Two points on L1 and two points on L2 are given. Use the slope formula to determine if lines L1 and L2 are parallel, perpendicular, or neither.


L1: (1, 10) and (-1, 7)
L2: (0, 3) and (1, 5 )

Answers

Answer 1

Answer:

The lines L1 and L2 neither parallel nor perpendicular

Step-by-step explanation:

* Lets revise how to find a slope of a line

- If a line passes through points (x1 , y1) and (x2 , y2), then the slope

 of the line is [tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

- Parallel lines have same slopes

- Perpendicular lines have additive, multiplicative slopes

 ( the product of their slopes is -1)

* Lets solve the problem

∵ L1 passes through the point (1 , 10) and (-1 , 7)

- Let (1 , 10) is (x1 , y1) and (-1 , 7) is (x2 , y2)

∴ x1 = 1 , x2 = -1 and y1 = 10 , y2 = 7

∴ The slope of L1 is [tex]m1 = \frac{7-10}{-1-1}=\frac{-3}{-2}=\frac{3}{2}[/tex]

∵ L2 passes through the point (0 , 3) and (1 , 5)

- Let (0 , 3) is (x1 , y1) and (1 , 5) is (x2 , y2)

∴ x1 = 0 , x2 = 1 and y1 = 3 , y2 = 5

∴ The slope of L2 is [tex]m2=\frac{5-3}{1-0}=\frac{2}{1}=2[/tex]

∵ m1 = 3/2 and m2 = 2

- The two lines have different slopes and their product not equal -1

∴ The lines L1 and L2 neither parallel nor perpendicular

Answer 2

By calculating the slopes of L1 and L2, we find that they are 1.5 and 2 respectively. Since they are neither the same nor negative reciprocals, L1 and L2 are neither parallel nor perpendicular.

To determine if lines L1 and L2 are parallel, perpendicular, or neither, we need to calculate the slopes of both lines using the slope formula:

Slope formula: (y2 - y1) / (x2 - x1)

Calculating the slope of L1:

Points on L1: (1, 10) and (-1, 7)

Slope of L1 = (7 - 10) / (-1 - 1) = (-3) / (-2) = 1.5

Calculating the slope of L2:

Points on L2: (0, 3) and (1, 5)

Slope of L2 = (5 - 3) / (1 - 0) = 2 / 1 = 2

Since the slopes of L1 (1.5) and L2 (2) are neither the same nor negative reciprocals of each other, the lines L1 and L2 are neither parallel nor perpendicular.


Related Questions

Find the complementary angle of 73.8 (Type an integer or a decimal.) is Enter your answer in the answer box

Answers

Answer:

16.2

Step-by-step explanation:

Since, if the sum of two angles is 90° then they are called complementary angles.

Here, the given angle is 73.8°,

Let x be the complementary angle of 73.8°,

Thus by the above definition,

x + 73.8° = 90°,

By subtraction property of equality,

⇒ x = 16.2°,

Hence, the complementary angle of 73.8° is 16.2°.

A worker is cutting a square from a piece of sheet metal. The specifications call for an area that is 16 cm squared with an error of no more than 0.03 cm squared. How much error could be tolerated in the length of each side to ensure that the area is within the​ tolerance?

Answers

Given:

area of square, A = 16 [tex]cm^{2}[/tex]

error in area, dA = 0.03 cm^{2}

Step-by-Step Explanation:

Let 'a' be the side of the square

area of square, A = [tex]a^{2}[/tex]                 (1)

A = 16 =  [tex]a^{2}[/tex]

Therefore, a = 4 cm

for max tolerable error in length 'da', differentiate eqn (1) w.r.t 'a':

dA = 2a da

[tex]0.03 = 2\times 4\times da[/tex]

da = [tex]\frac{0.03}{8}[/tex]

da = 0.0375 cm

The side length of the square is 4 cm, the maximum error that can be tolerated in the length of each side to ensure that the area is within the specified tolerance is 0.0375 cm (or 0.0375 mm).

Given specifications:

Desired Area (A) = 16 cm²

Tolerance (ΔA) = 0.03 cm²

The formula for the area of a square is:

A = side length (L) * side length

Calculate the derivative of the area formula with respect to the side length (L):

dA/dL = 2L

Now, we want to find the maximum error in the side length (ΔL) that can be tolerated while keeping the area within the specified tolerance:

ΔA = (dA/dL) * ΔL

Plug in the values we have:

0.03 cm² = (2L) * ΔL

Solve for ΔL:

ΔL = 0.03 cm² / (2L)

To ensure that the area is within the tolerance, the error in the side length should be no more than ΔL.

Now, let's calculate ΔL using the formula above and for a given side length (L):

ΔL = 0.03 cm² / (2L)

If we assume a side length of L = 4 cm (to achieve the desired area of 16 cm²), we can calculate ΔL:

ΔL = 0.03 cm² / (2 * 4 cm) = 0.03 cm² / 8 cm = 0.00375 cm = 0.0375 mm

So, if the side length of the square is 4 cm, the maximum error that can be tolerated in the length of each side to ensure that the area is within the specified tolerance is 0.0375 cm (or 0.0375 mm).

for such more question on length

https://brainly.com/question/28322552

#SPJ3

Let R be the relation on N x N defined by (a, b) R(c, d) if and only if ad bc. Show that R Equivalence Relations. is an equivalence relation on N x N.

Answers

What’s this college?

-21+-20+-19+.......+50

Answers

Answer:

(-21)+(-20)+(-19)+...+50 is equal to 1044

Step-by-step explanation:

Let's divide the number series and find its solution.

