Tyler reads of a book on Monday, of it on Tuesday, of it on Wednesday, and of the remainder on Thursday. If he still has 14 pages left to read on Friday, how many pages are there in the book?

Answers

Answer 1

There are total of 32 pages in the complete book.

What are word problems?

A word problem is a few sentences describing a 'real-life' scenario where a problem needs to be solved by way of a mathematical calculation.

Given is that Tyler reads 2/15 of a book on Monday, 1/3 of it on Tuesday, 2/9 of it on Wednesday, and 3/4 of the remainder on Thursday. He still has 14 pages.

Let the total number of pages in the book will be [x]. Then, we can write -

{2x/15} + {x/3} + {2x/9} + {3x/4} = x + 14

x{2/15 + 1/3 + 2/9 + 3/4} - 14 = x

259x/180 - 14 = x

1.44x - 14 = x

0.44x = 14

x = (14/0.44)

x = 32 (approx.)

Therefore, there are total of 32 pages in the complete book.

To solve more questions on equation modelling, visit the link below -

brainly.com/question/29299318

#SPJ5


Related Questions

Choose the slope-intercept equation of the line that passes through the point (-2, 4) and is parallel to y = -3x + 6.

y = 1/3 x + 14/3

y = 3x + 10

y = -3x - 2

y = - 1/3 x + 10/3

Answers

Answer:

  y = -3x - 2

Step-by-step explanation:

Parallel lines have the same slope. The only answer choice with the same slope (x-coefficient = -3) as the given line is the one shown above.

What is the area of the rectangle
Answers
60 units
66 units
70 units
74 units

Answers

Answer:

The answer to your question is 74 u²

Step-by-step explanation:

Process

1.- Find the 4 vertices

  A (-2, 8)

  B (0, -4)

  C (4, 9)

  D (6, -3)

2.- Find the length of the base and the height

[tex]d = \sqrt{(x2 - x1)^{2} + (y2 - y1)^{2} }[/tex]

Distance AB =  \sqrt{(0 + 2)^{2} + (-4 - 8)^{2} }[/tex]

              dAB = [tex]\sqrt{4 + 144}[/tex]

              dAB = [tex]\sqrt{148}[/tex]

Distance BD = \sqrt{(6 - 0)^{2} + (-3 + 4)^{2} }[/tex]

             dBD = [tex]\sqrt{36 + 1}[/tex]

             dBD = [tex]\sqrt{37}[/tex]

3.- Find the area

Area = base x height

Area = [tex]\sqrt{148} x \sqrt{37}[/tex]

Area = [tex]\sqrt{5476}[/tex]

Area = 74 u²

If you wanted to view data in reports by different user categories such as Bronze, Gold, and Platinum status levels, what Google Analytics feature would you set up to collect this data?
A. Customer Filter
B. Customer Dimension
C. Custom Metric
D. Event Tracking

Answers

Answer:

B. Customer Dimension

Step-by-step explanation:

Custom dimensions is used to collect and analyze data that Analytics doesn't capture. You can send value to custom dimensions with a variable that pulls data from web page or use layer to pass specific values.

If you want to view data by different user such as Bronze , Gold , Platinum level Google Analytics feature set up the Custom Dimensions to collect the data.

The G. Analytics feature I would  set up to collect this data is  B. Customer Dimension

What is the customer dimension?

Custom dimensions are used to gather and examine information that Analytics is unable to. A variable that retrieves information from a web page can be used to deliver value to custom dimensions, or a layer can be used to provide certain values. Sales data is broken down into individual customers via the customer hierarchy in the customer dimension.

To comply with reporting standards, the hierarchy between the root element All Customers and the individual customer might be arranged arbitrarily.

Learn more about customer at

https://brainly.com/question/1286522

#SPJ3

Find the cotangent, cosine, and tangent of both angles A and B.

