Three point charges are arranged on a line. Charge q3 = +5.00 nC and is at the origin. Charge q2 = -2.00 nC and is at x = 5.00 cm . Charge q1 is at x = 2.50 cm .What is q1 (magnitude and sign) if the net force on q3 is zero?

Answers

Answer 1

Answer:

q₁= +0.5nC

Explanation:

Theory of electrical forces

Because the particle q3 is close to three other electrically charged particles, it will experience two electrical forces and the solution of the problem is of a vector nature.

To solve this problem we apply Coulomb's law:

Two point charges (q1, q2) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:

o solve this problem we apply Coulomb's law:  

Two point charges (q₁, q₂) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:  

F=K*q₁*q₂/d² Formula (1)  

F: Electric force in Newtons (N)

K : Coulomb constant in N*m²/C²

q₁,q₂:Charges in Coulombs (C)  

d: distance between the charges in meters

Data:

Equivalences

1nC= 10⁻⁹ C

1cm= 10⁻² m

Data

q₃=+5.00 nC =+5* 10⁻⁹ C

q₂= -2.00 nC =-2* 10⁻⁹ C

d₂= 5.00 cm= 5*10⁻² m

d₁= 2.50 cm=  2.5*10⁻² m

k = 8.99*10⁹ N*m²/C²

Calculation of magnitude and sign of q1

Fn₃=0 : net force on q3 equals zero

F₂₃:The force F₂₃ that exerts q₂ on q₃ is attractive because the charges have opposite signs,in direction +x.

F₁₃:The force F₂₃ that exerts q₂ on q₃ must go in the -x direction so that Fn₃ is zero, therefore q₁ must be positive and F₂₃ is repulsive.

We propose the algebraic sum of the forces on q₃

F₂₃ - F₁₃=0

[tex]\frac{k*q_{2} *q_{3} }{d_{2}^{2}  } -\frac{k*q_{1} *q_{3} }{d_{1}^{2}  }=0[/tex]

We eliminate k*q₃ of the equation

[tex]\frac{q_{1} }{d_{1}^{2}  } = \frac{q_{2} }{d_{2}^{2}  }[/tex]

[tex]q_{1} =\frac{q_{2} *d_{1} ^{2} }{d_{2}^{2}  }[/tex]

[tex]q_{1} =\frac{2*10^{-9}*2.5^{2}*10^{-4}   }{5^{2}*10^{-4}  }[/tex]

q₁= +0.5*10⁻⁹ C

q₁= +0.5nC

Answer 2

Final answer:

The magnitude and sign of charge q1 can be found by setting the electric force by q1 on q3 equal and opposite to the force exerted by q2 on q3 using Coulomb's Law and solving for q1 given the known distances.

Explanation:

The question is asking to find the magnitude and sign of charge q1 such that the net electrostatic force on charge q3 is zero when placed in a line with charges q2 and q3. To solve this, we can apply Coulomb's law, which states that the electrostatic force between two point charges is directly proportional to the product of the magnitudes of the charges and inversely proportional to the square of the distance between them.

To have the net force on q3 be zero, the force exerted on q3 by q1 must be equal in magnitude and opposite in direction to the force exerted on q3 by q2. We can set up equations based on Coulomb's law and solve for q1. First, determine the force F31 between q3 and q1, and the force F32 between q3 and q2. Since these forces must be equal and opposite to cancel each other out, we set F31 = F32 and solve for q1. Since the distance between q3 and q1 is 2.50 cm and between q3 and q2 is 5.00 cm, and accounting for the sign of q2, we can calculate the magnitude and sign of q1 that makes the net force on q3 zero.


Related Questions

Let A be the last two digits and let B be the sum of the last three digits of your 8-digit student ID. (Example: For 20245347, A = 47 and B = 14) In a remote civilization, distance is measured in urks and an hour is divided into 125 time units named dorts. The length conversion is 1 urk = 58.0 m. Consider a speed of (25.0 + A + B) urks/dort. Convert this speed to meters per second (m/s). Round your final answer to 3 significant figures.

Answers

Answer:

The speed is 173 m/s.

Explanation:

Given that,

A = 47

B = 14

Length 1 urk = 58.0 m

An hour is divided into 125 time units named dorts.

3600 s = 125 dots

dorts = 28.8 s

Speed v= (25.0+A+B) urks/dort

We need to convert the speed into meters per second

Put the value of A and B into the speed

[tex]v=25.0+47+14[/tex]

[tex]v =86\ urk s/dort[/tex]

[tex]v=86\times\dfrac{58.0}{28.8}[/tex]

[tex]v=173.19\ m/s[/tex]

Hence, The speed is 173 m/s.

Final answer:

To convert the speed (25.0 + A + B) urks/dort to meters per second, add A and B to 25.0, convert urks/dort to urks per second, then to meters per second. Using sample values A=47, B=14, the final speed is approximately 1.582 m/s.

Explanation:

To convert a speed of (25.0 + A + B) urks/dort into meters per second (m/s), one must first understand the unit conversions involved: 1 urk equals 58.0 meters, and there are 125 dorts in an hour. Let's assume, for instance, A = 47 (the last two digits of the student ID) and B = 14 (the sum of the last three digits). Therefore, the speed in urks/dort is (25.0 + 47 + 14) urks/dort.

Performing the addition, we get 86 urks/dort. To convert this into meters per second, follow these steps:

Firstly, convert the speed from urks/dort to urks per second since there are 125 dorts in an hour, and 1 hour = 3600 seconds. Thus, 1 dort = 3600 seconds / 125.Multiply the speed in urks/dort by the conversion factor from dorts to seconds: 86 urks/dort × (1 dort / (3600/125) seconds) = 86 urks × (125 / 3600) seconds^-1.Finally, convert urks to meters using 1 urk = 58 meters. The final speed in m/s is 86 × (125 / 3600) × 58 m/s.

Calculating this gives a speed of approximately 1.582 m/s, rounded to three significant figures.

An adult should have no more than 2568 mg of sodium per day. What is this limit in kilograms (kg)?

Answers

Answer:

2.568 × 10⁻³ kg

Explanation:

The amount of sodium to be taken by an adult is measured in terms of a limit, as given here.

That limit has been set as 2568 mg , when measured in milligrams.

The basic conversion from milligrams to g is done by dividing with 1000. Then 2568 milligrams will be 2.568 grams.

Now 100 grams are present in 1 kilogram.

So 2.568 grams are divided with 1000 to get the specified mass in kg.

The gives it as 2.568 × 10⁻³.

Two identical metal spheres A and B are in contact. Both are initially neutral. 1.0× 10 12 electrons are added to sphere A, then the two spheres are separated. Part A Afterward, what is the charge of sphere A? Express your answer with the appropriate units. q A q A = nothing nothing SubmitRequest Answer Part B Afterward, what is the charge of sphere B? Express your answer with the appropriate units. q B q B = nothing nothing SubmitRequest Answer Provide Feedback Next

Answers

Part A: The charge of sphere A after adding the electrons is [tex]\( q_A = -1.6 \times 10^{-7} \, \text{C} \).[/tex]

Part B: The charge of sphere B after separation is [tex]\( q_B = -8 \times 10^{-8} \, \text{C} \).[/tex]

Let's solve the problem step by step.

