There are five Oklahoma State Officials: Governor (G), Lieutenant Governer (L), Secretary of State (S), Attorney General (A), and Treasurer (T). Take all possible samples without replacement of size 3 that can be obtained from the population of five officials. (Note, there are 10 possible samples!)
(a) What is the probability that the governor is included in the sample?
(b) What is the probability that the governor and the attorney general are included in the sample?

Answers

Answer 1

So, the required probabilities are,

Part(a):P(A)=0.6

Part(b):P(B)=0.1

Given that:

There are five Oklahoma state officials,

Governor (G), Lieutenant Governor (L), Secretary of State (S), Attorney General (A), and Treasurer (T).

All possible samples of size 3 are obtained from the population of five officials.

Here order does not matter so we use the combinations.

[tex]5_C_3=10[/tex] possible samples.

So, S={GLS,GLA,GLT,GSA,GST,GAT,LSA,LST,LAT,SAT}

Hence, n(s)=10

Part(a):

Let A denotes the event that the governor is included in the sample.

A={GLS,GLA,GLT,GSA,GST,GAT}

That is n(A)=6

So, the probability that the governor is included in the sample,

[tex]P(A)=\frac{n(A)}{n(S)} \\=\frac{6}{10}\\ =0.6[/tex]

Part(b):

Let B denotes the event that the government attorney general and the treasure are included in the sample.

B={GAT}

That is n(B)=1

Hence, the probability that the government attorney general and the treasure are included in the sample is,

[tex]P(B)=\frac{n(B)}{n(S)} \\=\frac{1}{10} \\=0.1[/tex]

Learn More:https://brainly.com/question/6077878

Answer 2

(a) Probability of governor included: 6/10 = 0.6.

(b) Probability of governor and attorney general included: 1/10 = 0.1.

let's break it down in detail:

(a) Probability that the governor is included in the sample:

To find this probability, we need to count how many of the possible samples include the governor. From the list of all possible samples:

1. {G, L, S}

2. {G, L, A}

3. {G, L, T}

4. {G, S, A}

5. {G, S, T}

6. {G, A, T}

We see that in 6 out of 10 samples, the governor is included. Thus, the probability of the governor being included in the sample is [tex]\( \frac{6}{10} = 0.6 \).[/tex]

(b) Probability that the governor and the attorney general are included in the sample:

To find this probability, we need to count how many of the possible samples include both the governor and the attorney general. Looking at the list of all possible samples again:

1. {G, L, S}

2. {G, L, A}

3. {G, L, T}

4. {G, S, A}

5. {G, S, T}

6. {G, A, T}

7. {L, S, A}

8. {L, S, T}

9. {L, A, T}

10. {S, A, T}

We see that only in one out of the 10 samples, both the governor and the attorney general are included (sample number 2). Thus, the probability of both the governor and the attorney general being included in the sample is [tex]\( \frac{1}{10} = 0.1 \).[/tex]

So, to summarize:

(a) Probability that the governor is included in the sample: 0.6

(b) Probability that the governor and the attorney general are included in the sample: 0.1


Related Questions

If f '(5) = 0 and f ''(5) = 0, what can you say about f ?

A. At x = 5, f has a local maximum.
B. At x = 5, f has a local minimum.
C. At x = 5, f has neither a maximum nor a minimum.
D. More information is needed to determine if f has a maximum or minimum at x = 5.

Answers

Answer:

D)

Step-by-step explanation:

Remember, if a is critical point of f then f'(a)=0. And criterion of the second derivative says that if a is a critical point of f and

1. if [tex]f''(a)<0[/tex] then f has a relative maximum in (a,f(a)),

2. if [tex]f''(a)>0[/tex] then f has a relative minimum in (a,f(a)),

3. if [tex]f''(a)=0,[/tex] Then the criterion does not decide. That is,  f may have a relative maximum at a, a relative minimum at (a, f (a)) or neither.

Since [tex]f'(5)=0[/tex] then 5 is a critical point of f. Now we apply the second criterium:

since [tex]f''(5)=0[/tex] then the criterium doesn't decide, that means, more information is needed to determine if f has a maximum or minimum at x = 5.

Using the concept of critical point and the second derivative test, it is found that the correct option is:

D. More information is needed to determine if f has a maximum or minimum at x = 5.

The critical points of a function [tex]f(x)[/tex] are the values of x for which [tex]f^{\prime}(x) = 0[/tex].

Applying the second derivative test, we have that:

If positive, that is, [tex]f^{\prime\prime}(x) > 0[/tex], it is a relative minimum.If negative, that is, [tex]f^{\prime\prime}(x) < 0[/tex], it is a relative maximum.If zero, that is, [tex]f^{\prime\prime}(x) = 0[/tex], we do not have sufficient information.

In this problem:

[tex]f^{\prime}(5) = 0[/tex], thus, at x = 5 is a critical value.[tex]f^{\prime\prime}(5) = 0[/tex], thus, we need more information, which means that the correct option is:

D. More information is needed to determine if f has a maximum or minimum at x = 5.

A similar problem is given at https://brainly.com/question/16944025

A lakefront resort is planning for its summer busy season. It wishes to estimate with 95% confidence the average number of nights each guest will stay for a consecutive visit. Using a sample of guests who stayed last year, the average number of nights per guest is calculated at 5 nights. The standard deviation of the sample is 1.5 nights. The size of the sample used is 120 guests and the resort desires a precision of plus or minus .5 nights. What is the standard error of the mean in the lakefront resort example? Within what range below can the resort expect with 95% confidence for the true population means to fall? Show the calculation; otherwise, the answer will not be accepted.

Answers

Answer:

[tex]SE=\frac{1.5}{\sqrt{120}}=0.137[/tex]

The 95% confidence interval would be given by (4.729;5.271)    

Step-by-step explanation:

1) Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the "range of values below and above the sample statistic in a confidence interval".

The standard error of a statistic is "the standard deviation of its sampling distribution or an estimate of that standard deviation"

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

[tex]\bar X[/tex] represent the sample mean for the sample  

[tex]\mu[/tex] population mean (variable of interest)

s represent the sample standard deviation

n represent the sample size  

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

We use the t distirbution for this case since we don't know the population standard deviation [tex]\sigma[/tex].

Where the standard error is given by: [tex]SE=\frac{s}{\sqrt{n}}[/tex]

And the margin of error would be given by: [tex]ME=t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:

[tex]df=n-1=120-1=119[/tex]

Since the Confidence is 0.95 or 95%, the value of [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and we can use excel, a calculator or a table to find the critical value. And we see that [tex]t_{\alpha/2}=1.98[/tex]

The standard error would be given by:

[tex]SE=\frac{1.5}{\sqrt{120}}=0.137[/tex]

Now we have everything in order to replace into formula (1) and calculate the interval:

[tex]5-1.98\frac{1.5}{\sqrt{120}}=4.729[/tex]    

[tex]5+1.98\frac{1.5}{\sqrt{120}}=5.271[/tex]

So on this case the 95% confidence interval would be given by (4.729;5.271)    

Final answer:

The standard error of the mean (SE) is calculated to be 0.137, allowing the resort to expect the true average number of nights per guest to fall within a range of approximately 4.73 to 5.27 nights with 95% confidence.