If you could put it in this format:

Cotangent -

Cosine -

Tangent -

that would be epic :^D

Answers

Answer:

[tex]\displaystyle \frac{5}{12} = cot∠B \\ 2\frac{2}{5} = cot∠A \\ \\ 2\frac{2}{5} = tan∠B \\ \frac{5}{12} = tan∠A \\ \\ \frac{5}{13} = cos∠B \\ \frac{12}{13} = cos∠A[/tex]

Step-by-step explanation:

[tex]\displaystyle \frac{OPPOSITE}{HYPOTENUSE} = sin\:θ \\ \frac{ADJACENT}{HYPOTENUSE} = cos\:θ \\ \frac{OPPOSITE}{ADJACENT} = tan\:θ \\ \frac{HYPOTENUSE}{ADJACENT} = sec\:θ \\ \frac{HYPOTENUSE}{OPPOSITE} = csc\:θ \\ \frac{ADJACENT}{OPPOSITE} = cot\:θ \\ \\ \frac{10}{24} = cot∠B → \frac{5}{12} = cot∠B \\ \frac{24}{10} = cot∠A → 2\frac{2}{5} = cot∠A \\ \\ \frac{24}{10} = tan∠B → 2\frac{2}{5} = tan∠B \\ \frac{10}{24} = tan∠A → \frac{5}{12} = tan∠A \\ \\ \frac{10}{26} = cos∠B → \frac{5}{13} = cos∠B \\ \frac{24}{26} = cos∠A → \frac{12}{13} = cos∠A[/tex]

I am joyous to assist you anytime.

At a recent track meet the fastest time in the 40-yard dash was 4.37 seconds on the slowest time was 5.08 seconds what is the difference between the fastest and slowest time

Answers

Final answer:

The difference between the fastest and slowest time in the 40-yard dash is 0.71 seconds.

Explanation:

The difference between the fastest and slowest time in the 40-yard dash can be found by subtracting the slowest time from the fastest time. In this case, the fastest time was 4.37 seconds and the slowest time was 5.08 seconds. To find the difference, we subtract 5.08 seconds from 4.37 seconds.

The difference between the fastest and slowest time is 0.71 seconds.

Learn more about Difference between fastest and slowest time here:

https://brainly.com/question/30292758

#SPJ12

2. Which coordinate divides the directed line segment from –10 at J to 23 at K in the ratio of 2 to 1? Explain.
A. 1
2. 11
C. 12​

Answers

Answer:

12

Step-by-step explanation:

x=(-10×1+23×2)÷(2+1)=36/3=12

Final answer:

The coordinate that divides the line segment from -10 at J to 23 at K in the ratio of 2 to 1 is C) 12.

Explanation:

The coordinate that divides the line segment from -10 at J to 23 at K in the ratio of 2 to 1 is 12.

To find this coordinate, we can use the concept of a section formula. Let the ratio be m:n. The coordinate divided is [tex](\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n})[/tex]. Substituting the values, we get [tex](\frac{2 ( 23) + 1 ( -10)}{2+1}, \frac{2 (0) + 1 ( 2)}{2+1})[/tex] = (12, 0).

Therefore, the required coordinate that divides the line segment in the ratio of 2 to 1 is C) 12.

Lucy goes to a department store and spends $90 on clothing.She buys a dress for $30,a hat for $12, and also buys a jacket.How much does the jacket cost?

Answers

Answer:

$48

Step-by-step explanation:

$30+$12=$42

$90-$42=$48

Answer: she spent $48 on the jacket

Step-by-step explanation:

Lucy goes to a department store and spends $90 on clothing. This means that all the money she spent at the store is $90

She buys a dress for $30,a hat for $12, and also buys a jacket.

Let $x = the cost of the jacket. Therefore, total amount spent at the store = amount spent on dress + amount spent on hat + amount spent on jacket. It means that

90 = 12 + 30 + x

x = 90 - 12 -30 = $48

A​ golf-course architect has sixsix linden​ trees, fourfour white birch​ trees, and threethree bald cypress trees to plant in a row along a fairway. In how many ways can the landscaper plant the trees in a​ row, assuming that the trees are evenly​ spaced?

Answers

Answer: There are 60060 ways to do so.