Part A: Charge of Sphere A

Initially, both spheres A and B are neutral, meaning they have no net charge. When [tex]\(1.0 \times 10^{12}\)[/tex] electrons are added to sphere A, these electrons carry a negative charge. The charge of one electron is approximately [tex]\( -1.6 \times 10^{-19} \)[/tex] coulombs.

The total charge added to sphere A can be calculated as:

[tex]\[ q_A = n \times e \][/tex]

where [tex]\( n = 1.0 \times 10^{12} \)[/tex] is the number of electrons and [tex]\( e = -1.6 \times 10^{-19} \)[/tex] C is the charge of one electron.

[tex]\[ q_A = 1.0 \times 10^{12} \times (-1.6 \times 10^{-19}) \][/tex]

[tex]\[ q_A = -1.6 \times 10^{-7} \, \text{C} \][/tex]

So, the charge of sphere A after adding the electrons is:

[tex]\[ q_A = -1.6 \times 10^{-7} \, \text{C} \][/tex]

Part B: Charge of Sphere B

When the two spheres are in contact, they form a system that will share the total charge equally due to their identical nature and the principle of electrostatic equilibrium. Since they are initially neutral, the total charge is just the charge added to sphere A, which is [tex]\( -1.6 \times 10^{-7} \, \text{C} \).[/tex]

When the charge is shared equally between the two identical spheres, each sphere will have:

[tex]\[ q_{\text{shared}} = \frac{q_A + q_B}{2} \][/tex]

Since [tex]\( q_B \)[/tex] is initially 0 (as it starts neutral), we have:

[tex]\[ q_{\text{shared}} = \frac{-1.6 \times 10^{-7} \, \text{C}}{2} \][/tex]

[tex]\[ q_{\text{shared}} = -0.8 \times 10^{-7} \, \text{C} \][/tex]

[tex]\[ q_{\text{shared}} = -8 \times 10^{-8} \, \text{C} \][/tex]

Therefore, after the separation, the charge on sphere B will be:

[tex]\[ q_B = -8 \times 10^{-8} \, \text{C} \][/tex]

Rupel pushes a box 5.00 m by appyling a 25.0- N
horizontalforce. What work does she do?

Answers

Answer:

125 N-m

Explanation:

We have given force F= 25 N

Rupel pushes the box by 5 meter

So Distance S = 5 meter

Distance S = 5 meter

Work done in displacing a body is given by

Work done = force ×distance

So [tex]w=25\times 5=125N-m[/tex]

So work done by rupel pushes the box by 5 meter is 125 N-m

Now we know that 1 j = 1 N-m

So work done = 125 j

Final answer:

Rupel does 125.0 Joules of work when she pushes the box.

Explanation:

The work done by Rupel can be calculated using the equation:

Work = Force x Distance

Work = 25.0 N x 5.00 m = 125.0 Joules

Therefore, Rupel does 125.0 Joules of work when she pushes the box.

Learn more about Work done by force here:

https://brainly.com/question/29989410

#SPJ3

A man makes a 27.0 km trip in 16 minutes. (a.) How far was the trip in miles? (b.) If the speed limit was 55 miles per hour, was the driver speeding?

Answers

Answer:

(a) 16.777mi

(b)Yes, he was speeding

Explanation:

(a)

Let's do the proper operations in order to convert km to mi:

[tex]27km*\frac{1000m}{1km} *\frac{1mi}{1609.34m} =16.77706389mi[/tex]

We can conclude that the trip length in miles was:

[tex]d=16.77706389mi[/tex]

(b)

Let's calculate the speed of the man during the trip:

[tex]v=\frac{d}{t}[/tex]

But first, let's do the proper operations in order to convert min to h:

[tex]16min*\frac{1h}{60min} =2.666666667h[/tex]

Now, the speed is:

[tex]v=\frac{16.77706389mi}{2.666666667h} =62.91398959\frac{mi}{h}[/tex]

As we can see:

[tex]62.91398959\frac{mi}{h}>55\frac{mi}{h}[/tex]

So, we can conclude that the driver was speeding

Final answer:

The trip was 16.77 miles long, and the driver was speeding by traveling at an approximate speed of 62.78 miles per hour, surpassing the 55 mph speed limit.

Explanation:

To solve the question:

Convert the trip distance from kilometers to miles. We know that 1 km is approximately equal to 0.621371 miles. Therefore, to convert 27.0 km into miles, you multiply 27.0 km by 0.621371, which gives you about 16.77 miles.Determine if the driver was speeding. First, calculate the driver's speed in miles per hour. The trip took 16 minutes, which is 16/60 hours or about 0.267 hours. The speed in miles per hour is then distance/time = 16.77 miles / 0.267 hours, which is approximately 62.78 miles per hour. Since the speed limit was 55 miles per hour, the driver was indeed speeding.

Thus, the trip was 16.77 miles long, and the driver was speeding, going approximately 62.78 miles per hour when the speed limit was 55 miles per hour.

A charge of +Q is fixed in space. A second charge of +q was first placed at a distance r1 away from +Q. Then it was moved along a straight line to a new position at a distance R away from its starting position. The final location of +q is at a distance r2 from +Q.

What is the change in the potential energy of charge +q during this process?
(A) kQq/R
(B) kQqR/r12
(C) kQqR/r22
(D) kQq((1/r2)-(1/r1))
(E) kQq((1/r1)-(1/r2))

Answers

Answer:

Option (D)

Explanation:

The formula for the potential energy between the two charges is given by

[tex]U=\frac{KQq}{r}[/tex]

where, r is the distance between the two charges.

In first case the distance between the two charges is r1.

The potential energy is

[tex]U_{1}=\frac{KQq}{r_{1}}[/tex]

In first case the distance between the two charges is r2.

The potential energy is

[tex]U_{2}=\frac{KQq}{r_{2}}[/tex]

The change in potential energy is

[tex]\Delta U = U_{2}-U_{1}[/tex]

[tex]\Delta U=\frac{KQq}{r_{2}}-\frac{KQq}{r_{1}[/tex]

[tex]\Delta U=KQq \times \left ( \frac{1}{r_{2}} -\frac{1}{r_{2}} \right )[/tex]

The change in the potential energy of the charge +q during this process is [tex]\mathbf{\Delta U = KQq \Big (\dfrac{1}{r_2}- \dfrac{1}{r_1} \Big) }[/tex]

Option D is correct.

What is the potential energy between two charges?

In an electrical circuit, the electric potential energy is the entire potential energy of a unit charge will have if it is positioned at any point in space.

The electric potential generated by a charge at any point in space is directly proportional to its magnitude and also varies inversely proportional to the distance out from the point charge.

Mathematically, it can be expressed as:

[tex]\mathbf{U = \dfrac{KQq}{r}}[/tex]

here;

r = distance between the two charges

So,

The distance between the two charges for the first scenario is: = r₁

The potential energy for the first scenario can be expressed as:

[tex]\mathbf{U_1 = \dfrac{KQq}{r_1}}[/tex]

The potential energy for the second scenario can be expressed as:

[tex]\mathbf{U_2= \dfrac{KQq}{r_2}}[/tex]

Therefore, the change in the potential energy is:

[tex]\mathbf{\Delta U =U_2 -U1}[/tex]

[tex]\mathbf{\Delta U = \dfrac{KQq}{r_2}- \dfrac{KQq}{r_1}}[/tex]

[tex]\mathbf{\Delta U = KQq \Big (\dfrac{1}{r_2}- \dfrac{1}{r_1} \Big) }[/tex]

Learn more about electric potential energy here:
https://brainly.com/question/14306881

Engineers and science fiction writers have proposed designing space stations in the shape of a rotating wheel or ring, which would allow astronauts to experience a sort of artificial gravity when walking along the inner wall of the station's outer rim.1. Imagine one such station with a diameter of 110 m, where the apparent gravity is 2.70 m/s2 at the outer rim. How fast is the station rotating in revolutions per minute?2. How fast would the space station have to rotate, in revolutions per minute, for the artificial gravity that is produced to equal that at the surface of the Earth, 9.80 m/s2?