Explanation:

The standard error of the mean (SE) is calculated by dividing the sample standard deviation by the square root of the sample size. In this case, the standard error is 1.5 / sqrt(120) = 0.137. With a confidence level of 95%, the resort can expect the true average number of nights to fall within approximately 5 - 1.96 * 0.137 nights to 5 + 1.96 * 0.137 nights, which is roughly between 4.73 and 5.27 nights.

Of the total population of american households, including older americans and perhaps some not so old, 17.3 % recieve retiremet income. in a random sampple of 120 hoseholds, what is the probability that more than 20 household but fewer than 35 household recieve a retirement income?

Answers

Answer:20 hoseholds, what is the probability that more than

Step-by-step explanation:

A data set includes data from student evaluations of courses.
The summary statistics are n=80​, x overbar =4.39​, s =2.29.

Use a 0.05 significance level to test the claim that the population of student course evaluations has a mean equal to 4.50.

Assume that a simple random sample has been selected.

Identify the null and alternative​ hypotheses, test​ statistic, P-value, and state the final conclusion that addresses the original claim.

Answers

Answer:

We fail to reject the null hypothesis at the significance level of 0.05.

Step-by-step explanation:

We have a larga sample size of n = 80, [tex]\bar{x} = 4.39[/tex] and s = 2.29. We want to test

[tex]H_{0}: \mu = 4.50[/tex] vs [tex]H_{1}: \mu \neq 4.50[/tex] (two-tailed alternative)  

Because we have a large sample, our test statistic is

[tex]Z = \frac{\bar{X}-4.50}{s/\sqrt{n}}[/tex] which is normal standard approximately. We have the observed value

[tex]z_{0} = \frac{4.39-4.50}{2.29/\sqrt{80}} = -0.4296[/tex].

The p-value is given by 2P(Z < -0.4296) = (2)(0.3337) = 0.6674 (because of the simmetry of the normal density)

With the significance level [tex]\alpha = 0.05[/tex], we fail to reject the null hypothesis because the p-value is greater than 0.05.

The null hypothesis is: [tex]H_0: \mu = 4.5[/tex]The alternative hypothesis is: [tex]H_1: \mu \neq 4.50[/tex]The test statistic is: [tex]t = -0.43[/tex]The p-value of the test is of [tex]0.6684[/tex].The p-value is of 0.6684 > 0.05, which means that we can conclude that the population of student course evaluations has a mean equal to 4.50.

We are going to test if the mean is equals to 4.50, thus, the null hypothesis is:

[tex]H_0: \mu = 4.5[/tex]

At the alternative hypothesis, we test if the mean is different to 4.50, that is:

[tex]H_1: \mu \neq 4.50[/tex]

Since we have the standard deviation for the sample, the t-distribution is used. The value of the test statistic is:

[tex]t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}[/tex]

For this problem:

[tex]t = \frac{4.39 - 4.5}{\frac{2.29}{\sqrt{80}}}[/tex]

[tex]t = -0.43[/tex]

We are testing if the mean is different from a value, thus, the p-value of test is found using a two-tailed test, with [tex]t = -0.43[/tex] and 80 - 1 = 79 df.

Using a t-distribution calculator, the p-value is of 0.6684.

The p-value is of 0.6684 > 0.05, which means that we can conclude that the population of student course evaluations has a mean equal to 4.50.

A similar problem is given at https://brainly.com/question/24989605

please solve quick!! i really need it!!

Answers

Answer:

  [tex]\dfrac{1}{x^2}+\dfrac{y^2}{x^4}[/tex]

Step-by-step explanation:

Separate the fraction(s) at the plus sign and simplify.

[tex]\dfrac{x^2+y^2}{x^4}=\dfrac{x^2}{x^4}+\dfrac{y^2}{x^4}\\\\=\dfrac{1}{x^2}+\dfrac{y^2}{x^4}[/tex]

Verify The Sum & Difference Identity:

cos(x + y) / sin(x - y) = 1 - cotxcoty / cotx - coty

I’ve struggled with this problem over the last couple of days. Any help is appreciated!

Answers

The sum and difference identity cos(x + y) / sin(x - y) = 1 - cotxcoty / cotx - coty is verified

Solution:

Given expression is:

[tex]\frac{\cos (x+y)}{\sin (x-y)}=\frac{1-\cot x \cot y}{\cot x-\cot y}[/tex]

Let us first solve L.H.S

[tex]\frac{\cos (x+y)}{\sin (x-y)}[/tex]    ------ EQN 1

We have to use the sum and difference formulas

cos(A + B) = cosAcosB – sinAsinB  

sin(A - B) = sinAcosB – cosAsinB

Applying this in eqn 1 we get,

[tex]=\frac{\cos x \cos y-\sin x \sin y}{\sin x \cos y-\sin y \cos x}[/tex]

[tex]\text { Taking sinx } \times \text { siny as common }[/tex]

[tex]=\frac{\sin x \sin y\left(\frac{\cos x \cos y}{\sin x \sin y}-1\right)}{\sin x \sin y\left(\frac{\cos y}{\sin y}-\frac{\cos x}{\sin x}\right)}[/tex]

[tex]\begin{array}{l}{=\frac{\frac{\cos x}{\sin x} \times \frac{\cos y}{\sin y}-1}{\frac{\cos y}{\sin y}-\frac{\cos x}{\sin x}}} \\\\ {=\frac{\cot x \times \cot y-1}{\cot y-\cot x}} \\\\ {=\frac{\cot x \cot y-1}{\cot y-\cot x}}\end{array}[/tex]

Taking -1 as common from numerator and denominator we get,

[tex]\begin{array}{l}{=\frac{-(1-\cot x \cot y)}{-(\cot x-\cot y)}} \\\\ {=\frac{(1-\cot x \cot y)}{(\cot x-\cot y)}}\end{array}[/tex]

= R.H.S

Thus L.H.S = R.H.S

Thus the given expression has been verified using sum and difference identity

What is unit price ? Use in your own words . ​

Answers

Unit price means the cost per unit.

I'll provide an example.

If 4 bars of soap cost $2.35, find the unit price. Round to the nearest cent if necessary.

Remember that the unit price is the cost per unit which in this case is the cost per bar of soap. Since $2.35 is the cost for 4 bars of soap, to find the cost per bar of soap, we divide 4 into $2.35.

When we do this, we get an answer of 0.587 which rounds up to 59 cents.

Therefore, the unit price for soap is 59 cents.

Point C is 13 of the way from point A to point B. Which statement is NOT true?




A. Point C divides segment AB so that AC:CB is 1:3.



B. If AC = 5, then CB = 10.



C. Point C is 2/3 of the way from point B to point A.



D. Point C divides segment AB in a ratio of 1:2.

Answers

Answer:

  A. Point C divides segment AB so that AC:CB is 1:3

Step-by-step explanation:

Like many multiple-choice questions, you don't actually need to know how to work the problem. You just need to know what the question means.

Comparing answers, you see that choices A and D cannot both be right. You also note that choice D says the same thing as choice B.

Since there is only one False answer, it must be choice A.

__

When the division is into segments that are 1/3 the length and 2/3 the length, the segments have the ratio ...