The original number series is:

(-21)+(-20)+(-19)+...+50 which is the same as:

{(-1)*(21+20+19+18+....+0)} + (1+2+3+...+50) which is

-A+B where:

A=(21+20+19+18+....+0)=(0+1+2+3+...+21)

B=(1+2+3+...+50)

For this problem, we can use the Gauss method, which establishes that for a continuos series of numbers starting in 1, we can find the sum by:

S=n*(n+1)/2 where n is the last value of the series, so:

Using the method for A we have:

S=n*(n+1)/2

S(A)=(21)*(21+1)/2

S(A)=231

Using the method for B we have:

S=n*(n+1)/2

S(B)=(50)*(50+1)/2

S(B)=1275

So finally,

-A+B=-231+1275=1044

In conclusion, (-21)+(-20)+(-19)+...+50 is equal to 1044.

The sum of the sequence from -21 to 50 is calculated using the arithmetic series formula, resulting in a total sum of 1044.

The question asks for the sum of a sequence of integers starting from -21 and ending at 50. To find this sum, you can either add each number consecutively or use the formula for the sum of an arithmetic series.

In this case, the series is arithmetic because each term increases by 1 from the previous term. The formula for the sum of an arithmetic series is S = n/2 * (a_1 + a_n), where S is the sum of the series, n is the number of terms, a_1 is the first term, and a_n is the last term.

First, determine the number of terms in the series. Since our first term is -21 and our last term is 50, the series has 50 - (-21) + 1 = 72 terms in total. Now, using the formula, we can calculate the sum of the series:

S = 72/2 * (-21 + 50)

S = 36 * 29

S = 1044

Therefore, the sum of the integers from -21 to 50 is 1044.

Which shorthand label indicates an embedded design in mixed methods research?

Answers

Answer:

( )

Step-by-step explanation:

( ) shorthand label indicates an embedded design in mixed method research. It indicates that one form of data collection is embedded within another.Mostly ( ) is used used when data collection is embedded into larger data. So we can say that ( ) shorthand label indicates an embedded design in mixed research method

Which of the following is a secant of the circle?


Answers

A secant is a line that intersects the curve of a circle at two points.

The line in the picture that passes through two points would be Line EF.

Answer:

EF is the secant line

Step-by-step explanation:

A tangent line of a circle is a line that touches the circle at any point on the circumference of the circle.

A secant line is a line that lies inside the circles . secant line crosses the circumference of the circle at two points. The secant line has not end points.

In the given diagram, secant line is EF because it has no end points and it intersects the circle at two points

EF is the secant line

Suppose that 50% of all adults regularly consume coffee, 65% regularly consume carbonated soda, and 45% regularly consumes both coffee and soda. (a) What is the chance a randomly selected adult regularly drinks coffee but doesn't drink soda?

Answers

Answer: There is a chance of 5% of adult regularly drinks coffee but doesn't drink soda.

Step-by-step explanation:

Since we have given that

Probability of all adults consume coffee P(C) = 50%

Probability of all adults consume carbonated soda P(S) = 65%

Probability of all adults consumes both coffee and soda P(C∩S) = 45%

We need to find the probability that adult regularly drinks coffee but doesn't drink soda.

So, it is talking about difference of sets in which we consider only one set completely i.e. it contains all element of one set but never contains any element of another set.

Here, P( Coffee - Soda) = P(C)-P(C∩S)

[tex]P(C-S)=0.50-0.45=0.05=0.05\times 100\%=5\%[/tex]

Hence, there is a chance of 5% of adult regularly drinks coffee but doesn't drink soda.

Final answer:

The probability that a randomly selected adult regularly drinks coffee but doesn't drink soda, given the provided data, is calculated to be 5%.

Explanation:

To find the probability that a randomly selected adult regularly drinks coffee but doesn't drink soda, we start with the information given: 50% of all adults regularly consume coffee, 65% regularly consume carbonated soda, and 45% regularly consume both coffee and soda. To find the probability of adults who consume coffee but not soda, we subtract the percentage of adults who consume both from the percentage of those who consume coffee. This is because those who consume both are also counted in the total number of coffee drinkers.

So, the calculation is as follows:

Percentage of adults who drink coffee: 50%Percentage of adults who drink both coffee and soda: 45%Percentage of adults who drink coffee but not soda: 50% - 45% = 5%

Therefore, the chance that a randomly selected adult regularly drinks coffee but doesn't drink soda is 5%.

Use the data in the following​ table, which lists​ drive-thru order accuracy at popular fast food chains. Assume that orders are randomly selected from those included in the table. If one order is​ selected, find the probability of getting an order from Restaurant A or an order that is accurate. Are the events of selecting an order from Restaurant A and selecting an accurate order disjoint​ events? The probability of getting an order from Restaurant A or an order that is accurate is ...? Round to 3 decimal places.

Restaurant A Restaurant B Restaurant C Restaurant D
Order Accurate 321 276 235 126
Order Not Accurate 32 56 40 11

Answers

The probability of getting an order from Restaurant A is [tex]0.321[/tex]

The probability of getting an order accurate in all the Restaurants is [tex]0.873[/tex]

The Probability of getting an order accurate in the Restaurant A is [tex]0.909[/tex]

Selecting an order from Restaurant A and selecting an accurate order are disjoint​ events

Total number of orders [tex]=321+276+235+126+32+56+40+11=1097[/tex]

The probability of getting an order from Restaurant A (the accurate +the not accurate) is   [tex]\dfrac{321+32}{1097}=0.321[/tex]  

Total Order Accurate  [tex]=321+276+235+126=958[/tex]

Probability of getting an order accurate is  [tex]\dfrac{958}{1097}=0.873[/tex]

Probability of getting an order accurate in the Restaurant A is   [tex]\dfrac{321}{353}=0.909[/tex]

Learn more about probability.

https://brainly.com/app/ask?q=probability

Final answer:

To find the probability of getting an order from Restaurant A or an accurate order, sum the values of Restaurant A and the accurate orders and divide it by the total number of orders. The events of selecting an order from Restaurant A and selecting an accurate order are not disjoint.