Answers

Answer:

1)The station is rotating at 2.11 revolutions per minute

2) The space station will have to rotate at as peed of 4.03 revolutions per minute, for the artificial gravity to equal that at the surface of earth (9.8 m/s²)

Explanation:

1)

[tex]a_{c}=[/tex]ω²r = ω²d/2

Here,

[tex]a_{c}=[/tex]2.7 m/s²

d = 110 m

therefore,

ω² = (2.7 m/s²)(2)/(110 m)

ω = √0.049 rad/s²

ω = 0.2216 rad/s

To convert into rev/min

ω = (0.2216 rad/s)(1 rev/2π rad)(60 s/ 1min)

ω = 2.11 rev/min

2)

Here,

[tex]a_{c}=g=[/tex]9.8 m/s²

d = 110 m

therefore,

ω² = (9.8 m/s²)(2)/(110 m)

ω = √0.178 rad/s²

ω = 0.4221 rad/s

To convert into rev/min

ω = (0.4221 rad/s)(1 rev/2π rad)(60 s/ 1min)

ω = 4.03 rev/min

The station is rotating at 2.11 revolutions/min.The space station will have to rotate at as peed of 4.03 revolutions/min for the artificial gravity to equal that at the surface of earth (9.8 m/s²)

What is Revolution?

This involves an object revolving around a center or axis.

We can use this formula for question 1

ω²r = ω²d/2

ω² = (2.7 m/s²)(2)/(110 m)

ω = √0.049 rad/s²

ω = 0.2216 rad/s

We then convert to rev/min

ω = (0.2216 rad/s)(1 rev/2π rad)(60 s/1min)

ω = 2.11 rev/min

ω²r = ω²d/2

ω² = (9.8 m/s²)(2)/(110 m)

ω = √0.178 rad/s²

ω = 0.4221 rad/s

We then convert into rev/min

ω = (0.4221 rad/s)(1 rev/2π rad)(60 s/ 1min)

ω = 4.03 rev/min.

Read more about Revolution here https://brainly.com/question/111640

(a) The energy of photon incident on a material is 1.42 eV. ( Determine the minimum frequency of an incident photon that can interact with a valence electron and elevate the electron to become free. (ii) What is the corresponding wavelength? (b) Repeat part (a) for a photon energy of 1.12 eV.

Answers

Answer:

a)

3.43*10^{14} Hz

8.75*10^{-7} m

b)

2.70*10^{14} Hz

1.10*10^{-6} m

Explanation:

GIVEN DATA:

a)

i)we know that

E = h\nu

where E is energy

h = plank's constant = 6.625* 10^{-34} j-s

[tex]\nu = frequency[/tex]

[tex]\nu = \frac{E}{h} = \frac{1.42*1.6*10^{-19} v}{6.625*10^{-34}}[/tex]

[tex]\nu = 3.43*10^{14} Hz[/tex]

ii)wavelength  is given as

[tex]\lambda = \frac{c}{\nu}[/tex]

            [tex]= \frac{3*10^8}{3.43*10^{14}} = 8.75*10^{-7} m[/tex]

b) i) i)we know that

[tex]E = h\nu[/tex]

where E is energy

h = plank's constant = 6.625* 10^{-34} j-s

[tex]\nu = frequency[/tex]

[tex]\nu = \frac{E}{h} = \frac{1.12*1.6*10^{-19} v}{6.625*10^{-34}}[/tex]

[tex]\nu =2.70*10^{14} Hz[/tex]

ii)wavelength  is given as

[tex]\lambda = \frac{c}{\nu}[/tex]

[tex]= \frac{3*10^8}{2.70*10^{14}} = 1.10*10^{-6} m[/tex]

Convert the following dB to decimal a. -12 b. 3 c. 10 d. 0

Answers

Answer:

for -12db

 [tex]\frac{V1}{V2}=0.251\\\\\frac{P1}{P2}=0.0631[/tex]

for 3db

[tex]\frac{V1}{V2}=\sqrt{2}\\\\\frac{P1}{P2}=2[/tex]

for 10db

[tex]\frac{V1}{V2}=3.16\\\\\frac{P1}{P2}=10[/tex]

for 0db

[tex]\frac{V1}{V2}=1\\\\\frac{P1}{P2}=1[/tex]

Explanation:

The decibel is a logaritmic value given by:

[tex]db=10*log(\frac{P1}{P2})=20*log(\frac{V1}{V2})[/tex]

we use 10 for power values and 20 for other values such voltages or currents.

[tex]\frac{V1}{V2}=10^{\frac{db}{10}}\\\\\frac{P1}{P2}=10^{\frac{db}{20}}[/tex]

for -12db

[tex]\frac{V1}{V2}=10^{\frac{-12}{10}}=0.251\\\\\frac{P1}{P2}=10^{\frac{-12}{20}}=0.0631[/tex]

for 3db

[tex]\frac{V1}{V2}=10^{\frac{3}{10}}=\sqrt{2}\\\\\frac{P1}{P2}=10^{\frac{3}{20}}=2[/tex]

for 10db

[tex]\frac{V1}{V2}=10^{\frac{10}{10}}=3.16\\\\\frac{P1}{P2}=10^{\frac{10}{20}}=10[/tex]

for 0db

[tex]\frac{V1}{V2}=1\\\\\frac{P1}{P2}=1[/tex]

A carpet is to be installed in a room of length 9.72 meters and width 17.30 of the room retaining the proper number of significant figures. 72 meters and width 17.39 feet. Find the area in square meters

Answers

Answer:

168 m^2, 380 m^2

Explanation:

length of the room, l = 9.72 m

width of the room, b = 17.30 m

Area of teh rectangle is given by

A = length x width

So, A = 9.72 x 17.30 = 168.156 m^2

the significant digits should be 3 in the final answer

So, A = 168 m^2

Now length = 72 m

width = 17.39 feet = 5.3 m

Area, A = 72 x 5.3 = 381.6 m^2

There should be two significant digits in the answer so, by rounding off

A = 380 m^2

The "size" of the atom in Rutherford's model is about 1.0 x 10^−10 m. (a) Determine the attractive electrostatic force between an electron and a proton separated by this distance.
(b) Determine (in eV) the electrostatic potential energy of the atom. (Assume the electron and proton are again separated by the distance stated above.)

Answers

Answer:

(a) [tex]2.31\times10^{-8}\ N[/tex]

(b) [tex]1.44\times 10^{-19}\ eV[/tex]

Explanation:

Given:

*p = charge on proton = [tex]1.602\times 10^{-19}\ C[/tex]

*e = magnitude of charge on an electron = [tex]1.602\times 10^{-19}\ C[/tex]

*r = distance between the proton and the electron in the Rutherford's atom = [tex]1.0\times 10^{-10}\ m[/tex]

Part (a):

Since two unlike charges attract each other.