Step-by-step explanation:

Since we have given that

Number of linden trees = 6

Number of white birch trees = 4

Number of bald cypress trees = 3

Total number of trees = 6 +4 +3 =13

So, Number of ways that the landscaper plant that trees are evenly spaced is given by

[tex]\dfrac{13\!}{6!\times 4!\times 3!}\\\\=60060[/tex]

Hence, there are 60060 ways to do so.

A rectangle is drawn on a coordinate grid. The equation for one side of the rectangle is 2x – 5y = 9. Which could be the equation of another side of the rectangle?

Answers

Answer:

[tex]25x+10y+18=0[/tex]

Step-by-step explanation:

We are given that a rectangle in which the equation of one side is given by

[tex]2x-5y=9[/tex]

We have to find the equation of another side of the rectangle.

We know that the adjacent sides of rectangle are perpendicular to each other.

Differentiate the given equation w.r.t.x

[tex]2-5\frac{dy}{dx}=0[/tex]   ([tex]\frac{dx^n}{dx}=nx^{n-1}[/tex])

[tex]5\frac{dy}{dx}=2[/tex]

[tex]\frac{dy}{dx}=\frac{2}{5}[/tex]

Slope of the given side=[tex]m_1=\frac{2}{5}[/tex]

When two lines are perpendicular then

Slope of one line=[tex]-\frac{1}{Slope\;of\;another\;line}[/tex]

Slope of another side=[tex]-\frac{5}{2}[/tex]

Substitute x=0 in given equation

[tex]2(0)-5y=9[/tex]

[tex]-5y=9[/tex]

[tex]y=-\frac{9}{5}[/tex]

The equation of given side is passing through the point ([tex]0,-\frac{9}{5})[/tex].

The equation of line passing through the point [tex](x_1,y_1)[/tex] with slope m is given by

[tex]y-y_1=m(x-x_1)[/tex]

Substitute the values then we get

[tex]y+\frac{9}{5}=-\frac{5}{2}(x-0)=-\frac{5}{2}x[/tex]

[tex]y=-\frac{5}{2}x-\frac{9}{5}[/tex]

[tex]y=\frac{-25x-18}{10}[/tex]

[tex]10y=-25x-18[/tex]

[tex]25x+10y+18=0[/tex]

Hence, the equation of another side of rectangle is given by

[tex]25x+10y+18=0[/tex]

Answer:

y=2/5x-9

I just answered this and got it right.

Step-by-step explanation:

What is the difference between an inscribed and a circumscribed shape?

Answers

Answer:

An inscribed shape is drawn inside of another shape . A circumscribed shape is the shape drawn on the outside or around another shape .

A total of 517 tickets were sold for the school play. They were either adult tickets or student tickets. There were 67 more student tickets sold than adult tickets. How many adult tickets were sold?

Answers

Final answer:

The number of adult tickets sold for the school play was 225.

Explanation:

This is a problem of simple algebra. Let's denote the number of adult tickets sold as a. It is stated in the problem that 67 more student tickets were sold than adult tickets. Therefore, we can denote the number of student tickets sold as a + 67. The problem also tells us that a total of 517 tickets were sold. Hence, we can form an equation: a + a + 67 = 517. Simplifying this equation gives us 2a + 67 = 517. And solving for a (the number of adult tickets) we subtract 67 from both sides to get 2a = 450, then divide by 2, gives us a = 225. So, 225 adult tickets were sold.

Learn more about Adult Tickets Sold here:

https://brainly.com/question/32442524

#SPJ2

What value of x will make parallelogram ABCD a rhombus?

Answers

Answer:

  x = 34

Step-by-step explanation:

The figure will be a rhombus if the diagonals cross at right angles. That is ...

  (3x -12)° = 90°

  3x = 102

  x = 34

The figure is a rhombus when x=34.

Final answer:

The value of x will make parallelogram ABCD a rhombus when all sides are of equal length, which corresponds to the situation where the diagonals have slopes of +1 and -1 and bisect each other at right angles.