  (1/3) : (2/3) = 1 : 2

Final answer:

The incorrect statement is B. If AC = 5, then CB should be 15, not 10, because CB would be twice the length of AC, given that point C is 1/3 of the way from A to B.

Explanation:

The question asks us to identify which statement about point C being 1/3 of the way from point A to point B on a line segment is NOT true. Let's analyze each statement.

A. Point C divides segment AB so that AC:CB is 1:3. Since point C is 1/3 of the way from A to B, this statement is true because for every 1 part AC, there are 3 parts CB, making the ratio of AC to CB 1:3.B. If AC = 5, then CB = 10. This statement is false because if AC represents 1/3 of the total distance, then CB should be twice as long as AC (since it would represent 2/3), making CB = 15 if AC = 5.C. Point C is 2/3 of the way from point B to point A. This is true if we consider the direction from B to A, as C would be 1/3 of the way from A to B, or 2/3 from B to A.D. Point C divides segment AB in a ratio of 1:2. This statement is also false because based on the given condition, it should divide AB in a ratio of 1:3, not 1:2.

The answer is statement B. If AC = 5, then CB would not be 10; it would be 15 since it is twice the length of AC, given point C is 1/3 of the way from A to B.

Suppose a random sample of size 60 is selected from a population withσ = 10.Find the value of the standard error of the mean in each of the following cases. (Use the finite population correction factor if appropriate. Round your answers to two decimal places.)(a)The population size is infinite.Correct: Your answer is correct.(b)The population size isN = 60,000.Correct: Your answer is correct.(c)The population size isN = 6,000.Incorrect: Your answer is incorrect.(d)The population size isN = 600.Incorrect: Your answer is incorrect.

Answers

Answer:

a) 1.29

b) 1.29

c) 1.28

d) 1.23

Step-by-step explanation:

We are given the following in the question:

Sample size, n = 60

Population standard Deviation = 10

a) Standard error with infinite population

[tex]\text{Standard error} = \displaystyle\frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{60}} = 1.29[/tex]

For finite population with size N,

[tex]\text{Standard error} = \sqrt{\displaystyle\frac{N-n}{N-1}}\times \displaystyle\frac{\sigma}{\sqrt{n}}[/tex]

b) N = 60,000

[tex]\text{Standard error} = \sqrt{\displaystyle\frac{60000-50}{60000-1}}\times \displaystyle\frac{10}{\sqrt{60}} = 1.29[/tex]

c) N = 6,000

[tex]\text{Standard error} = \sqrt{\displaystyle\frac{6000-50}{6000-1}}\times \displaystyle\frac{10}{\sqrt{60}} = 1.28[/tex]

d) N = 600

[tex]\text{Standard error} = \sqrt{\displaystyle\frac{600-50}{600-1}}\times \displaystyle\frac{10}{\sqrt{60}} = 1.23[/tex]

Final answer:

To find the standard error of the mean, use the formula σx/√n for infinite population size and σx/√n * √((N - n)/(N - 1)) for finite population size. Use the finite population correction factor when the sample size is not negligible relative to the population size.

Explanation:

To find the value of the standard error of the mean in each case, we need to use the formula for the standard error of the mean, which is σx/sqrt(n), where σ is the population standard deviation and n is the sample size.

a) Case with infinite population size:

If the population size is infinite, we don't need to use the finite population correction factor. So, the standard error of the mean would be σ/√n.

b) Case with N = 60,000:

In this case, the population size is finite, but the sample size is less than 5% of the population size. Therefore, we can still consider the population as effectively infinite. So, the standard error of the mean would be σ/√n.

c) Case with N = 6,000:

In this case, the population size is finite and the sample size is not negligible relative to the population size. Therefore, we need to use the finite population correction factor, which is √((N - n)/(N - 1)). So, the standard error of the mean would be σ/√n * √((N - n)/(N - 1)).

d) Case with N = 600:

In this case, the population size is finite and the sample size is not negligible relative to the population size. Therefore, we need to use the finite population correction factor. So, the standard error of the mean would be σ/√n * √((N - n)/(N - 1)).

Learn more about Standard Error of the Mean here:

https://brainly.com/question/14524236

#SPJ3

In 2008, the Centers for Disease Control and Prevention reported that 34% of adults in the United States are obese. A country health service planning a new awareness campaign polls a random sample of 750 adults living there. In this sample, 228 people were found to be obese based on their answers to a health questionnaire. Do these response provide strong evidence that the 34% figure is not accurate for this region?

Answers

Answer: No, these response does not provide strong evidence that the 34% figure is not accurate for this region.

Step-by-step explanation:

Since we have given that

p = 0.34

x= 228

n = 750

So, [tex]\hat{p}=\dfrac{x}{n}=\dfrac{228}{750}=0.304[/tex]

So, hypothesis would be

[tex]H_0:p=\hat{p}\\\\H_a:p\neq \hat{p}[/tex]

So, test statistic value would be

[tex]z=\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}}\\\\z=\dfrac{0.304-0.38}{\sqrt{\dfrac{0.38\times 0.62}{750}}}\\\\z=\dfrac{-0.076}{0.0177}\\\\z=-4.293[/tex]

At 95% confidence , z = 1.96

So, 1.96>-4.293.

So, we accept the null hypothesis.

No, these response does not provide strong evidence that the 34% figure is not accurate for this region.

The observed data doesn't provide enough evidence to suggest that the 34% figure reported by the CDC is inaccurate for this region.

let's break down the hypothesis test step by step with more detail.

1. Setting up the Hypotheses:

- Null Hypothesis (H0):The true proportion of obese adults in the region is 34%.

- Alternative Hypothesis (H1):The true proportion of obese adults in the region is not 34%.

2. Calculating the Expected Number of Obese Individuals:

To calculate the expected number of obese individuals in the sample under the assumption that the true proportion is 34%, we use the formula:

[tex]\[ \text{Expected number of obese individuals} = \text{Proportion} \times \text{Sample size} \][/tex]

So,

[tex]\[ \text{Expected number of obese individuals} = 0.34 \times 750 = 255 \][/tex]

3. Checking Conditions:

- The sample is randomly selected.

- The sample size is large enough for the Central Limit Theorem to apply (n = 750).

- Since the population size isn't provided, we'll assume it's much larger than the sample size (which is often the case with populations of adults in countries).

4. Calculating the Z-Score:

The formula for the z-score is:

[tex]\[ z = \frac{{\text{Observed proportion} - \text{Expected proportion}}}{{\sqrt{\frac{{\text{Expected proportion} \times (1 - \text{Expected proportion})}}{{\text{Sample size}}}}}} \][/tex]

So,

[tex]\[ z = \frac{{\frac{228}{750} - \frac{255}{750}}}{{\sqrt{\frac{255}{750} \times \frac{495}{750}}}} \]\[ z \approx \frac{{0.304 - 0.34}}{{\sqrt{\frac{191.25}{750}}}} \]\[ z \approx \frac{{-0.036}}{{\sqrt{0.255}}} \]\[ z \approx \frac{{-0.036}}{{0.505}} \]\[ z \approx -0.071 \][/tex]

5. Finding Critical Z-Value:

For a two-tailed test with a significance level of 0.05, the critical z-values are approximately ±1.96.

6. Making a Decision:

Since the calculated z-score (-0.071) falls within the range (-1.96, 1.96), we fail to reject the null hypothesis. This means there is not enough evidence to conclude that the true proportion of obese adults in the region is different from 34%.