According to Coulomb's law:

[tex]F=\dfrac{kqe}{r^2}\\\Rightarrow F = \dfrac{9.0\times 10^{9}\times 1.602\times 10^{-19}\times 1.602\times 10^{-19}}{(1.0\times 10^{-10})^2}\\\Rightarrow F = 2.31\times 10^{-8}\ N[/tex]

Hence, the attractive electrostatic force of attraction acting between an electron and a proton of Rutherford's atom is  [tex]2.31\times 10^{-8}\ N[/tex].

Part (b):

Potential energy between two charges separated by a distance r is given by:

[tex]U= \dfrac{kqQ}{r}[/tex]

So, the potential energy between the electron and the proton of the Rutherford's atom is given by:

[tex]U = \dfrac{kqe}{r}\\\Rightarrow U = \dfrac{9\times 10^{9}\times1.602\times 10^{-19}\times e}{1.0\times 10^{-10}}\\\Rightarrow U = 1.44\times 10^{-19}\ eV[/tex]

Hence, the electrostatic potential energy of the atom is  [tex]1.44\times 10^{-19}\ eV[/tex].

Final answer:

The attractive electrostatic force at the atomic size in Rutherford's model is about 2.3 x 10^-9 N. The electrostatic potential energy at this distance is approximately 14.4 eV.

Explanation:

The question asks for the attractive electrostatic force between an electron and a proton at a distance of 1.0 x 10-10 m (Rutherford's atomic size) and the electrostatic potential energy in eV. We use Coulomb's Law to find the force and potential energy equations in physics.

 

(a) The attractive electrostatic force (F) is given by the equation: F = (k * e^2) / r^2, where k is Coulomb's constant (8.99 x 10^9 N m^2/C^2), e is the charge of an electron/proton (1.6 x 10^-19 C), and r is the distance (1.0 x 10^-10 m). Plugging in these values, we get F = (8.99 x 10^9 N m^2/C^2 * (1.6 x 10^-19 C)^2) / (1.0 x 10^-10 m)^2 ≈ 2.3 x 10^-9 N.

(b) The electrostatic potential energy (U) is given by the equation: U = (k * e^2) / r, which results in U = (8.99 x 10^9 J m/C^2 * (1.6 x 10^-19 C)^2) / (1.0 x 10^-10 m) ≈ 2.3 x 10^-18 J. Because 1 J = 6.242 x 10^18 eV, we convert this to eV to get approximately U ≈ 14.4 eV.

Learn more about Electrostatic Force and Potential Energy here:

https://brainly.com/question/35913879

#SPJ3

A neutron star is the remnant left after certain supernovae (explosions of giant stars). Typically, neutron stars are about 23 km in diameter and have around the same mass as our sun. What is a typical neutron star density in g/cm^3? Express your answer in grams per cubic centimeter.

Answers

Answer:

3.122×10¹⁴ g/cm³

Explanation:

Diameter of neutron star = 23 km = 2300000 cm

Radius of neutron star = 2300000/2 = 1150000 cm = r

Mass of neutron star = 1.989 × 10³⁰ kg = 1.989 × 10³³ g = m

Volume of neutron star

[tex]v=\frac{4}{3}\pi r^3\\\Rightarrow v=\frac{4}{3}\pi 1150000^3[/tex]

Density = Mass / Volume

[tex]\rho=\frac{m}{v}\\\Rightarrow \rho=\frac{1.989\times 10^{33}}{\frac{4}{3}\pi 1150000^3}\\\Rightarrow \rho=3.122\times 10^{14}\ g/cm^3[/tex]

∴ Density of neutron star is 3.122×10¹⁴ g/cm³

Final answer:

The typical density of a neutron star is about 10¹⁴g/cm³. This is calculated by dividing the mass of the star in grams by its volume in cubic centimeters, and taking into account that a neutron star's mass is typically 1.4 solar masses and its diameter is about 20 kilometers.

Explanation:

To calculate the density of a neutron star, we consider it as a sphere with a typical mass of 1.4 solar masses and a diameter of about 20 kilometers. The formula for density (d) is mass (m) divided by volume (V), and the volume of a sphere is given by the formula V = ⅔πr3, where r is the radius of the sphere.

First, we convert the solar mass to kilograms (1 solar mass = 1.99 × 1030 kg) and 1.4 solar masses to kg gives us 2.786 × 1030 kg. Next, we convert the diameter to radius in centimeters (10,000 cm), then calculate the volume. Now we can find the density:

Mass: 2.786 × 1030 kg
Volume: ⅔π(105 cm)³= 4.18879 × 1015 cm³
Density = Mass/Volume
Density = 2.786 × 1030 kg / 4.18879 × 1015 cm³

The density, in grams per cubic centimeter (g/cm³), is calculated by converting the mass from kilograms to grams. This gives us a typical neutron star density of about 1014 g/cm³, which is exceedingly high compared to materials we experience on Earth.

Achilles and the tortoise are having a race. The tortoise can run 1 mile (or whatever the Hellenic equivalent of this would be) per hour. Achilles runs ten times as fast as the tortoise so the tortoise gets a head start of 1 mile. The race begins! By the time Achilles reaches the 1 mile mark, the tortoise is .1 miles ahead. By the time Achilles runs this extra tenth of a mile, the tortoise is still .01 miles ahead. This process continues; each time Achilles reaches the point where the tortoise was, the tortoise has moved ahead 1/10 as far. Can Achilles ever catch the tortoise? If so, when? If not, who would you bet on?

Answers

Answer:

Surely Achilles will catch the Tortoise, in 400 seconds

Explanation:

The problem itself reduces the interval of time many times, almost reaching zero. However, if we assume the interval constant, then it is clear that in two hours Achilles already has surpassed the Tortoise (20 miles while the Tortoise only 3).

To calculate the time, we use kinematic expression for constant speed:

[tex]x_{final}=x_{initial}+t_{tor}v_{tor}=1+t_{tor}\\x_{final}=x_{initial}+t_{ach}v_{ach}=10t_{ach}[/tex]

The moment that Achilles catch the tortoise is found by setting the same final position for both (and same time as well, since both start at the same time):

[tex]1+t=10t\\t=1/9 hour=0.11 hours[/tex]

The creative curriculum model claims to be guided by all of the following researchers except

A. Maria Montessori

B. Jean Piaget

C. Howard Gardner

D. Erik Erikson

Answers

Final answer:

Maria Montessori is not typically associated with the creative curriculum model. Howard Gardner's theory does not include 'creative' as a standalone type of intelligence, although creativity can be an aspect of multiple intelligences.

Explanation:

The creative curriculum model is influenced by various educational researchers, but the one who is not typically associated with this model is A. Maria Montessori. The model is guided by the principles of Jean Piaget, Howard Gardner, and Erik Erikson, all of whom focused on developmental and educational psychology in different ways. For example, Jean Piaget is known for his theory of cognitive development, Erik Erikson for his theory of psychosocial development, and Howard Gardner for his theory of multiple intelligences.