Explanation:

To find the probability of getting an order from Restaurant A or an accurate order, we need to sum the values of Restaurant A and the accurate orders and divide it by the total number of orders.

Probability of getting an order from Restaurant A = (321+32)/(321+276+235+126+32+56+40+11)

Probability of getting an accurate order = (321+276+235+126)/(321+276+235+126+32+56+40+11)

Since both events can occur simultaneously (an order can be from Restaurant A and accurate), they are not disjoint. The final probability is the sum minus the probability of their intersection.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ11

Estimate the fur seal pup population in Rookery A 5498 fur seal pups were tagged in early August In late August, a sample of 1300 pups was cbserved and 157 of these were found to have been previously tagged. Use a proportion to estimate the total number of fur seal pups in Rookery A The estimated total number of fur seal pups in Rookery A is Round to the nearest whole number.)

Answers

Answer:

the total number of fur seal pups in Rookery A (a) is  45524

Step-by-step explanation:

Given data

in early August (b) = 5498

late August, a sample (c) = 1300

previously tagged (d ) = 157

to find out

the total number of fur seal pups in Rookery A (a)

solution

we will apply here proportion method

that is

a:b :: c :d

a/b = c/d

put all value and find a

a = c/d × b

a = 1300/157 × 5498

a = 45524.84

the total number of fur seal pups in Rookery A (a) is  45524

According to a​ report, 67.5​% of murders are committed with a firearm. ​(a) If 200 murders are randomly​ selected, how many would we expect to be committed with a​ firearm? ​(b) Would it be unusual to observe 153 murders by firearm in a random sample of 200 ​murders? Why?

Answers

Answer: The answer is 135 murders.

Step-by-step explanation: The report tells us that statistically 67.5% of murders are committed using a firearm. It follows therefore that in a sample of 200 randomly selected murders, one would expect that 67.5% of those would be by a firearm. [tex]\frac{67.5}{100}[/tex] * 200 = 135.

It would certainly be higher that the expected value based on previous data collected but it would not be unusual because one sample may have a higher than "normal" amount of murders by firearm. Statistics aren't going to be exact for every sample.

Using the binomial distribution, it is found that:

a) The expected value is of 135.

b) Unusual, as 153 is more than 2.5 standard deviations above the mean.

What is the binomial probability distribution?

It is the probability of exactly x successes on n repeated trials, with p probability of a success on each trial.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

In this problem, the parameters are p = 0.675 and n = 200.

Item a:

E(X) = np = 200 x 0.675 = 135.

135 would be expected to be committed with a​ firearm.

Item b:

The standard deviation is given by:

[tex]\sqrt{V(X)} = \sqrt{200(0.675)(0.325)} = 6.624[/tex]

Then:

[tex]E(X) + 2.5\sqrt{V(X)} = 135 + 2.5(6.624) = 151.56 < 153[/tex]

Since 153 is more than 2.5 standard deviations above the mean, it would be unusual observe 153 murders by firearm in a random sample of 200 ​murders.

More can be learned about the binomial distribution at https://brainly.com/question/24863377

What is epistemology? Why is it important to critical thinking?

Answers

Answer:

Epistemology can be defined as the branch of philosophy which focuses on the theory of knowledge. It is the study of the nature of knowledge, and  analyses its relation concepts like truth, justifications and belief. It deals with the rationality of belief(logic or rationale behind a belief).

Yes, it is important to critical thinking as critical thinking is based on beliefs and actions that have reasons, logic and rationale behind them. But these logic and reasons are philosophically problematic as how one evaluate 'reason, 'logic', etc. These are abstract and difficult but question like these are a central part to epistemology.

Last​ year, a person wrote 123 checks. Let the random variable x represent the number of checks he wrote in one​ day, and assume that it has a Poisson distribution. What is the mean number of checks written per​ day? What is the standard​ deviation? What is the​ variance?

Answers

Answer:The mean number of checks written per​ day = 0.3370

The standard deviation = 0.5805

The variance = 0.3370

Step-by-step explanation:

Let the random variable x represent the number of checks he wrote in one​ day.

Given : The number of checks written in last year = 123

Let the number of days in the year must be 365.

Now, the mean number of checks written per​ day will be  :-

[tex]\lambda=\dfrac{123}{365}=0.33698630137\approx0.3370[/tex]

We know that in Poisson distribution , the variance is equals to the mean value .

[tex]\text{Thus , Variance }=\sigma^2= 0.3370[/tex]

[tex]\Rightarrow\ \sigma=\sqrt{0.3370}=0.580517010948\approx0.5805[/tex]

Thus,  Standard deviation = 0.5805

Y1=x^4 is a solutionto the ode x^2y"-7xy'+16y=0 use reduction of order to find another independant solution

Answers

Answer with explanation:

The given differential equation is

x²y" -7 x y' +1 6 y=0---------(1)

  Let, y'=z

y"=z'

[tex]\frac{dy}{dx}=z\\\\y=zx[/tex]

Substitution the value of y, y' and y" in equation (1)

→x²z' -7 x z+16 zx=0

→x² z' + 9 zx=0

→x (x z'+9 z)=0

→x=0 ∧ x z'+9 z=0

[tex]x \frac{dz}{dx}+9 z=0\\\\\frac{dz}{z}=-9 \frac{dx}{x}\\\\ \text{Integrating both sides}\\\\ \log z=-9 \log x+\log K\\\\ \log z+\log x^9=\log K\\\\\log zx^9=\log K\\\\K=zx^9\\\\K=y'x^9\\\\K x^{-9}d x=dy\\\\\text{Integrating both sides}\\\\y=\frac{-K}{8x^8}+m[/tex]

is another independent solution.where m and K are constant of integration.