In conclusion, based on the provided sample data, we cannot confidently claim that the 34% figure reported by the CDC is inaccurate for this region.

A small stock brokerage firm wants to determine the average daily sales (in dollars) of stocks to their clients.A sample of the sales for 36 days revealed average daily sales of $200,000. Assume that the standard deviation of the population is known to be $18,000.

a. Provide a 95% confidence interval estimate for the average daily sale.

b. Provide a 97% confidence interval estimate for the average daily sale.

Answers

Answer:

Step-by-step explanation:

a) For a 95% confidence level: [tex]\( \$194,120 \) to \( \$205,880 \)[/tex]

b) For a 97% confidence level: [tex]\( \$193,490 \) to \( \$206,510 \)[/tex]

To solve this problem, we'll use the information provided and apply the formula for a confidence interval estimate for the population mean when the population standard deviation is known.

Given data:

- Sample size n: 36 days

- Sample mean [tex](\( \bar{x} \))[/tex]: $200,000

- Population standard deviation [tex](\( \sigma \)): $18,000[/tex]

(a) 95% Confidence Interval

For a 95% confidence interval, the critical value [tex]\( z^* \)[/tex] from the standard normal distribution is approximately 1.96.

The formula for the confidence interval is:

[tex]\[ \text{CI} = \bar{x} \pm z^* \cdot \frac{\sigma}{\sqrt{n}} \][/tex]

Calculate the standard error:

[tex]\[ SE = \frac{\sigma}{\sqrt{n}} = \frac{18,000}{\sqrt{36}} = \frac{18,000}{6} = 3,000 \][/tex]

Now, construct the confidence interval:

[tex]\[ \text{CI} = 200,000 \pm 1.96 \cdot 3,000 \][/tex]

[tex]\[ \text{CI} = 200,000 \pm 5,880 \][/tex]

Therefore, the 95% confidence interval estimate for the average daily sale is approximately [tex]\( \$194,120 \) to \( \$205,880 \)[/tex].

(b) For a 97% confidence interval, the critical value [tex]\( z^* \)[/tex] from the standard normal distribution is approximately 2.17.

Calculate the confidence interval using the same formula with the updated [tex]\( z^* \):[/tex]

[tex]\[ \text{CI} = \bar{x} \pm z^* \cdot \frac{\sigma}{\sqrt{n}} \][/tex]

[tex]\[ \text{CI} = 200,000 \pm 2.17 \cdot 3,000 \][/tex]

[tex]\[ \text{CI} = 200,000 \pm 6,510 \][/tex]

Therefore, the 97% confidence interval estimate for the average daily sale is approximately [tex]\( \$193,490 \) to \( \$206,510 \)[/tex].

Quadrilateral EFGH is on a coordinate plane. Which statement is true?

Answers

Answer:

  see below

Step-by-step explanation:

Opposite sides are parallel in a parallelogram, so if they have different slope, the figure will not be a parallelogram.

_____

Comments on other answer choices

If the slope of diagonal EG is perpendicular to that of diagonal FH, it only proves the figure is some sort of kite. The figure may or may not be a parallelogram.

Adjacent sides being different lengths does not prove anything (except that the figure is not a rhombus).

Proving angle F is a right angle does not prove anything else about the shape of the figure. The figure may or may not be a parallelogram. (If it is a parallelogram, it is also a rectangle.)

Answer:

Have no fear, the answer is top left GIVE BRANLIEST PLZ

Step-by-step explanation:

The monthly starting salaries of students who receive an MBA degree have a population standard deviation of $120. What sample size should be selected to obtain a .95 probability of estimating the population mean monthly income within a margin of $20? [sample size]

Answers

Answer:

138

Step-by-step explanation:

Population standard deviation = [tex]\sigma = 120[/tex]

.95 probability of estimating the population mean monthly income within a margin of $20

So, Significance level = 1-0.95 = 0.05

α =0.05

Margin error = 20

[tex]ME =Z \times \frac{\sigma}{\sqrt{n}}[/tex]

Z at 0.05 = 1.96

[tex]20 =1.96 \times \frac{120}{\sqrt{n}}[/tex]

[tex]\sqrt{n} =1.96 \times \frac{120}{20}[/tex]

[tex]n =(1.96 \times \frac{120}{20})^2[/tex]

[tex]n =138.2976[/tex]

So, n = 138

Hence sample size should be 138 selected to obtain a .95 probability of estimating the population mean monthly income within a margin of $20

You work for a robotics company that is making a new line of hamburger-making robots to be sold to fast-food chains. This is a big-ticket item, so sales will be slow at first, but should pick up over time. Your marketing department estimates that the sales growth rate will increase linearly by 2 robots per month per month. In the first month (t 0), for which you have already booked sales for 10 units, the growth rate is expected to be 5 robots per month. How many total robots do you expect to sell by the end of the tenth month (t = 9)?

Answers

Answer:

565 robots

Step-by-step explanation:

We can do this numerically, month by month:

At t = 0, sale is 10 units. Growth rate is 5 robots per month.

At t = 1, sale is 15 units. Growth rate is 7 robots per month.

At t = 2, sale is 22 units. Growth rate is 9 robots per month.

At t = 3, sale is 31 units. Growth rate is 11 robots per month.

At t = 4, sale is 42 units. Growth rate is 13 robots per month.

At t = 5, sale is 55 units. Growth rate is 15 robots per month.

At t = 6, sale is 70 units. Growth rate is 17 robots per month.

At t = 7, sale is 87 units. Growth rate is 19 robots per month.

At t = 8, sale is 106 units. Growth rate is 21 robots per month.

At t = 9, sale is 127 units. Growth rate is 23 robots per month.

So the total robots we can expect to sell by the end of tenth month is

565 robots.

Evaluate the expression C(190,1)

Answers

Answer:

  190

Step-by-step explanation:

C(n, k) = n!/(k!(n -k)!)

C(190, 1) = 190!/(1!(189!)) = 190/1 = 190

The number of combinations of 190 things taken 1 at a time is 190.

A soft drink filling machine, when in perfect adjustment, fills the bottles with 12 ounces of soft drink. A random sample of 49 bottles is selected, and the contents are measured. The sample yielded a mean content of 11.88 ounces with a standard deviation of 0.35 ounces. Please test if the machine fills the bottles with 12 ounces.

Answers

Answer:

yes

Step-by-step explanation:

Determine whether the function is a linear transformation. T: P2 → P2, T(a0 + a1x + a2x2) = (a0 + a1 + a2) + (a1 + a2)x + a2x2.

Answers

Answer with Step-by-step explanation:

We are given that a function

[tex]T:P_2\rightarrow P_2[/tex]

[tex]T(a_0+a_1x+a_2x^2)=(a_0+a_1+a_2)+(a_1+a_2)x+a_2x^2[/tex]

We have to determine the given function is a linear transformation.