Speaking of Howard Gardner, the correct response to the second question is A. creative. The types of intelligences Gardner identified in his theory are linguistic, logical-mathematical, musical, spatial, bodily-kinesthetic, interpersonal, intrapersonal, and naturalistic. While creativity is an aspect that can be present in multiple intelligences, Gardner did not identify 'creative' as a standalone type of intelligence in his original theory.

The acceleration a of an object is given by the equation a=A+Bt+Ct^3 where t refers to time. (a) What are the dimensions of A, B, and C? (b) What are the SI units for the constants A, B, and C?

Answers

Answer:

(a) A = [tex][LT^{- 2}][/tex]

B = [tex][LT^{- 3}][/tex]

[tex]C = [LT^{- 5}][/tex]

(b) A = [tex]ms^{- 2}[/tex]

B = [tex]ms^{- 3}[/tex]

C = [tex]ms^{- 5}[/tex]

Solution:

The acceleration of a body is the rate at which the velocity of the body changes.

Thus

[tex]a = \frac{\Delta v_{o}}{\Delta t}[/tex]

The SI unit of velocity of an object is [tex]ms^{- 1}[/tex] and its dimension is [LT^{- 1}] and for time, T the SI unit is second, s and dimension is [T] and hence

The SI unit and dimension for the acceleration of an object is [tex]ms^{- 2}[/tex] and [LT^{- 2}] respectively.

Now, as per the question:

acceleration, a = [tex]A + Bt + Ct^{3}[/tex]

(a) Now, according to the homogeneity principle in dimension, the dimensions on both the sides of the eqn must be equal,

For the above eqn:

[tex]LT^{- 2} = A + Bt + Ct^{3}[/tex]

Thus the dimensions of :

A = [tex][LT^{- 2}][/tex]

BT =  [tex][LT^{- 2}][/tex]

Thus for B

B = [tex][LT^{- 3}][/tex]

[tex]CT^{3} = LT^{- 2}[/tex]

[tex]C = [LT^{- 5}][/tex]

(b) For the units of A, B and C, we will make use of their respective dimensional formula from part (a)

where

L corresponds to length in meter(m)

T corresponds to time in seconds(s)

Now, for:

A = [tex][LT^{- 2}] = ms^{- 2}[/tex]

B = [tex][LT^{- 3}] = ms^{- 3}[/tex]

C = [tex][LT^{- 5}] = ms^{- 5}[/tex]

What is the potential energy at the origin due to an electric field of 5 x 10^6 N/C located at x=43cm,y=28cm?

Answers

Answer:

potential energy at origin is [tex]2.57*10^{6} volt[/tex]

Explanation:

given data:

electric field E = 5*10^{6} N/C

at x = 43 cm, y = 28 cm

distance btween E and origin

[tex]\Delta r = \sqrt{43^2 +28^2}[/tex]

[tex]\Delta r = 51.313 cm[/tex]

potential energy per unit charge [tex]\Delta V = - Edr[/tex]

[tex]\Delta V = 5*10^6*51.313*10^{-2} J/C[/tex]

[tex]\Delta V  =  2.57*10^{6} volt[/tex]

potential energy at origin is 2.57*10^{6} volt

A computer hard drive has a disc that rotates at 10,000 rpm. The reader head is positioned 0.0005 in. above the disc’s surface. Estimate the shear force on the reader head due to the air between the disc and head.

Answers

Answer:

shearing force is [tex]3.40\times 10^{-4} lb[/tex]

Explanation:

we know that

force can be determined [tex]F = \tau \times A[/tex]

Area can be determine as

[tex]A  = \frac{\pi}{4} d^2 = \frac{\pi}{4} [\frac{0.2}{12}]^2 =   2.18\times 10^{-4} ft^2[/tex]

linear velocity can be determines as

[tex]\tau = \mu_{air} \frac{U}{b}[/tex]

dynamic viscosity of air [tex]\mu_{air} = 3.74\times 10^{-7} lb-s/ft^2[/tex]

veolcity of disc

[tex]U =\omega R[/tex]

[tex]U = \frac{2\pi N}{60} \times R = \frac{2\pi 10,000}{60} \times \frac{2}{12}[/tex]

U = 174.5 ft/s

so

[tex]\tau = 3.74\times 10^{-7} \times \frac{174.5}{\frac{0.0005}{12}}[/tex]

[tex]\tau = 1.56 lb/ft^2[/tex]

[tex]F = 1.56\times 2.18\times 10^{-4} = 3.40\times 10^{-4} lb[/tex]

shearing force is [tex]3.40\times 10^{-4} lb[/tex]

Suppose that you drive the 10.0 km from your university to home in 20.0 min. What is your average speed in kilometers per hour?

Answers

Final answer:

To calculate average speed, divide the total distance by the total time taken. In this case, the average speed is 30.0 km/h.

Explanation:

To calculate average speed, we divide the total distance traveled by the total time taken. In this case, you drove 10.0 km in 20.0 minutes. To convert minutes to hours, we divide by 60. The average speed in kilometers per hour is calculated as:

Average speed = Total distance / Total time = 10.0 km / (20.0 min / 60 min/h) = 30.0 km/h

Two point charges totaling 8.90 μC exert a repulsive force of 0.120 N on one another when separated by 0.460 m. What is the charge on each? Assume that the two charges are negative. What is the charge on each if the force is attractive?

Answers

Explanation:

Let [tex]q_1[/tex] is the first charge and [tex]q_2[/tex] is the second charge.

Force between them, F = 0.12 N

Distance between charges, d = 0.46 m

(a) Force acting between two point charges is given by :

[tex]F=k\dfrac{q_1q_2}{d^2}[/tex]

[tex]q_1q_2=\dfrac{Fd^2}{k}[/tex]

[tex]q_1q_2=\dfrac{0.12\times (0.46)^2}{9\times 10^9}[/tex]

[tex]q_1q_2=2.82\times 10^{-12}[/tex]..............(1)

Also,

[tex]q_1+q_2=-8.9\ \mu C=-8.9\times 10^{-6}\ C[/tex]............(2) (both charges are negative)

On solving equation (1) and (2) :

[tex]q_1=-8.571\ C[/tex]

and

[tex]q_2=-0.329\ C[/tex]

(b) If the force is attractive, F = -0.12 N

[tex]q_1q_2=\dfrac{Fd^2}{k}[/tex]

[tex]q_1q_2=\dfrac{-0.12\times (0.46)^2}{9\times 10^9}[/tex]

[tex]q_1q_2=-2.82\times 10^{-12}[/tex]..............(3)

[tex]q_1+q_2=-8.9\ \mu C=-8.9\times 10^{-6}\ C[/tex]............(4)    

Solving equation (3) and (4) we get :

[tex]q_1=-0.306\ C[/tex]

[tex]q_2=9.206\ C[/tex]      

Hence, this is the required solution.                                  

Final answer:

Using Coulomb's law, set up a system of equations with q1 and q2 as unknowns and solve to find the values of the individual charges for the case of repulsive force. Repeat the process for attractive forces, keeping in mind that charges will have the opposite sign.

Explanation:

This problem can be solved using the formula for Coulomb's law, which states that the force between two charges is equal to the product of the charges divided by the distance squared, times the Coulomb constant: F = k*q1*q2/r², where F is the force, k is the Coulomb constant (8.99 * 10^9 N.m²/C²), q1 and q2 are the charges, and r is the distance between them.