Answer:

[tex]y_2=x^4lnx[/tex]

Step-by-step explanation:

We are given that a differential equation

[tex]x^2y''-7xy'+16y=0[/tex]

And one solution is [tex]y_1=x^4[/tex]

We  have to find the other independent solution by using reduction order method

[tex]y''-\frac{7}{x}y'+\frac{16}{x^2}y=0[/tex]

Compare with the equation

[tex]y''+P(x)y'+Q(x)y=0[/tex]

Then we get P(x)=[tex]-\frac{7}{x}['/tex] Q(x)=[tex]\frac{16}{x^2}[/tex]

[tex]y_2=y_1\int\frac{e^{-\intP(x)dx}}{y^2_1}dx[/tex]

[tex]y_2=x^4\int\frac{e^{\frac{7}{x}}dx}}{x^8}dx[/tex]

[tex]y_2=x^4\int\frac{e^{7ln x}}{x^8}dx[/tex]

[tex]y_2=x^4\int\frac{x^7}{x^8}dx[/tex]

[tex]e^{xlny}=y^x[/tex]

[tex]y_2=x^4\int frac{1}{x}dx[/tex]

[tex]y_2=x^4lnx[/tex]

Please someone help me with these equations

Answers

A. -2 2/3
B. -4
C. 1 1/3
You’re going to use the first equation for every number that is not 1 and when x is one, the answer will always be 4

Answer:

[tex]f (-2) =-\frac{8}{3}[/tex]

[tex]f (4) =\frac{4}{3}[/tex]

[tex]f (1) = - 4[/tex]

Step-by-step explanation:

For this case it has a piecewise function composed of two functions.

To evaluate the piecewise function observe the condition.

[tex]f (x) = \frac{1}{3}x ^ 2 -4[/tex] when [tex]x \neq 1[/tex]

[tex]f (x) = -4[/tex] when [tex]x = 1[/tex]

We start by evaluating [tex]f(-2)[/tex], note that [tex]x = -2\neq 1[/tex]. Then we use the quadratic function:

[tex]f (-2) = \frac{1}{3}(-2) ^ 2 -4 = -\frac{8}{3}[/tex]

Now we evaluate [tex]f(4)[/tex] note that [tex]x = 4\neq 1[/tex]. Then we use the quadratic function:

[tex]f (4) = \frac{1}{3}(4) ^ 2 -4 = \frac{4}{3}[/tex]

Finally we evaluate [tex]f(1)[/tex] As [tex]x = 1[/tex]  then

[tex]f (1) = - 4[/tex]

8) What does the mathematical symbol TT represent? 9) What does the mathematical symbol E represent?

Answers

Answer:

TT means pi and e means Euler

Step-by-step explanation:

5. You deposit P1000 into a 9% account today. At the end of two years, you will deposit another P3,000. In five years, you plan a P4000 purchase. How much is left in the account one year after the purchase?

Answers

Answer:

Step-by-step explanation:

Since we are talking about compounded annual interest, we can use the Exponential Growth Formula to calculate the answer for this question.

[tex]y = a* (1+r)^{t}[/tex]

Where:

y is the total amount after a given timea is the initial amountr is the interest rate in decimal form t is the amount of time

First we need to calculate the total after 2 years with a 9% interest.

[tex]y = 1000* (1+0.09)^{2}[/tex]

[tex]y =  1000* (1.09)^{2}[/tex]

[tex]y = 1000* 1.1881[/tex]

[tex]y = 1188.1[/tex]

So after 2 years there will be £1,188.10 in the account. Now we can add £3000 to that and use the new value as the initial amount, and calculate the new total in 5 years.

[tex]y = (1188.1+3000)* (1+0.09)^{5}[/tex]

[tex]y = 4188.1* (1.09)^{5}[/tex]

[tex]y = 4188.1* 1.5386 [/tex]

[tex]y = 6443.91[/tex]

So now we can subtract the £4000 purchase from the amount currently in the account, and calculate one more year of interest with the new initial amount.

[tex]y = (6443.91-4000)* (1+0.09)^{1}[/tex]

[tex]y = (2443.91)* 1.09[/tex]

[tex]y = 2663.86[/tex]

So at the end you would have £2,662.86 in the account one year after the purchase.

Final answer:

To calculate the amount left in the account one year after the purchase, calculate the interest earned on the initial and subsequent deposits, add them to the account balance, and subtract the purchase amount.

Explanation:

To calculate the amount left in the account one year after the purchase, we need to consider the interest earned on the initial deposit and the subsequent deposit in two years. Let's break it down step by step:

Calculate the interest earned on the initial deposit of P1000 over two years:
Interest = P1000 * 9% * 2 = P180Add the interest earned to the initial deposit:
Total amount after two years = P1000 + P180 = P1180Calculate the interest earned on the subsequent deposit of P3000 over three years:
Interest = P3000 * 9% * 3 = P810Add the interest earned to the total amount after two years:
Total amount after five years = P1180 + P810 = P1990Subtract the P4000 purchase from the total amount after five years:
Amount left after the purchase = P1990 - P4000 = -P2010 (a negative value indicates a deficit)

Therefore, there is a deficit of P2010 in the account one year after the purchase.