If a function is linear transformation then it satisfied following properties

[tex]1.T(x+y)=T(x)+T(y)[/tex]

2.[tex]T(ax)=aT(x)[/tex]

[tex]T(a_0+a_1x+a_2x^2+b_0+b_1x+b_2x^2)=T((a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2)=(a_0+b_0+a_1+b_1+a_2+b_2)+(a_1+b_1+a_2+b_2)x+(a_2+b_2)x^2[/tex]

[tex]T(a_0+a_1x+a_2x^2+b_0+b-1x+b_2x^2)=(a_0+a_1+a_2)+(a_1+a_2)x+a_2x^2+(b_0+b_1+b_2)+(b_1+b_2)x+b_2x^2[/tex]

[tex]T(a_0+a_1x+a_2x^2+b_0+b-1x+b_2x^2)=T(a_0+a_1x+a_2x^2)+T(b_0+b_1x+b_2x^2)[/tex]

[tex]T(a(a_0+a_1x+a_2x^2))=T(aa_0+aa_1x+aa_2x^2)[/tex]

[tex]T(a(a_0+a_1x+a_2x^2))=(aa_0+aa_1+aa_2)+(aa_1+aa_2)x+(aa_2)x^2[/tex]

[tex]T(a(a_0+a_1x+a_2x^2))=a(a_0+a_1+a_2)+a(a_1+a_2)x+aa_2x^2=a((a_0+a_1+a_2)+(a_1+a_2)x+a_2x^2)=aT(a_0+a_1x+a_2x^2)[/tex]

Hence, the function is a linear transformation because it satisfied both properties of linear transformation.

[tex]\( T \)[/tex] satisfies both additivity and scalar multiplication, [tex]\( T \)[/tex] is indeed a linear transformation.

To determine if the function [tex]\( T: P2 \to P2 \)[/tex], defined by [tex]\( T(a_0 + a_1 x + a_2 x^2) = (a_0 + a_1 + a_2) + (a_1 + a_2)x + a_2 x^2 \)[/tex], is a linear transformation, we need to check two properties:

1. Additivity: [tex]\( T(u + v) = T(u) + T(v) \) for all \( u, v \in P2 \)[/tex].

2. Scalar Multiplication: [tex]\( T(cu) = cT(u) \) for all \( u \in P2 \) and \( c \in \mathbb{R} \)[/tex].

Let's verify these properties:

Additivity Check

Let [tex]\( u = a_0 + a_1 x + a_2 x^2 \) and \( v = b_0 + b_1 x + b_2 x^2 \)[/tex].

Compute [tex]\( T(u + v) \)[/tex]:

[tex]\[u + v = (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^2\][/tex]

[tex]\[T(u + v) = [(a_0 + b_0) + (a_1 + b_1) + (a_2 + b_2)] + [(a_1 + b_1) + (a_2 + b_2)]x + (a_2 + b_2)x^2\][/tex]

[tex]\[T(u + v) = [(a_0 + a_1 + a_2) + (b_0 + b_1 + b_2)] + [(a_1 + a_2) + (b_1 + b_2)]x + (a_2 + b_2)x^2\][/tex]

Compute [tex]\( T(u) + T(v) \)[/tex]:

[tex]\[T(u) = (a_0 + a_1 + a_2) + (a_1 + a_2)x + a_2 x^2\][/tex]

[tex]\[T(v) = (b_0 + b_1 + b_2) + (b_1 + b_2)x + b_2 x^2\][/tex]

[tex]\[T(u) + T(v) = [(a_0 + a_1 + a_2) + (b_0 + b_1 + b_2)] + [(a_1 + a_2) + (b_1 + b_2)]x + (a_2 + b_2)x^2\][/tex]

Since [tex]\( T(u + v) = T(u) + T(v) \)[/tex], the function [tex]\( T \)[/tex] satisfies additivity.

Scalar Multiplication Check

Let [tex]\( u = a_0 + a_1 x + a_2 x^2 \)[/tex] and [tex]\( c \in \mathbb{R} \)[/tex].

Compute [tex]\( T(cu) \)[/tex]:

[tex]\[cu = c(a_0 + a_1 x + a_2 x^2) = (ca_0) + (ca_1)x + (ca_2)x^2\][/tex]

[tex]\[T(cu) = [(ca_0) + (ca_1) + (ca_2)] + [(ca_1) + (ca_2)]x + (ca_2)x^2\][/tex]

[tex]\[T(cu) = c[(a_0 + a_1 + a_2) + (a_1 + a_2)x + a_2 x^2]\][/tex]

Compute [tex]\( cT(u) \)[/tex]:

[tex]\[T(u) = (a_0 + a_1 + a_2) + (a_1 + a_2)x + a_2 x^2\][/tex]

[tex]\[cT(u) = c[(a_0 + a_1 + a_2) + (a_1 + a_2)x + a_2 x^2]\][/tex]

Since [tex]\( T(cu) = cT(u) \)[/tex], the function [tex]\( T \)[/tex] satisfies scalar multiplication.

A school district has two high schools. The district could only afford to hire 13 guidance counselors. Determine how many counselors should be assigned to each school using Hamilton's method. School Students Enrolled Counselors to Assign Lowell 3584 Fairview 6816 The next year, a new school is opened, with 1824 students. Using the divisor from above, determine how many additional counselors should be hired for the new school: counselors.

Answers

a. Using Hamilton's method, 4 counselors should be assigned to Lowell, and 9 counselors should be assigned to Fairview.

b. The same divisor, 2 counselors should be hired for the new school.

Hamilton's method is used to allocate resources, such as counselors, among several entities based on a certain divisor. The divisor is typically calculated by dividing the total number of students by the total number of counselors available.

Let's start by determining the divisor and assigning counselors to each school based on the given information:

1. Calculate the divisor:

[tex]\[ \text{Divisor} = \frac{\text{Total Students}}{\text{Total Counselors}} \]\\\text{Divisor} = \frac{3584 + 6816}{13} = \frac{10400}{13} \approx 800 \][/tex]

2. Assign counselors to each school:

[tex]\[ \text{Counselors Assigned to Lowell} = \frac{\text{Students Enrolled in Lowell}}{\text{Divisor}} \][/tex]

[tex]\[ \text{Counselors Assigned to Fairview} = \frac{\text{Students Enrolled in Fairview}}{\text{Divisor}} \][/tex]

[tex]\[ \text{Counselors Assigned to Lowell} = \frac{3584}{800} = 4.48 \approx 4 \][/tex]

[tex]\[ \text{Counselors Assigned to Fairview} = \frac{6816}{800} = 8.52 \approx 9 \][/tex]

So, using Hamilton's method, 4 counselors should be assigned to Lowell, and 9 counselors should be assigned to Fairview.

3. New School:

  If a new school with 1824 students is opened, we can use the same divisor to determine how many additional counselors should be hired for the new school:

[tex]\[ \text{Counselors for New School} = \frac{\text{Students in New School}}{\text{Divisor}} \][/tex]

[tex]\[ \text{Counselors for New School} = \frac{1824}{800} = 2.28 \approx 2 \][/tex]

So, using the same divisor, 2 counselors should be hired for the new school.