For repulsive force, both charges have the same sign. But in this particular problem, we are given that the total charge is 8.90 μC, so let's take q1 and q2 as unknowns. Now q1 + q2 = 8.90 μC and using the above formula we get another equation. Now you have two equations to solve the unknown charges. Same procedure applies for the attractive force, but know that charges are of opposite sign for attractive force.

Learn more about Coulomb's Law here:

https://brainly.com/question/506926

#SPJ11

in most circumstances, the normal force acting on an objectand
the force of static friction do no work on the object. however,the
reason that the work is zero is different
for the two cases. explain why each does no work.

Answers

Answer:

Normal Force is usually perpendicular to the movement and static friction usually means that there is no movement.

Explanation:

The work donde by any force on an object is equal to the displacement of the object multiplied by the component of the force that is in the direction of the displacement.

Normal force is usually perpendicular to the movement, so there is no component in the direction of the displacement. This is why it is zero in most circumstances.

Static friction on the other hand, usually means that there is no movement at all (it's static). It means that there is no displacement between the object and ground (in most cases). If there is no displacement, there is no work.

Final answer:

The normal force and the force of static friction do no work on an object for different reasons. The normal force acts at right angles to the displacement of the object, while the force of static friction only acts when there is no relative motion between the object and the surface.

Explanation:

The normal force and the force of static friction do no work on an object in most circumstances, but for different reasons.

The normal force is a force exerted by a surface that is perpendicular to the surface. It does no work because it acts at right angles to the displacement of the object.

The force of static friction is a force that opposes the motion of an object on a surface. It does no work because it only acts when there is no relative motion between the object and the surface.

Learn more about Work and Forces here:

https://brainly.com/question/758238

#SPJ11

A car with mass m=1.43e3 kg is initially traveling directly east with a speed ????????=25.0 m/s. It crashes into the rear end of a truck with mass ????=9000 kg moving in the same direction with speed ????????=20.0 m/s. Immediately after the collision the car has a speed ????????=18.0 m/s in its original direction (the two do not stick together in this case). (a) What is the speed of the truck immediately after the collision?

Answers

Answer:

[tex]v_{ft} = 21.11 \frac{m}{s}[/tex]   :  Speed of the truck immediately after the collision , to the east.

Explanation:

Theory of collisions

Linear momentum is a vector magnitude (same direction and direction as velocity) and its magnitude is calculated like this:

P=m*v

where

P:Linear momentum

m: mass

v:velocity

There are 3 cases of collisions : elastic, inelastic and plastic.

For the three cases the total linear momentum quantity is conserved:

P₀=Pf   Formula (1)

P₀ :Initial  linear momentum quantity

Pf : nitial  linear momentum quantity

Nomenclature and data

mc: car mass= 1.43*10³ kg  = 1430kg

V₀c: initial car speed,  = 25.0 m/s

Vfc: final car speed = 18.0 m/s

mt: truck mass =  9000 kg  

V₀t: initial truck speed, = 20.0 m/s

Vft: final truck speed

Problem development

For this problem the collision is inelastic because after the collision the objects are deformed .

Because the known speeds go east they are positive, we assume that the truck continues moving east after the collision and its speed will also be positive:

We apply formula (1)

P₀=Pf

mc*V₀c+mt*V₀t=mc*Vfc+mt*Vft

1430*25+9000*20=1430*18+9000*Vft

215750=25740+9000*Vft

[tex]v_{ft} =\frac{215750-25740}{9000} = 21.11 \frac{m}{s}[/tex]

[tex]v_{ft} = 21.11 \frac{m}{s}[/tex]

Because the response was positive the truck moves east after the collision

A vertical container with base area measuring 14 cm by 16 cm is being filled with identical pieces of candy, each with a volume of 50.0 mm^3 and a mass of 0.0200 g. Assume that the volume of the empty spaces between the candies is negligible. If the height of the candies in the container increases at the rate of 0.21 cm/s, at what rate does the mass of the candies in the container increase?

Answers

Answer:

Rate of change of mass is given by,

[tex]\frac{dm}{dt}=18.816\,g/s[/tex]

Explanation:

In the question,

We have the Base Area of the vertical container = 14 cm x 16 cm

Now,

Let us take the height of the container = h

Rate of change of height with time, dh/dt = 0.21 cm/s = 2.1 mm/s

So,

Volume of the container = Base Area x Height

So,

V = 14 x 16 x h

V = 140 x 160 x h (because, 1 cm = 10 mm)

V = (22400)h

Now,

Volume of one of the candy = 50 mm³

Mass of the candy = 0.0200 g

So,

Density of the candy = Mass/ Volume

So,

[tex]Density=\frac{0.0200}{50}\\Density=0.0004[/tex]

Now,

V = (22400)h

On differentiating with respect to time, t, we get,

[tex]\frac{dV}{dt}=\frac{22400h}{dt}\\\frac{d}{dt}(\frac{mass}{density})=22400.\frac{dh}{dt}\\\frac{1}{density}.\frac{dm}{dt}=22400.\frac{dh}{dt}\\[/tex]

Therefore, on putting the value of density in the equation and also the value of rate of change of height with time, we get,

[tex]\frac{1}{density}.\frac{dm}{dt}=22400.\frac{dh}{dt}\\\frac{1}{0.0004}.\frac{dm}{dt}=22400(2.1)\\\frac{dm}{dt}=18.816\,g/s[/tex]

Therefore, the rate of change of mass with respect to time is given by,

[tex]\frac{dm}{dt}=18.816\,g/s[/tex]

A compound microscope operated in near point adjustment comprises an objective lens of focal length 5.0 cm and an eyepiece lens of focal length 12.0 cm. If the near-point distance is 25.0 cm, and the overall magnification of the microscope is required to be 12.0 x, how far apart must the lenses be placed?

Answers

Answer:

28.8 cm

Explanation:

Magnification in a microscope is:

M = Mo * Me

Where

Mo: magnification of the objective,

Me: Magnification of the eyepiece.

The magnification of the objective if:

Me = npd/fe

Where:

npd: near point distance

fe: focal length of the eyepiece

The magnification of the objective:

Mo = d/fo

Where

d: the distance between lenses

fo: focal length of the objective

Then

M = npd/fe * d/fo

d = M * fe * fo / npd

d = 12 * 5 * 12 / 25 = 28.8 cm

A student on the ground observes the sun just as it sets. His friend, who is located 100 meters higher up in a tall building, tells him via cell phone that she observes the sun setting 77 seconds after he does. Assuming that the path of the setting sun is perpendicular to the horizon, use this information to estimate the radius of the Earth.

Answers

Answer:

Rt≅6377Km

Explanation:

Take a look at the image. The horizontal line is the horizon, and the angle α corresponds to the earth rotation during the 77 seconds.

With this information, we can know the value of α:

α = [tex]\alpha= \frac{77s}{1day}*\frac{1day}{24H}*\frac{1H}{60min}*\frac{1min}{60s}*2*\pi  =0.0056rad[/tex]

Since we have formed a rectangle triangle:

[tex]cos\alpha =\frac{Rt}{Rt+100m}[/tex]   Solving for Rt:

Rt≅6377467m=6377Km

A driver with a 0.80-s reaction time applies the brakes, causing the car to have acceleration opposite the direction of motion. Assume the acceleration is equal to -7.0 m/s^2. a. If the car is initially traveling at 26 m/s, how far does the car travel during the reaction time?
b. How far does the car travel after the brakes are applied and while skidding to a stop?

