charge on the second bead = [tex]-5.3\ nC = -5.3\times10^{-9}\ C[/tex]

Assume:

r = the closest distance between the centers of the beadsF = electrostatic force of attraction between the two beadsW = weight of the first beadg = acceleration due to gravity = 9.8\ m/s^2N = normal force on the first bead

When the first bead rests on the table, then electrostatic force due to the second bead acts on it in the upward direction, Normal force acts in the upward direction and its weight in the downward direction.

So, using Newton's second law on the first bead resting on the table, we have

[tex]F+N-W=0\\[/tex]

At the closest distance of the second bead to the first bead, it just lifts off the table and the normal force becomes zero.

[tex]\therefore F-W=0\\\Rightarrow F=W\\\Rightarrow \dfrac{kqQ}{r^2}=mg\\\Rightarrow r^2=\dfrac{kqQ}{mg}\\\Rightarrow r^2=\dfrac{9\times 10^9\times 2.9\times 10^{-9}\times 5.3\times 10^{-9}}{3\times 10^{-6}\times 9.8}\\\Rightarrow r^2=4.70\times 10^{-3}\\\textrm{Taking square root on both the sides}\\r = \pm 0.0686\ m\\\textrm{Since the distance is never negative}\\\therefore r = 0.0686\ m\\\Rightarrow r = 6.86\ cm[/tex]

Hence, the centers of the two beads must be brought closest to 6.86 cm before the lower bead is lifted off the table.

Force is a vector, while mass is a scalar. Why can we use mass as an indicator of the magnitude of the force vector?

Answers

Answer:

Explanation:

Force = mass x acceleration

[tex]\overrightarrow{F}=m\overrightarrow{a}[/tex]

Force is always vector and acceleration also vector but the mass is a saclar quanity.

here, the direction of force vector is same as the direction of acceleration vector but the magnitude of force depends on the magnitude of mass of the body.

Is mass is more, force is also more.

Thus, the mass is like an indicator of the magnitude of force.

If the speed of an object in uniform circular motion is tripled, the magnitude of the centripetal acceleration increases by a factor of: (A) 2 (B) 3 (C) 9 (D) 6 (E) 8

Answers

Answer:

The correct option is 'D': 9

Explanation:

We know that the magnitude of the centripetal acceleration of  a body moving in circular orbit of radius 'r' with speed 'v' is given by

[tex]a_{c}=\frac{v^{2}}{r}[/tex]

Now when the speed of the body is tripled the speed becomes [tex]3v[/tex]

Hence the new centripetal acceleration is obtained as

[tex]a'_{c}=\frac{(3v)^{2}}{r}\\\\a'_{c}=\frac{9v^{2}}{r}=9a_{c}[/tex]

Thus we can see that the new centripetal acceleration becomes 9 times the oroginal value.

The acceleration of a body traveling in a circular route is known as centripetal acceleration. The magnitude of the centripetal acceleration increases by a factor of 9.

What is centripetal acceleration?

The acceleration of a body traveling in a circular route is known as centripetal acceleration. Because velocity is a vector quantity. It has both a magnitude and a direction.

When a body moves on a circular route, its direction changes constantly, causing its velocity to vary, resulting in acceleration.

Mathematically it is given as,

[tex]\rma_c=\frac{v^2}{r} \\\\ a_c'=\frac{(3v)^2}{r} \\\\ \rm v=9\frac{v^2}{r}\\\\ a_c'=9a_c[/tex]

Hence the magnitude of the centripetal acceleration increases by a factor of 9. Option c is correct.

To learn more about centripetal acceleration refer to the link;

https://brainly.com/question/17689540

Alex climbs to the top of a tall tree while his friend Gary waits on the ground below. Alex throws down a ball at 8 m/s from 50 m above the ground at the same time Gary throws a ball up. At what speed must Gary throw a ball up in order for the two balls to cross paths 25 m above the ground? The starting height of the ball thrown upward is 1.5 m above the ground. Ignore the effects of air resistance. whats the answer in m/s?

Answers

Answer:22.62 m/s

Explanation:

Given

two balls are separated by a distance of 50 m

Alex throws  the ball from a height of 50 m with a velocity of 8 m/s and Gary launches a ball with some velocity  exactly at the same time.

ball  from ground travels a distance of 25 m in t sec

For Person on tree  

[tex]25=ut+\frac{1}{2}gt^2[/tex]

[tex]25=8t+\frac{1}{2}\times 9.81\times t^2--------1[/tex]

For person at ground

[tex]23.5=ut-\frac{1}{2}gt^2---------2[/tex]

Solve equation (1)

[tex]50=16t+9.81t^2[/tex]

[tex]9.81t^2+16t-50=0[/tex]

[tex]t=\frac{-16\pm\sqrt{256+4\times 50\times 9.81}}{2\times 9.81}=\frac{47.1-16}{19.62}=1.58 s[/tex]

put the value of t in equation 2

[tex]23.5=u\times 1.58-\frac{9.81\times 1.58^2}{2}[/tex]

[tex]u=\frac{35.744}{1.58}=22.62 m/s[/tex]

A man pushes a lawn mower on a level lawn with a force of 195 N. If 37% of this force is directed downward, how much work is done by the man in pushing the mower 5.7 m?