Circle the best answer. The choice between a z-test and a t-test for a population mean depends primarily on: a. the sample size. b. the level of significance. c. whether a one- or two-tailed test is indicated. d. whether the given standard deviation is from the population or the sample. e. a z-test should never be used. 3

Answers

Answer:

a)The sample size

Step-by-step explanation:

t - student distribution should be used whe we are facing a Normal Distribution population andwhen a sample size n is below 30.

t- student distribution is also a associated to a bell shape but is more flat and the values are more spread, tails are much more wide.

t- student use the concept of degree of fredom ( each degree of fredom correspont to an specific curve). As degree of fredom increase the curves become more close to a bell shape. For  n = 30 t-student curve is  a bell shape one

A dormitory has 40 students---12 sophomores, 8 juniors, and 20 seniors. Which of the following is equal to the number of ways to put all 40 in a row for a picture, with all 12 sophomores on the left, all 8 juniors in the middle, and all 20 seniors on the right?

Answers

Answer:

The number of ways is equal to [tex]12!8!20![/tex]

Step-by-step explanation:

The multiplication principle states that If a first experiment can happen in n1 ways, then a second experiment can happen in n2 ways ... and finally a i-experiment can happen in ni ways therefore the total ways in which the whole experiment can occur are

n1 x n2 x ... x ni

Also, given n-elements in which we want to put them in a row, the total ways to do this are n! that is n-factorial.

For example : We want to put 4 different objects in a row.

The total ways to do this are [tex]4!=4.3.2.1=24[/tex] ways.

Using the multiplication principle and the n-factorial number :

The number of ways to put all 40 in a row for a picture, with all 12 sophomores on the left,all 8 juniors in the middle, and all 20 seniors on the right are : The total ways to put all 12 sophomores in a row multiply by the ways to put the 8 juniors in a row and finally multiply by the total ways to put all 20 senior in a row ⇒ [tex]12!8!20![/tex]

Final answer:

There are 1.1657416 × 10^30 ways to arrange the students in a row with all the sophomores on the left, juniors in the middle, and seniors on the right.

Explanation:

To find the number of ways to arrange the students in a row with all the sophomores on the left, juniors in the middle, and seniors on the right, we need to calculate the permutations of each group and then multiply them together.

The number of ways to arrange the 12 sophomores is 12!, which is 479,001,600.

The number of ways to arrange the 8 juniors is 8!, which is 40,320.

The number of ways to arrange the 20 seniors is 20!, which is 2,432,902,008,176,640,000.

Multiplying these three numbers together, we get a total of 1.1657416 × 10^30 ways to arrange all the students in a row for a picture.

Learn more about Permutations here:

https://brainly.com/question/23283166

#SPJ3

Determine whether or not the random variable X is a binomial random variable. If so, give the values of n and p. If not, explain why not. a. X is the number of dots on the top face of fair die that is rolled. b. X is the number of defective parts in a sample of ten randomly selected parts coming from a manufacturing process in which 0.02% of all parts are defective.

Answers

Answer:

Both are binomials.

Step-by-step explanation:

Given that

a) X is the number of dots on the top face of fair die that is rolled.

When a fair die is rolled, there will be 1 to 6 numbers on each side with dots in that.  Each time a die is rolled the events are independent.  Hence probability of getting a particular number in the die is 1/6. There will be two outcomes either the number or not the number.  Hence X no of times we get a particular number of dots on the top face of fair die that is rolled is binomial with n = no of rolls, and p = 1/6

b) X is the number of defective parts in a sample of ten randomly selected parts coming from a manufacturing process in which 0.02% of all parts are defective.

Here X has two outcomes whether defective or non defective.  EAch part is independent of the other in the sense that the probability for each trial is constant with 0.02% =p and no of trials = n = 10.

Beaker A contains 1 liter which is 30 percent oil and the rest is vinegar, thoroughly mixed up. Beaker B contains 2 liters which is 40 percent oil and the rest vinegar, completely mixed up. Half of the contents of B are poured into A, then completely mixed up. How much oil should now be added to A to produce a mixture which is 60 percent oil?

Answers

Answer:

1.25 liters of oil

Step-by-step explanation:

Volume in Beaker A = 1 L

Volume of Oil in Beaker A = 1*0.3 = 0.3 L

Volume of Vinegar in Beaker A = 1*0.7 = 0.7 L

Volume in Beaker B = 2 L

Volume of Oil in Beaker B = 2*0.4 = 0.8 L

Volume of Vinegar in Beaker B = 1*0.6 = 1.2 L

If half of the contents of B are poured into A and assuming a homogeneous mixture, the new volumes of oil (Voa) and vinegar (Vva) in beaker A are:

[tex]V_{oa} = 0.3+\frac{0.8}{2} \\V_{oa} = 0.7 \\V_{va} = 0.7+\frac{1.2}{2} \\V_{va} = 1.3[/tex]

The amount of oil needed to be added to beaker A in order to produce a mixture which is 60 percent oil (Vomix) is given by:

[tex]0.6*V_{total} = V_{oa} +V_{omix}\\0.6*(V_{va}+V_{oa} +V_{omix}) = V_{oa} +V_{omix}\\0.6*(1.3+0.7+V_{omix})=0.7+V_{omix}\\V_{omix}=\frac{0.5}{0.4} \\V_{omix}=1.25 \ L[/tex]

1.25 liters of oil are needed.

There is 1.25 litres of oil that should now be added to A to produce a mixture that is 60 per cent oil.

Given

Beaker A contains 1 litre which is 30 per cent oil and the rest is vinegar, thoroughly mixed up.

Beaker B contains 2 litres which are 40 per cent oil and the rest vinegar, completely mixed up.

Half of the contents of B are poured into A, then completely mixed up.

How much oil is in each container?

Contents in beaker A implies;

15% of oil in 1 litre = 0.15 litre of oil

So that, there are 0.15 litres of oil and 0.85 litres of vinegar in beaker A.

Contents in beaker B implies:

55% of oil in 2 litres = 1.1 litres of oil

So that, thee are 1.1 litres of oil and 0.9 litres of vinegar in beaker B.

Half of the contents of B poured into A implies that beaker A now contains:

0.15 litres + 0.55 litres = 0.7 litres of oil

0.85 litres + 0.45 litres = 1.3 litres of vinegar

Then,

The percentage of oil in A is;

[tex]=\dfrac{0.7}{2} \times 100\\\\= 35[/tex]

To increase the percentage of oil to 60%, then:

0.7 litres + 1.25 litres = 1.95 litres of oil

And The new total litres of the content in beaker A = 3.25 litres

[tex]=\dfrac{1.95}{3.25}\times 100\\\\=60 \rm \ percent[/tex]

Hence, 1.25 litres of oil should now be added to A to produce a mixture that is 60 per cent oil.

To know more about percentages click the link given below.

https://brainly.com/question/12721886?

A CAT scan of a human pancreas shows cross-sections spaced 1 cm apart. The pancreas is 12 cm long and the cross-sectional areas, in square centimeters, are 0, 7.9, 15.3, 18.1, 10.2, 10.7, 9.5, 8.5, 7.8, 5.6, 4.2, 2.7, and 0. Use the Midpoint Rule to estimate the volume of the pancreas.

Answers

Final answer:

The volume of the pancreas is estimated using the Midpoint Rule by adding the cross-sectional areas and multiplying by the distance between sections, resulting in an estimated volume of 100.5 cubic centimeters.

Explanation:

The question asks us to use the Midpoint Rule to estimate the volume of the human pancreas given its length (12 cm) and cross-sectional areas at 1 cm intervals. To do this, we add up the areas of the cross-sections (excluding the first and last since they're 0) and multiply by the distance between the sections (1 cm). This approach approximates the volume using cylindrical segments where each segment's volume is its cross-sectional area times the height (1 cm).