Answers

Answer:

a) During the reaction time, the car travels 21 m

b) After applying the brake, the car travels 48 m before coming to stop

Explanation:

The equation for the position of a straight movement with variable speed is as follows:

x = x0 + v0 t + 1/2 a t²

where

x: position at time t

v0: initial speed

a: acceleration

t: time

When the speed is constant (as before applying the brake), the equation would be:

x = x0 + v t

a)Before applying the brake, the car travels at constant speed. In 0.80 s the car will travel:

x = 0m + 26 m/s * 0.80 s = 21 m  

b) After applying the brake, the car has an acceleration of -7.0 m/s². Using the equation for velocity, we can calculate how much time it takes the car to stop (v = 0):

v = v0 + a* t

0 = 26 m/s + (-7.0 m/s²) * t

-26 m/s / - 7.0 m/s² = t

t = 3.7 s

With this time, we can calculate how far the car traveled during the deacceleration.

x = x0 +v0 t + 1/2 a t²

x = 0m + 26 m/s * 3.7 s - 1/2 * 7.0m/s² * (3.7 s)² = 48 m

a. The car travels 20.8 meters during the reaction time and 48.29 meters while decelerating, b. resulting in a total distance of 69.09 meters.

Part a: Distance Traveled During Reaction Time

The initial speed of the car is 26 m/s, and the driver has a reaction time of 0.80 seconds. During this reaction time, the car continues to move at the initial speed because the brakes haven't been applied yet.

Using the formula:

distance = speed × time

We get:

distance = 26 m/s × 0.80 s = 20.8 meters

Part b: Distance Traveled After Brakes Are Applied

The car decelerates at a rate of -7.0 m/s² until it comes to a stop. We need to find the distance traveled during this deceleration.

Using the kinematic equation:

v² = u² + 2as

where:

v = final velocity = 0 m/s (since the car stops)u = initial velocity = 26 m/sa = acceleration = -7.0 m/s²s = distance during deceleration

Rearranging the equation to solve for s:

0 = (26 m/s)² + 2(-7.0 m/s²) * s

Solving for s:

0 = 676 - 14s

14s = 676

s = 48.29 meters

The total distance the car travels includes both the distance during the reaction time and the distance while braking:

Total Distance = 20.8 meters + 48.29 meters = 69.09 meters

A 50- kg pole vaulter running ar 10m/s vaults over the bar.Her
speed when she is above the bar is 1.0 m/s. Neglect airresistance,
as well as any energy absorbed by the pole, anddetermine her
altitude ads she crosses the bar.

Answers

Answer:

5.05 m

Explanation:

Given:

m = mass of the pole vaulter = 50 kgu = initial velocity of the vaulter = 10 m/sv = final velocity of the vaulter = 1.0 m/sh = altitude of the vaulter when she crosses the bar

According to the work-energy theorem, work done by the gravitational force will be equal to the kinetic energy change in the vaulter.

[tex]\therefore -mg(h)=\dfrac{1}{2}m(v^2-u^2)\\\Rightarrow -gh=\dfrac{1}{2}(v^2-u^2)\\\Rightarrow h=\dfrac{1}{-2g}(v^2-u^2)\\\Rightarrow h=\dfrac{1}{-2\times 9.8}((1)^2-(10)^2)\\\Rightarrow h=\dfrac{-99}{-19.6}\\\Rightarrow h=5.05[/tex]

Hence, the height of the vaulter is 5.05 m.

A stretched string has a mass per unit length of 5.40 g/cm and a tension of 17.5 N. A sinusoidal wave on this string has an amplitude of 0.157 mm and a frequency of 92.2 Hz and is traveling in the negative direction of an x axis. If the wave equation is of the form y(x,t) = ym sin(kx + ωt), what are (a) ym, (b) k, and (c) ω, and (d) the correct choice of sign in front of ω?

Answers

Answer:

Part a)

[tex]y_m = 0.157 mm[/tex]

part b)

[tex]k = 101.8 rad/m[/tex]

Part c)

[tex]\omega = 579.3 rad/s[/tex]

Part d)

here since wave is moving in negative direction so the sign of [tex]\omega[/tex] must be positive

Explanation:

As we know that the speed of wave in string is given by

[tex]v = \sqrt{\frac{T}{m/L}}[/tex]

so we have

[tex]T = 17.5 N[/tex]

[tex]m/L = 5.4 g/cm = 0.54 kg/m[/tex]

now we have

[tex]v = \sqrt{\frac{17.5}{0.54}}[/tex]

[tex]v = 5.69 m/s[/tex]

now we have

Part a)

[tex]y_m [/tex] = amplitude of wave

[tex]y_m = 0.157 mm[/tex]

part b)

[tex]k = \frac{\omega}{v}[/tex]

here we know that

[tex]\omega = 2\pi f[/tex]

[tex]\omega = 2\pi(92.2) = 579.3 rad/s[/tex]

so we  have

[tex]k = \frac{579.3}{5.69}[/tex]

[tex]k = 101.8 rad/m[/tex]

Part c)

[tex]\omega = 579.3 rad/s[/tex]

Part d)

here since wave is moving in negative direction so the sign of [tex]\omega[/tex] must be positive

Calculate the de Broglie wavelength of an electron and a one-ton car, both moving with speed of 100 km/hour. Based on your calculation could you predict which will behave like a "quantum particle" and why. Please explain each step in words and detail.

Answers

Answer :

(a). The wavelength of electron is 26.22 μm.

(b).The wavelength of car is [tex]2.38\times10^{-38}\ m[/tex]

Explanation :

Given that,

Speed = 100 km/hr

Mass of car = 1 ton

(a). We need to calculate the wavelength of electron

Using formula of wavelength

[tex]\lambda_{e}=\dfrac{h}{p}[/tex]

[tex]\lambda_{e}=\dfrac{h}{mv}[/tex]

Put the value into the formula

[tex]\lambda_{e}=\dfrac{6.63\times10^{-34}}{9.1\times10^{-31}\times100\times\dfrac{5}{18}}[/tex]

[tex]\lambda=0.00002622[/tex]

[tex]\lambda=26.22\times10^{-6}\ m[/tex]

[tex]\lambda=26.22\ \mu m[/tex]

(II).  We need to calculate the wavelength of car

Using formula of wavelength again

[tex]\lambda_{e}=\dfrac{6.63\times10^{-34}}{1000\times100\times\dfrac{5}{18}}[/tex]

[tex]\lambda=2.38\times10^{-38}\ m[/tex]

The wavelength of the electron is greater than the dimension of electron and the wavelength of car is less than the dimension of car.

Therefore, electron is quantum particle and car is classical.

Hence, (a). The wavelength of electron is 26.22 μm.

(b).The wavelength of car is [tex]2.38\times10^{-38}\ m[/tex].

An owl fiying at 30 m/s emits a cry whose frequency is 540 Hz. A mockingbird is moving in the same direction as the owl at 14 m/s. (Assume the speed of sound is 343 m/s. (a) What frequency does the mockingbird hear (in Hz) as the owl approaches the mockingbird? (b) What frequency does the mockingbird hear (in Hz) after the owl passes the mockingbind?