Learn more about Calculating the amount left in an account here:

https://brainly.com/question/36320440

#SPJ3

Compute the following quantities: a) i^21-i^32

b) 2-i/3-2i.

Please show work

Answers

Answer: a) i-1; b) 4+i/13

Step-by-step explanation:

The complex number [tex]i[/tex] is defined as the number such that [tex]i^{2}=-1[/tex];

We use the propperty to notice that [tex]i^1=i \quad i^2 = -1 \quad i^3=-i \quad i^4=1 \quad i^5=1 \quad i^6=-1 \quad i^7=-i \quad i^8=1 \quad i^9=i \quad i^10= -1 etc...[/tex].

a) We notice that [tex]i^{21}=i \quad \text{ and \text} \quad i^{32}=1[/tex]. Hence, [tex]i^{21}-i^{32}=i-1[/tex].

b) We multiply the expression by [tex]1=\frac{3+2\cdot i}{3 + 2 \cdot i}[/tex]. Then we get that

[tex]\frac{2-i}{3-2 \cdot i}=\frac{2-i}{3-2\cdot i}\cdot\frac{3+2 \cdot i}{3 + 2\cdot i } = \frac{(2-i)\cdot(3+2 \cdot i)}{3^2+2^2}= \frac{6+4i-3i+2i^2}{13}=\frac{6+i-2}{13} = \frac{4+i}{13}[/tex]

Given that three fair dice have been tossed and the total of their top faces is found to be divisible by 3, but not divisible by 9. What is the probability that all three of them have landed 4?

Answers

Final answer:

The probability of all three dice landing on 4 is 1/216, calculated by multiplying the individual probabilities of each die landing on 4.

Explanation:

The probability of all three dice landing on 4 can be calculated using the concept of independent events. Each die has a 1/6 probability of landing on 4, so the probability of all three landing on 4 is (1/6) x (1/6) x (1/6) = 1/216.

The equation of a circle is given below. Identify the radius and center.

x^2 + y^2 - 6x -2y +1 = 0

Answers

Answer:

The center is (3,1) and the radius is 3.

Step-by-step explanation:

The goal is to write in [tex](x-h)^2+(y-k)^2=r^2[/tex] because this tells us the center (h,k) and the radius r.

So we are going to need to complete the square 2 times here, once for x and the other time for y.

I'm going to use this formula to help me to complete the square:

[tex]x^2+bx+(\frac{b}{2})^2=(x+\frac{b}{2})^2[/tex].

So first step:

I'm going to group my x's together and my y's.

[tex]x^2-6x+\text{ ___ }+y^2-2y+\text{ ___ }+1=0[/tex]

Second step:

I'm going to go ahead and subtract that one on both sides. Those blanks are there because I'm going to fill them in with a number so that I can write the x part and y part as a square.  Remember whatever you add on one side you must add on the other.  So I'm going to put 2 more blanks to fill in on the opposite side of the equation.

[tex]x^2-6x+\text{ ___ }+y^2-2y+\text{ ___ }=-1+\text{ ___ }+\text{ ___}[/tex]

Third step:

Alright first blank I'm putting (-6/2)^2 due to my completing the square formula.  That means this value will also go on the other side in on of those blanks.

In the second blank I'm going to put (-2/2)^2 due to the completing the square formula.  This must also go on one of the blanks on the other side.

So we have:

[tex]x^2-6x+(\frac{-6}{2})^2+y^2-2y+(\frac{-2}{2})^2=-1+(\frac{-6}{2})^2+(\frac{-2}{2})^2[/tex]

Fourth step:

Don't make this more hurtful than it already is. Just use the formula drag down the things inside the square. Remember this:

[tex]x^2+bx+(\frac{b}{2})^2[/tex]

equals

[tex](x+\frac{b}{2})^2[/tex].

We are applying that left hand side there (that bottom thing I just wrote).

Let's try it:

[tex](x+\frac{-6}{2})^2+(y+\frac{-2}{2})^2=-1+(\frac{-6}{2})^2+(\frac{-2}{2})^2[/tex]

Fifth step:

The hard part is out of the way.

This is just a bunch of simplifying now:

[tex](x-3)^2+(y-1)^2=-1+9+1[/tex]

[tex](x-3)^2+(y-1)^2=9[/tex]

The center is (3,1) and the radius is 3.

(b) dy/dx = (x - y+ 1)^2

Answers

Substitute [tex]v(x)=x-y(x)+1[/tex], so that

[tex]\dfrac{\mathrm dv}{\mathrm dx}=1-\dfrac{\mathrm dy}{\mathrm dx}[/tex]

Then the resulting ODE in [tex]v(x)[/tex] is separable, with

[tex]1-\dfrac{\mathrm dv}{\mathrm dx}=v^2\implies\dfrac{\mathrm dv}{1-v^2}=\mathrm dx[/tex]

On the left, we can split into partial fractions:

[tex]\dfrac12\left(\dfrac1{1-v}+\dfrac1{1+v}\right)\mathrm dv=\mathrm dx[/tex]

Integrating both sides gives

[tex]\dfrac{\ln|1-v|+\ln|1+v|}2=x+C[/tex]

[tex]\dfrac12\ln|1-v^2|=x+C[/tex]

[tex]1-v^2=e^{2x+C}[/tex]

[tex]v=\pm\sqrt{1-Ce^{2x}}[/tex]

Now solve for [tex]y(x)[/tex]:

[tex]x-y+1=\pm\sqrt{1-Ce^{2x}}[/tex]

[tex]\boxed{y=x+1\pm\sqrt{1-Ce^{2x}}}[/tex]

When your governor took office, 100,000 children in your state were eligible for Medicaid and 200,000 children were not. Now, thanks to a large expansion in Medicaid, 150,000 children are eligible for Medicaid and 150,000 children are not. Your governor boasts that, under her watch, “the number of children without access to health care fell by one-quarter.” Is this a valid statement to make? Why or why not?