Answers

Final answer:

The work done by the man in pushing the lawn mower is 699.245 J, calculated by determining the horizontal force component and multiplying by the distance pushed.

Explanation:

To calculate how much work is done by the man in pushing the lawn mower, we need to consider only the component of the force that acts in the direction of the movement. Since 37% of the 195 N force is directed downward, only the remaining 63% is contributing to the horizontal movement. Therefore, the horizontal component of the force is 0.63 × 195 N = 122.85 N.

The formula to calculate work (W) is W = force (F) × distance (d) × cosine(θ), where θ is the angle between the force and the direction of movement. In this case, the force and movement are in the same direction, so θ = 0 and cosine(θ) = 1. Thus, the work done is:

W = 122.85 N × 5.7 m × 1 = 699.245 J

In terms of energy expended while pushing a lawn mower, this work is a relatively small amount when compared to a person's daily intake of food energy.

A woman is sitting at a bus stop when an ambulance with a siren wailing at 317 Hz approaches at 69 miles per hour (mph). Assume the speed of sound to be 343 m/s. a) How fast is the ambulance moving in meters per second? (perform the necessary unit conversion) Vs= 69 mph = m/s b) What frequency does the woman hear? fa = Hz c) What speed (vs) would the ambulance be traveling in order for the woman to hear the siren at an approaching frequency of 350 Hz? Vs= m/s d) What frequency would she hear as the siren moves away from her at the same speed (as in part c)? fa = Hz

Answers

Answer:

a) 30.84m/s

b) 348.32Hz

c) 32.34m/s

d) 289.69Hz

Explanation:

a) If 1 mile=1609,34m, and 1 hour=3600 seconds, then 69mph=69*1609.34m/3600s=30.84m/s

b) Based on Doppler effect:

/*I will take as positive direction the vector [tex]\vec r_{observer}-\vec r_{emiter}[/tex] */

[tex]f_{observed}=(\frac{v_{sound}-v_{observed}}{v_{sound}-v_{emited}})f_{emited}[/tex]

[tex]f_{observed}=(\frac{343m/s-0m/s}{343m/s-30.84m/s})317Hz=348.32Hz[/tex]

c) [tex]350Hz=(\frac{343m/s-0m/s}{343m/s-v_{ambulance}})317Hz, V_{ambulance}=343m/s-\frac{317Hz}{350Hz}.343m/s=32.34m/s[/tex]

d) [tex]f_{observed}=(\frac{343m/s-0m/s}{343m/s+32.34m/s})317Hz=289.69Hz[/tex]

Other Questions
Find the area of the figure. (Sides meet at right angles.) . Why use a sensitivity analysis? Lines 38-40 Notice the word slaughterhouses and the phrase factories of death. What tone do these words create Explain why the value of the recombination frequency between any two genes is limited to 50%. Two 1.1 kg masses are 1 m apart (center to center) on a frictionless table. Each has +10 JC of charge. What is the initial acceleration (in m/s2) of this massif it is released and allowed to move? You deposit $3000 into a money-market savings account which pays 4.8% compounded quarterly, and you make no withdrawals from or further deposits into this account for 3 years. How much money is in your account at the end of those 3 years?Give answer in dollars rounded to the nearest cent. Do NOT enter "$" sign in answer. What impact did Georgias transition from a trustee colony to a royal colony have on its economy? A. It began to thrive. B. It stayed the same. C. it collapsed D. it began to suffer The MOST common organizational structure for implementing a corporate diversification strategy is the __________ structure. A. board of directors' B. U-form C. M-form D. senior executives' E. corporate staff What is a hypothesis? a. It is a fact from which conclusions can be drawn. b. It is equivalent to a theory. c. It is proof of a theory and occurs after testing a theory. d. It is a provisional statement regarding certain scientific facts or observations. e. It is a statement that has been proven to be true. highlighted answer is wrong just need someone to explain it if you can! Rewrite the subtraction number sentence as an addition number sentence.5- (-2) A sign company charges $28 per yard for each custom-made banner. Ms. Gill orders two banners that are each 15 yards long, and one bannerthat is 2 yards long. What will Ms. Gill pay for all three banners? Enter your answer in the box Please help I need this before tomorrow Why do we have some network devices that have more than one IP address? Which of these ideas had the most influence on the American Revolution? What are the main renewable energy sources? Why are ocean, wave, and tidal energies not considered as main renewable sources? 0.0151515 convert repeating decimals to fractions Calculate the mass of manganese in potassium permanganate. Control is best described as the process of ________. A. budgeting, planning, and marketing products B. recruiting, training, and mentoring employees C. directing sales information to the corporate finance department D. monitoring, comparing, and correcting the performance of work activities E. communicating and implementing a strategic plan. E and F are complementary. The measure of E is 54 more than the measure of F. Find the measure of each angle. Kaylee is part of a team preparing a long investigative report. The team askedher to write the table of contents. What is the best major heading for thiselement of the report?A. There should be no heading for a table of contents B. ContentsC. Table of Contents D. Executive Summary