Answers

Answer:

a) 567.6Hz

b) 516.8Hz

Explanation:

Using the formula for doppler effect:

[tex]f=\frac{C - V_{m} }{C - V_{o}} *f_{o}[/tex]   where:

[tex]V_{m}=15m/s; V_{o} = 30m/s; f_{o}=540Hz; C=343m/s[/tex]

Replacing the values we get:

f=567.6Hz

After the owl passes the mockingbind, the direction of sound relative to the owl and mockingbind changes direction, so the equation will be:

[tex]f=\frac{C + V_{m} }{C + V_{o}} *f_{o}[/tex]

Replacing the values we get:

f=516.8Hz

Final answer:

The Doppler Effect explains how the frequency changes due to the relative motion of the sound source and observer. When the mockingbird approaches the owl, it hears a frequency of 574 Hz. After the owl passes, the frequency it hears reduces to 510 Hz.

Explanation:

This question relates to the Doppler Effect, which is the change in frequency of a sound due to the relative motion between the source of the sound and the observer. The formula to calculate the frequency heard by an observer moving towards a source is given by: f' = f * (v + vo) / v, and the frequency heard by an observer moving away from a source is given by: f' = f * v / (v + vs).

(a) When the mockingbird is approaching the owl, the frequency it hears is calculated using the formula for the observer moving towards the source: f' = 540 * (343 + 14) / 343 = 574 Hz.

(b) When the mockingbird is moving in the same direction as the owl (after the owl has passed), the frequency it hears is lower. This can be calculated using the formula for the observer moving away from the source: f' = 540 * 343 / (343 + 30) = 510 Hz.

Learn more about the Doppler Effect here:

https://brainly.com/question/15318474

#SPJ11

A neutron star is the remnant left after certain supernovae (explosions of giant stars). Typically, neutron stars are about 18 km in diameter and have around the same mass as our sun. What is a typical neutron star density in g/cm^3?

Answers

Answer:

[tex]Density=6.51*10^{14}g/cm^{3[/tex]

Explanation:

Sun mass:

Ms=1.989 × 10^30 kg

Neutron star has the same mass.

Radius Neutron:

R=9Km (because diameter is 18Km)

R=9*10^3m

Density neutron star:

[tex]D=Mn/Vol=Ms/(4/3*\pi*R^3)=1.989*10^{30} /(4/3*\pi*(9*10^{3})^{3})=6.51*10^{17}kg/m^{3}[/tex]

[tex]D=6.51*10^{17}kg/m^{3}*(1000g/1Kg)*(1m^{3}/1000000cm^{3})=6.51*10^{14}g/cm^{3[/tex]

The density of a neutron star is about 10¹⁴ grams / cm³.

What is neutron star?

Any member of the class of extremely dense, compact stars known as neutron stars is assumed to be predominantly made of neutrons. The average diameter of a neutron star is 18 km (12 miles). Their masses range from 1.18 to 1.97 times those of the Sun, with the majority being 1.35 times the Sun. They have exceptionally high mean densities, almost 10¹⁴ times that of water.

This is similar to the density of an atomic nucleus, and one may think of a neutron star as a massive nucleus. Where the pressure is greatest, at the centre of the star, it is not known for sure what is there; hypotheses include hyperons, kaons, and pions. Most of the particles in the intermediate layers are neutrons, which are likely in a "superfluid" condition.

Learn more about neutron star here:

https://brainly.com/question/1322201

#SPJ2

Other Questions
What is the equation of a line with a slope of 2 that passes through the point (6, 8)? Stellar evolution is the life cycle of a star. A cycle suggests that upon death of a star, another star is born. How is this possible? A.Stars never really die. B.The death is a black dwarf star. This type of death triggers the birth of a new star. C.The death is a red giant. This type of death emits red energy that forms a new star. D.The death is a supernova. This type of death can produce nebular clouds and trigger the birth of a new star. 5/6 x= 15 solve for x write a phrase to represent each algebraic expression2x-92(x-9) (A) Which is the equation of Line b? 1. y=14x+54 2. y=4x+3 3. y=x+5441 4. y=4x3(B) Which is the equation of Line d? 1. y=3x+3 2. y=13x3 3. y=13x+3 4. y=3x3 Suppose f (t) = 11t2 is the position at time t of an object moving along the x axis. Use the limit definition to find the velocity of the object at time t0 = 5. Whats The Answer? I dont seem to understand... can you guys help ?? Read this passage:A state senator ran for office promising to reduce taxes forbusinesses and middle-class families. However, onceelected, he became a major supporter of a tax hikedesigned to increase funding for social welfare programs.Now, business leaders want him removed and replacedwith a leader who better represents their interests.However, the next election is over five years away.Which state government political procedure would be most effective atresolving the public policy issue described in the passage?A. RecallB. ReferendumC. InitiativeD. Police power In one season,Kim ran 18 races. This was four fewer races than twice the number of races Kelly ran. How many races did kelly run? What is the density of a 19.3-gram object that displaces 12 cubed centimeters of water Explain some ways in which the executive and judicial branches can check the powers of Congress A football team lost 5 yards on each of 3 plays. Explain how you could use a number line to find the team's change in field position after the 3 days. For each of the following statements, write negation, contrapositive, converse and inverse. . If P is a square, then P is a rectangle .If n is prime, then n is odd or n is 2 .If 2 is a factor of n and 3 is a factor of n, then 6 is a factor of n 3(9+a) = 54 I need answer 1)What is the theory of plate tectonics? 2)What is the evidence for the plate tectonics theory? 3)There are seven major crustal plates (name and briefly describe) that make up the earths surface. Do they include just continents? 4)What are the major driving forces for earths plate motion? 5)Plate tectonics is described as a unifying theory. What major geologic features are explained? 6)Describe the "scientific method". (How do the terms "hypothesis", "theory" and "law" relate to each other?) Yolo Windows, a manufacturer of windows for commercial buildings, reports the following account information for last year (all costs are in thousands of dollars): Information on January 1 (Beginning): Direct materials inventory $ 88 Work-in-process inventory 111 Finished goods inventory 1,650 Information for the year: Administrative costs $ 3,620 Direct labor 12,700 Direct materials purchases 8,210 Factory and machine depreciation 11,740 Factory supervision 734 Factory utilities 965 Indirect factory labor 2,860 Indirect materials and supplies 684 Marketing costs 1,490 Property taxes on factory 281 Sales revenue 45,800 Information on December 31 (Ending): Direct materials inventory $ 92 Work-in-process inventory 126 Finished goods inventory 1,430 Required: Prepare an income statement with a supporting cost of goods sold statement. (Enter your answers in thousands of dollars (i.e., 234,000 should be entered as 234).) 1) Which is the BEST way to rewrite Sentence (2)? Wind power has a cubic dependency on wind speed. How much power will a wind-powered turbine generate for a wind speed of 8 m/s, if it generates 100 kW when the wind speed is 2m/s ? you read 16 pages in 20 minutes and your friends read 25 pages in 30 minutes who reads faster Copper sulfate is a blue solid that is used to control algae growth. Solutions of copper sulfate that come in contact with the surface of galvanized (zinc-plated) steel pails undergo the following reaction that forms copper metal on the zinc surface. How many grams of zinc would react with 454 g (1 lb) of copper sulfate (160 g/mol)?