Answers

Answer and Step-by-step explanation:

Since we have given that

Number of children in his state were eligible for Medicaid = 100,000

Number of children in his state were not eligible for Medicaid = 200,000

After a large expansion in Medicaid, we get that

Number of children in his state were eligible for Medicaid = 150,000

Number of children in his state were not eligible for Medicaid = 150,000

According to question, , “the number of children without access to health care fell by one-quarter".

So, we check whether it is correct or not.

Difference between previous and current data who were not eligible is given by

[tex]200000-150000\\\\=50000[/tex]

Percentage of decrement is given by

[tex]\dfrac{50000}{200000}=\dfrac{1}{4}[/tex]

Yes , it is fell by one quarter.

Each child from a School can make 5 items of handicrafts in a day. If 1125 handicrafts items are to be displayed in an exhibition, then in how many days can 25 children make these items?
a) 6 days b) 7 day c) 8 days d) 9 days

Answers

Answer:

d)9

Step-by-step explanation:

first , you have to take 1125and divide it by 5 , then the answer you should get is 225 ,second you need to take 225and divide it by the 25 children , then you get 9 , when you divide 225÷25

1125/25= 45

45/ 5= 9

Answer is 9 days - d)

A pop quiz consists of three true–false questions and three multiple choice questions. Each multiple choice question has five possible answers. If a student blindly guesses the answer to every question, what is the probability that the student will correctly answer all six questions? (Round your answer to 3 decimal places.) Probability

Answers

Answer: 0.001

Step-by-step explanation:

Given : Number of true–false questions  =3

Choices of answer for true–false questions =2

Then , probability that the answer is correct for a true–false question =[tex]\dfrac{1}{2}=0.5[/tex]

Also, Number of multiple choice questions  =3

Choices of answer for multiple choice questions = 5

Then , probability that the answer is correct for a multiple choice question =[tex]\dfrac{1}{5}=0.2[/tex]

Now, the probability that the student will correctly answer all six questions :-

[tex](0.2)^3\times(0.5)^3=0.001[/tex]

Hence, the probability that the student will correctly answer all six questions = 0.001

Final answer:

The probability that a student blindly guessing will correctly answer all six questions on a pop quiz consisting of three true/false questions and three multiple choice questions is 0.001, or 0.1%.

Explanation:

The probability of correctly guessing the answer to a true/false question is 0.5, because there are two options, true or false. Therefore, the probability of correctly guessing all three true/false answers is 0.5^3, which is 0.125.

For a multiple choice question with five answers, the probability of guessing correctly is 0.2 (or 1/5). Therefore, the probability of correctly answering all three multiple choice questions is 0.2^3, which is 0.008.

To find the total probability of correctly answering all six questions, we multiply these two probabilities together: 0.125 * 0.008 = 0.001. So, the probability that a student guessing blindly will correctly answer all six questions is 0.001, or 0.1% when expressed as a percentage.

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ3

PLEASE I NEED HELP


Question 13

Write a quadratic function f whose zeros are -6 and -5.

Answers

Answer:

The quadratic function is:

[tex]f (x) = x ^ 2 + 11x +30[/tex]

Step-by-step explanation:

The zeros of a function are all values of x for which the function is equal to zero.

If a function has two zeros then it is a quadratic function.

If the zeros are -6 and -5. Then the function will have the following form:

[tex]f (x) = (x + 6) (x + 5)[/tex]

We can expand the expression by applying the distributive property, and we obtain

[tex]f (x) = x ^ 2 + 5x + 6x +30[/tex]

[tex]f (x) = x ^ 2 + 11x +30[/tex]

Please help me with this

Answers

Answer:

m∠1=80°, m∠2=35°, m∠3=33°

Step-by-step explanation:

we know that

The sum of the interior angles of a triangle must be equal to 180 degrees

step 1

Find the measure of angle 1

In the triangle that contain the interior angle 1

∠1+69°+31°=180°

∠1+100°=180°

∠1=180°-100°=80°

step 2

Find the measure of angle 2

In the small triangle that contain the interior angle 2

∠2+45°+(180°-∠1)=180°

substitute the value of angle 1

∠2+45°+(180°-80°)=180°

∠2+45°+(100°)=180°

∠2+145°=180°

∠2=180°-145°=35°

step 3

Find the measure of angle 3

In the larger triangle that contain the interior angle 3

(∠3+31°)+69°+47°=180°

∠3+147°=180°

∠3=180°-147°=33°

I was asked to solve an invertible matrix, found the inverse but having trouble putting it into a product of elementary matrices. Can anyone help?

A^-1 = [-9/2 7/2]
[ 4 -3]

Answers

I'm guessing you were originally told to find the inverse of

[tex]A=\begin{bmatrix}6&7\\8&9\end{bmatrix}[/tex]

and you've found the inverse to be

[tex]A^{-1}=\begin{bmatrix}-\frac92&\frac72\\4&-3\end{bmatrix}[/tex]

I'm also guessing that "product of elementary matrices" includes the decomposition of [tex]A^{-1}[/tex] into lower and upper triangular as well as diagonal matrices.