The given cross-sectional areas are 7.9, 15.3, 18.1, 10.2, 10.7, 9.5, 8.5, 7.8, 5.6, 4.2, and 2.7 square cm. Adding these gives a total of 100.5 square cm. Since the distance between each section is 1 cm, multiplying 100.5 by 1 cm gives an estimated pancreatic volume of 100.5 cubic centimeters.

This method, while not perfectly accurate due to it being an approximation, provides a useful estimate of the volume based on the available data. It's a practical application of the Midpoint Rule in estimating volumes from cross-sectional data.

What is an equation of the line, in point-slope form, that passes through the given point and has the given slope?

point: (11, 3); slope: 4/11

a. y - 3 = 4/11(x + 11)
b. y - 3 = 4/11(x - 11)
c. y - 3 = -4/11( x - 11)
d. y - 11 = 4/11(x - 3)

Answers

Answer:

The answer is  b

Step-by-step explanation:

cause we have the equation y- y1=m(x-x1)

so y-3=4/11(x-11)

A survey of all medium and large-sized corporations showed that 64% of them offer retirement plans to their employees. Let P be the proportion in a random sample of 50 such corporations that offer retirement plans to their employees. Find the probabilty that the value of P will be: a. less than 0.57 b. greater than 0.71

Answers

Answer:

a) 0.9292

b)0.1515

Step-by-step explanation:

Explained in attachment.

Answer:

mwah, thank you so much for posting this question! you just saved my life!! :,)

Step-by-step explanation:

thank you thank you.

Mwah!!!!

According to a survey, 50% of Americans were in 2005 satisfied with their job.Assume that the result is true for the current proportion of Americans. A. Find the mean and standard deviation of the proportion for a sample of1000.

Answers

Answer:

[tex]\mu_{\hat{p}}=0.50\\\\\sigma_{\hat{p}}=0.0158[/tex]

Step-by-step explanation:

The probability distribution of sampling distribution [tex]\hat{p}[/tex] is known as it sampling distribution.

The mean and standard deviation of the proportion is given by :-

[tex]\mu_{\hat{p}}=p\\\\\sigma_{\hat{p}}=\sqrt{\dfrac{p(1-p)}{n}}[/tex]

, where p =population proportion and  n= sample size.

Given : According to a survey, 50% of Americans were in 2005 satisfied with their job.

i.e. p = 50%=0.50

Now, for sample size n= 1000 , the mean and standard deviation of the proportion will be :-

[tex]\mu_{\hat{p}}=0.50\\\\\sigma_{\hat{p}}=\sqrt{\dfrac{0.50(1-0.50)}{1000}}=\sqrt{0.00025}\\\\=0.0158113883008\approx0.0158[/tex]

Hence, the mean and standard deviation of the proportion for a sample of 1000:

[tex]\mu_{\hat{p}}=0.50\\\\\sigma_{\hat{p}}=0.0158[/tex]

Given a line passing through points (1, 0) and (4,9),
what is the slope of the line?

Answers

Answer:

  3

Step-by-step explanation:

The slope (m) is the ratio of the difference in y-values to the corresponding difference in x-values:

  m = (y2 -y1)/(x2 -x1)

  m = (9 -0)/(4 -1) = 9/3

  m = 3

The slope of the line is 3.

Solid fats are more likely to raise blood cholesterol levels than liquid fats. Suppose a nutritionist analyzed the percentage of saturated fat for a sample of 6 brands of stick margarine (solid fat) and for a sample of 6 brands of liquid margarine and obtained the following results: Exam Image Exam Image We want to determine if there a significant difference in the average amount of saturated fat in solid and liquid fats. What is the test statistic? (assume the population data is normally distributed)

Answers

Answer:

t = 34.548

Step-by-step explanation:

Here  X₁ = Solid values / n

              = 26.3 +25.3+26.1+25.6+26.7+25.9/6

             =155.9 / 6

             =25.984

X₂ = Liquid values/n

    = 16.9 +16.6+16.5+17.4+17.4+17.2 / 6

    =102/6 = 17

Formula for the sample standard deviation is

[tex]s = \sqrt {Σ(x - mean )^2/n-1}[/tex]

we get

s₁ = 0.49967

s₂ = 0.3949

Construction of hypothesis

H₀ :μ₁ = μ₂

H₁ : μ₁ ≠ μ₂

Apply test statistic formula we get the value

[tex]t = X_{1}  - X_{2}  /\sqrt{S_{1}^2 /n + S_{2}^2 /n }[/tex]

putting all these values

t = 25.984 - 17 / √ (o.49967)²/6 + (0.39497)²/6

t = 34.548

Final answer:

To determine the test statistic for the difference in the average amount of saturated fat in solid and liquid fats, a two-sample t-test would be performed. Without the specific data, the precise value cannot be calculated. The formula for the test statistic in a two-sample t-test is (mean1 - mean2) / sqrt[(sd1^2/n1) + (sd2^2/n2)].

Explanation:

To answer your question, we want to perform a two-sample t-test to determine if there is a significant difference in the average amount of saturated fat in solid and liquid fats. However, without the specific data of saturated fat percentage in both types of fats, we can't calculate the exact test statistic. The test statistic in a two-sample t-test is calculated using the difference between the two sample means divided by the pooled standard error of the means. The formula is as follows:

Test statistic (t) = (mean1 - mean2) / sqrt[(sd1^2/n1) + (sd2^2/n2)]

Where 'mean1' and 'mean2' are the sample means, 'sd1' and 'sd2' are the sample standard deviations, and 'n1' and 'n2' are the sample sizes of the two sets of data respectively.

Learn more about Test Statistic here:

https://brainly.com/question/33944440

#SPJ11

medical school claims that more than 28% of its students plan to go into general practice. It is found that among a random sample of 130 of the school's students, 39% of them plan to go into general practice. Find the P-Value for a test of the school's claim.

0.9974
0.1635
0.3078
0.0026

Answers

Answer: 0.0026

Step-by-step explanation:

Let p denotes the proportion of students plan to go into general practice.

As per given , we have

Alternative hypothesis : [tex] H_a: p>0.28[/tex]

Since the alternative hypothesis [tex](H_a)[/tex] is right-tailed so the test is  a right-tailed test.

Also , it is given that ,

i.e. sample size : = 130

x= 490

[tex]\hat{p}=0.39[/tex]

Test statistic(z) for population proportion :

[tex]z=\dfrac{\hat{p}-p}{\sqrt{\dfrac{p(1-p)}{n}}}[/tex]

, where p=population proportion.

[tex]\hat{p}[/tex]= sample proportion

n= sample size.

[tex]z=\dfrac{0.39-0.28}{\sqrt{\dfrac{0.28(1-0.28)}{130}}}\\\\=\dfrac{0.11}{0.0393798073988}=2.79330975101\approx2.79[/tex]

P-value for right-tailed test = P(z>2.79)=1-P(z≤ 2.79)  [∵P(Z>z)=1-P(Z≤z)]

=1- 0.9974=0.0026  [using z-value table]

Hence, the  P-Value for a test of the school's claim = 0.0026

Final answer:

To find the p-value for a test of the school's claim, we can use a hypothesis test. The null hypothesis (H0) is that the proportion of students planning to go into general practice is equal to or less than 28%. The alternative hypothesis (Ha) is that the proportion of students planning to go into general practice is greater than 28%. Given that 39% of the sample of 130 students plan to go into general practice, we calculated the test statistic and the p-value to determine that the p-value is 0.3078.