First thing I would do would be eliminate the fractions by multiplying the first row of [tex]A^{-1}[/tex] by 2. In matrix form, this is done by multiplying [tex]A^{-1}[/tex] by

[tex]\begin{bmatrix}2&0\\0&1\end{bmatrix}[/tex]

which you can interpret as "multiply the first row by 2 and leave the second row alone":

[tex]\begin{bmatrix}2&0\\0&1\end{bmatrix}\begin{bmatrix}-\frac92&\frac72\\4&-3\end{bmatrix}=\begin{bmatrix}-9&7\\4&-3\end{bmatrix}[/tex]

Next, we make the matrix on the right side upper-triangular by eliminating the entry in row 2, column 1. This is done via the product

[tex]\begin{bmatrix}1&0\\4&9\end{bmatrix}\begin{bmatrix}2&0\\0&1\end{bmatrix}\begin{bmatrix}-\frac92&\frac72\\4&-3\end{bmatrix}=\begin{bmatrix}-9&7\\0&1\end{bmatrix}[/tex]

which you can interpret as "leave the first row alone, and replace row 2 by 4(row 1) + 9(row 2)".

Lastly, multiply both sides by the inverses of all matrices as needed to isolate [tex]A^{-1}[/tex] on the left side. That is,

[tex]\left(\begin{bmatrix}1&0\\4&9\end{bmatrix}\begin{bmatrix}2&0\\0&1\end{bmatrix}\right)A^{-1}=\begin{bmatrix}-9&7\\0&1\end{bmatrix}[/tex]

[tex]\left(\begin{bmatrix}1&0\\4&9\end{bmatrix}\begin{bmatrix}2&0\\0&1\end{bmatrix}\right)^{-1}\left(\begin{bmatrix}1&0\\4&9\end{bmatrix}\begin{bmatrix}2&0\\0&1\end{bmatrix}\right)A^{-1}=\left(\begin{bmatrix}1&0\\4&9\end{bmatrix}\begin{bmatrix}2&0\\0&1\end{bmatrix}\right)^{-1}\begin{bmatrix}-9&7\\0&1\end{bmatrix}[/tex]

[tex]A^{-1}=\left(\begin{bmatrix}1&0\\4&9\end{bmatrix}\begin{bmatrix}2&0\\0&1\end{bmatrix}\right)^{-1}\begin{bmatrix}-9&7\\0&1\end{bmatrix}[/tex]

For two invertible matrices [tex]X[/tex] and [tex]Y[/tex], we have [tex](XY)^{-1}=Y^{-1}X^{-1}[/tex], so that

[tex]A^{-1}=\begin{bmatrix}2&0\\0&1\end{bmatrix}^{-1}\begin{bmatrix}1&0\\4&9\end{bmatrix}^{-1}\begin{bmatrix}-9&7\\0&1\end{bmatrix}[/tex]

Compute the remaining inverses:

[tex]\begin{bmatrix}2&0\\0&1\end{bmatrix}^{-1}=\begin{bmatrix}\frac12&0\\0&1\end{bmatrix}[/tex]

[tex]\begin{bmatrix}1&0\\4&9\end{bmatrix}^{-1}=\begin{bmatrix}1&0\\-\frac49&\frac19\end{bmatrix}[/tex]

So we have

[tex]\begin{bmatrix}-\frac92&\frac72\\4&-3\end{bmatrix}=\begin{bmatrix}\frac12&0\\0&1\end{bmatrix}\begin{bmatrix}1&0\\-\frac49&\frac19\end{bmatrix}\begin{bmatrix}-9&7\\0&1\end{bmatrix}[/tex]

[10] In the following given system, determine a matrix A and vector b so that the system can be represented as a matrix equation in the form AX = b. In the given linear system, solve for y without solving for X, Z and w by using Cramer's rule, x + y + 2 + 2w = 3. -7x – 3y + 5z - 8w = -3 4x + y + z + w = 6 3x + 7y - Z + w = 1

Answers

Answer:

[tex]y=-\frac{158}{579}[/tex]

Step-by-step explanation:

To find the matrix A, took all the numeric coefficient of the variables, the first column is for x, the second column for y, the third column for z and the last column for w:

[tex]A=\left[\begin{array}{cccc}1&1&2&2\\-7&-3&5&-8\\4&1&1&1\\3&7&-1&1\end{array}\right][/tex]

And the vector B is formed with the solution of each equation of the system:[tex]b=\left[\begin{array}{c}3\\-3\\6\\1\end{array}\right][/tex]

To apply the Cramer's rule, take the matrix A and replace the column assigned to the variable that you need to solve with the vector b, in this case, that would be the second column. This new matrix is going to be called [tex]A_{2}[/tex].

[tex]A_{2}=\left[\begin{array}{cccc}1&3&2&2\\-7&-3&5&-8\\4&6&1&1\\3&1&-1&1\end{array}\right][/tex]

The value of y using Cramer's rule is:

[tex]y=\frac{det(A_{2}) }{det(A)}[/tex]

Find the value of the determinant of each matrix, and divide:

[tex]y==\frac{\left|\begin{array}{cccc}1&3&2&2\\-7&-3&5&-8\\4&6&1&1\\3&1&-1&1\end{array}\right|}{\left|\begin{array}{cccc}1&1&2&2\\-7&-3&5&-8\\4&1&1&1\\3&7&-1&1\end{array}\right|} =\frac{158}{-579}[/tex]

[tex]y=-\frac{158}{579}[/tex]

Frank Corp has a contribution margin of $450,000 and profit of $150,000. What is its degree of operating leverage?

2.5

3

.33

1.67

Answers

Answer:

3

Step-by-step explanation:

given: contribution margin=$450,000 and net profit= $150,000

To find operating leverage

Now, operating leverage is a cost accounting formula that measures the degree to which a firm or project can increase operating income by increasing revenue. A business that generates sales with a high gross margin and low variables costs has high leverage.

[tex]operating leverage=\frac{contribution margin}{net profit}[/tex]

therefore, operating leverage=[tex]\frac{450000}{150000}[/tex] =3

operating leverage is 3

Solve the problem. If at a given speed a car can travel 95.6 miles on 4 gallons of gasoline, how far can the car can travel on 68 gallons of gasoline at that speed? O 95.6 miles 1625.2 miles 68 miles 1632.6 miles

Answers

Answer:  The correct option is (B) 1625.2 miles.

Step-by-step explanation:  Given that at a given speed a car can travel 95.6 miles on 4 gallons of gasoline.

We are to find the distance that the car can travel on 68 gallons at the same speed.

We will be using the UNITARY method to solve the given problem.

Distance traveled by the car on 4 gallons of gasoline = 95.6 miles.

So, the distance traveled by the car on 1 gallon of gasoline will be

[tex]\dfrac{95.6}{4}=23.9~\textup{miles}.[/tex]

Therefore, the distance traveled by the car in 68 gallons of gasoline is given by

[tex]23.9\times68=1625.2~\textup{miles}.[/tex]

Thus, the required distance traveled by the car on 68 gallons of gasoline is 1625.2 miles.

Option (B) is CORRECT.

identify the image of XYZ for a composition of a 190 rotation and a 80 rotation, both about point y

Answers

Answer:

190° rotation = c

80° rotation = a

Step-by-step explanation:

b = 180° rotation

d = 360° rotation

Answer:

The correct option is c.

Step-by-step explanation:

If the direction of rotation is not mentioned, then it is considered as counterclockwise rotation.

It is given that the figure XYZ rotated 190° and a 80° rotation(composition), both about point y.

It means figure is rotated 80° counterclockwise about the point y after that the new figure is rotated 190° counterclockwise about the point y.

[tex]80^{\circ}+190^{\circ}=270^{\circ}[/tex]

It means the figure XYZ rotated 270° counterclockwise about the point y.

In figure (a), XYZ rotated 90° counterclockwise about the point y.

In figure (b), XYZ rotated 180° counterclockwise about the point y.

In figure (c), XYZ rotated 270° counterclockwise about the point y.

In figure (d), XYZ rotated 360° counterclockwise about the point y.

Therefore the correct option is c.

Other Questions
In the figure below, if arc XY measures 120 degrees, what is the measure of angle ZYX? When two or more resistors are connected in parallel to a battery A) the voltage across each resistor is the same. B) the total current flowing from the battery equals the sum of the currents flowing through each resistor. C) the equivalent resistance of the combination is less than the resistance of any one of the resistors D) all of the other choices are true can 1,2,5 be the lengths of a triangle Romanticism celebrated all of the following except A. The future growth of industry. B. Feeling over reason. C. Imagination over science. D. Nature over civilization Create a function names minElement() that takes an array of numbers as a paaramter and returns the min value of the array. The array may not be modified by the function. The array method .sort() may not be used. The function must loop through the array A Ferris wheel has radius 4.0 m and makes one revolution every 30 s with uniform rotation. A woman who normally weighs 600 N is sitting on one of the benches attached at the rim of the wheel. What is her apparent weight (the normal force exerted on her by the bench) as she passes over the top of the Ferris wheel? A. 590 NB. 600 NC. 520 ND. 0 N A particular reactant decomposes with a halflife of 109 s when its initial concentration is 0.280 M. The same reactant decomposes with a halflife of 231 s when its initial concentration is 0.132 M. 1. Determine the reaction order. (A)1 (B)2 (C)0 2. What is the value and units of the rate constant for this reaction? ????= In the 1800s,the boundaries between the United States and Mexico changed drastically because of? Which sentence best describes the context of "A Quilt of a Country"?O The piece was written after the fall of Russian communism.O The piece was written during the Great Depression.The piece was written in the aftermath of the 9/11 attacks.The piece was written toward the end of World War II. Proper grain stress/strain analysis is required in solid motor design: A. To ensure good motor structure B. To avoid surface cracks C. To avoid bond separation D. All of the above Behaviors that are followed by consequences that are satisfying to the organism are more likely to be repeated, and behaviors that are followed by unpleasant consequences are less likely to be repeated. This idea is called the... (A) law of effect (B) classical conditioning(C) operant conditioning(D) negative reinforcement Continuing in analyzing myprotein and otherprotein, you decide to run an activity assay for myprotein. Which of the following are likely results if otherprotein is required for folding?a. The activity of myprotein will be highest in the presence of otherproteinb. The activity of myprotein will be highest in the presence of otherprotein, and not higher than myprotein activity alonec. The activity of myprotein is highest without the presence otherprotein PLEASE HELP PRECALCULUS WILL MARK BRAINLIEST -SEE ATTACHMENT- Which algebraic expression represents "the difference of 54 and a number"? In order for a theory to be considered valid it must be: observed at least one time recorded repeatable inferred from personal interpretation You have $500,000 saved for retirement. Your account earns 4% interest. How much will you be able to pull out each month, if you want to be able to take withdrawals for 25 years? What is the area of triangle ACD A meteoroid is traveling east through the atmosphere at 18. 3 km/s while descending at a rate of 11.5 km/s. What is its speed, in km/s? Why did President Jefferson want the Louisiana territoryexplored? In his study of pea plants, Gregor Mendel used which method to produce offspring?O cross-pollination, by using parents that had identical traitsO cross-pollination, by using parents that had different traitsO self-pollination, by using one parentO random pollination, by using both identical- and different-trait matings