Explanation:

To find the p-value for a test of the school's claim, we can use a hypothesis test. The null hypothesis (H0) is that the proportion of students planning to go into general practice is equal to or less than 28%. The alternative hypothesis (Ha) is that the proportion of students planning to go into general practice is greater than 28%.

Given that 39% of the sample of 130 students plan to go into general practice, we can calculate the test statistic and the p-value. Using a chi-square test, we calculate the test statistic to be approximately 1.307. The degrees of freedom for this test is 1.

Looking up the critical value for a one-tailed test with an alpha level of 0.05 and 1 degree of freedom, the critical value is approximately 3.841. Since the test statistic is less than the critical value, we fail to reject the null hypothesis. Therefore, the p-value is greater than 0.05.

Therefore, the correct answer for the P-value is 0.3078.

Learn more about Hypothesis testing here:

https://brainly.com/question/34171008

#SPJ3

In a survey of 40 Clemson students, it was found that the mean age (in years) when they would like to get married is 27.4 with a standard deviation of 6. How many Clemson students would need to be surveyed to estimate the mean age at which Clemson students would like to get married to within 1.5 years with 90% confidence?

Answers

Answer:

Step-by-step explanation:

Final answer:

To estimate the mean age at which Clemson students would like to get married to within 1.5 years with 90% confidence, we need to survey at least 92 Clemson students.

Explanation:

To estimate the mean age at which Clemson students would like to get married to within 1.5 years with 90% confidence, we need to calculate the sample size needed for this level of precision. The formula to determine the sample size is:

n = (z * σ / E)^2

where n is the required sample size, z is the z-score corresponding to the desired confidence level (in this case 90% confidence level which corresponds to a z-score of 1.645), σ is the standard deviation, and E is the desired margin of error (1.5 years).

Plugging in the values, we get:

n = (1.645 * 6 / 1.5)^2

n = 91.154

Rounding up to the nearest whole number, we need to survey at least 92 Clemson students in order to estimate the mean age at which Clemson students would like to get married to within 1.5 years with 90% confidence.

Other Questions
For the first 50 years after the ratification of theConstitution, Representatives and Senators usually onlyserved for short periods of time because of difficulty intravelling and accommodations.Select one:O TrueFalse According to the real business cycle models, A. the Federal Reserve can affect inflation and real GDP by using monetary policy to influence the money supply. B. inflation can change due to movements in the money supply, however, fluctuations in real GDP are mainly explained by changes in the level of technology. C. wages and prices adjust quickly through rational expectations, so that monetary policy movements will create changes in the money supply which create fluctuations in real GDP. D. changes in the level of technology are the main causes of inflation and fluctuations in real GDP. Two ponies of equal mass are initially at diametrically opposite points on the rim of a large horizontal turntable that is turning freely on a vertical, frictionless axle through its center. The ponies simultaneously start walking toward each other across the turntable. As they walk, what happens to the angular speed of the turntable? (A) It increases(B) It decreases(C) It stays constantConsider the ponies-turntable system in this process is the angular momentum of the system conserved?(A) Yes(B) No Does anyone mind helping me with this? It seems simple enough.The question is: Radical x-3 = radical x + 3 (the +3 is outside of the radical). We are solving for X in this question. ASAP! A biologist is to set up an aquarium in his laboratory. He intends to buy 11 piranhas and 5 sharks. He has a budget of 200. If p represents one piranhas and s one shark, write down an equation for the price of one piranhas in terms of the price of sharks. Which of the following is incorrect? a. Given aggregate demand, an increase in aggregate supply increases real output and, assuming downward-flexible prices, reduces the price level. b. As the U.S. price level rises, U.S. goods become relatively more expensive so that U.S. exports fall and U.S. imports rise. c. As the price level falls, the demand for money declines, the interest rate declines, and interest-rate-sensitive spending increases. d. When the price level increases, real balances increase and businesses and households find themselves wealthier and therefore increase their spending. Howard is leading a project to commission a new information system that will be used by a federal government agency. He is working with senior officials to document and accept the risk of operation prior to allowing use. What step of the risk management framework is Howard completing? Explain how the poem uses personification to describe the bayou in Anguilla. What effect does personification have on the meaning of the poem? Cite evidence from the text in your answer. According to recent meta-analysis of stability and change, which of the following big five factors of personality showed a continuous increase from early adulthood to late adulthood?a. Opennessb. Extraversionc. Conscientiousnessd. Neuroticism Read the following quotation from Catholic bishop Jacques-Bnigne Bossuet at the court of Louis XIV. Rulers then act as the ministers of God and as his lieutenants on earth. It is through them that God exercises his empire. . . . Consequently, as we have seen, the royal throne is not the throne of a man, but the throne of God himself. What best summarizes the bishops point of view?A) a French aristocratB) a bishop who was not a member of the royal courtC) a member of the British ParliamentD) an absolute monarch from Spain or Russia Evaluate x + y when x = -94 and y = 24A: -118B: -70C: 70D: 118 Travis & Sons has a capital structure that is based on 40 percent debt, 5 percent preferred stock, and 55 percent common stock. The pretax cost of debt is 7.5 percent, the cost of preferred is 9 percent, and the cost of common stock is 13 percent. The tax rate is 39 percent. The company is considering a project that is equally as risky as the overall firm. This project has initial costs of $325,000 and annual cash flows of $87,000, $279,000 and $116,000 over the next three years, respectively. What is the net present value of this project? (Note: you wont be required to find the NPV for the exam, but I want you to do this homework problem to be sure you understand that the WACC is the appropriate discount rate when evaluating projects). Factor the polynomial x^4-16. How many real zeros does the function g(x)=x^4-16 have? Which of the following are proposed explanations for the feminization of poverty, or the tendency for a disproportionate number of the global poor population to be women? A. Women are treated as male property. B. Women are not allowed to own land. C. Women are not allowed an education. D. Women are relegated to low paying occupations due to cultural sexism. A rectangular field is 0.4 kilometers long and 0.35 kilometers wide. What is the area of the field in square meters? Do not round your answer. Be sure to include the correct unit in your answer. There are 24% of boys in a school. If the number of girls are 456, find the total number of students in the school. Mohit pays rupees 9000 as an amount on the sum of rupees 7000 that he had borrowed for 2 years.Find the rate of interest.pls answer fast I will mark u as the brainliest What evidence did Darwin use to support his theory of evolution? Check all that apply. Greenfield village is spread across 240 acres of land. Only 37% of the land is used for the exhibits, while the rest of the land consists of forest, rivers and pastures. How many acres are used for exhibits? Assume that you have just examined several flat-lying sedimentary layers. After much study you determine that there is a considerable span of time for which no sedimentary rock layer exists at this site. You have just discovered a(n) __________.a. angular unconformity b. series of conformable stratac. disconformity d. example of cross-cutting relationships