Explanation:

To determine the value of x that will make parallelogram ABCD a rhombus, we can consider the geometric properties that define a rhombus. A rhombus is a type of parallelogram with all sides of equal length, which also means its diagonals bisect each other at right angles. Given that the diagonals of the parallelogram must have slopes of +1 and -1 to maintain the properties of bisection, x would be the length making the sides of the parallelogram equilateral.

In the scenario where the original shape is a unit square, changes in frame of reference should preserve the affine property of bisection. Hence, parallelogram ABCD will become a rhombus when all sides are of equal length, which can be determined through equilateral properties of the parallelogram when the diagonals bisect each other at right angles and have slopes of +1 and -1.

For every 60 phone calls that Linda made in a month, she received 70 phone calls. What is the ratio in simplest form of the number of calls made to the number of calls received by Linda that month?

Answers

Ans6:7

wer:

Step-by-step explanation:

Greatest Common Factornof 60 and 70 is 10.

60÷10 / 70÷10 =6/7

XYZ company uses "Continuous Review System (Q, ROP)" for an item. Lead-time is currently one week. The average demand during the week is 100 units with a standard deviation of 20 units. If the supplier increases lead-time to 4 weeks, what will be the standard deviation of lead-time demand?
a.40 80
b.17.89
c.44.72
d.120

Answers

Answer:

The demand value of time lead is

a) 40

Step-by-step explanation:

X  Y Z company Uses "Continuous Review System for an item

Currently demand = 100 units

standard deviation =  20 units

lead time increase = 4 weeks

Apply Z statistic we get the value of standard deviation.

Select all irrational numbers

Answers

[tex]

\sqrt{9}=3\notin\mathbb{I} \\

\sqrt{12}=2\sqrt{3}\in\mathbb{I} \\

\sqrt{16}=4\notin\mathbb{I} \\

\sqrt{20}=2\sqrt{5}\in\mathbb{I} \\

\sqrt{25}=5\notin\mathbb{I}

[/tex]

Hope this helps.

Of the numbers shown, only √12 and √20 are irrational.

Here's why:

* Rational numbers: A rational number can be expressed as a fraction `p/q`, where `p` and `q` are integers and `q ≠ 0`.

* Irrational numbers: An irrational number cannot be expressed as a fraction `p/q`. It has a decimal representation that continues infinitely without repeating.

* √9 = 3: 3 is a rational number because it can be expressed as the fraction 3/1.

* √12: The square root of 12 cannot be simplified as a fraction. Its decimal representation is non-repeating and infinite (approximately 3.464), making it irrational.

* √16 = 4: 4 is a rational number because it can be expressed as the fraction 4/1.

* √20: The square root of 20 cannot be simplified as a fraction. Its decimal representation is non-repeating and infinite (approximately 4.472), making it irrational.

* √25 = 5:  5 is a rational number because it can be expressed as the fraction 5/1.

Therefore, the only irrational numbers in the image are √12 and √20.

There are three nursing positions to be filled at Lilly Hospital. Position 1 is the day nursing supervisor, position 2 is the night nursing supervisor; and position 3 is the nursing coordinator position. There are 10 candidates qualified for 3 of the positions. Determine the number of different ways that 3 positions can be filled by these applicants.a.30.b.720.c. none of these choices.d. 10.e. 120

Answers

Answer:

The correct option is B) 720.

Step-by-step explanation:

Consider the provided information.

We have 10 candidates those qualified for 3 of the positions.

There are three nursing positions to be filled at Lilly Hospital. Position 1 is the day nursing supervisor, position 2 is the night nursing supervisor; and position 3 is the nursing coordinator position.

For Position 1  we have 10 choices, if we select 1 out of 10 candidates we are left with 9 candidates.

For position 2 we have 9 candidates, if we select 1 out of 9 candidates we are left with 8 candidates.

For position 3 we have 8 candidates.

Therefore, the number of ways are: [tex]10\times 9\times 8=720[/tex]

The number of different ways that 3 positions can be filled by these applicants is 720.

Hence, the correct option is B) 720.

Final answer:

Correct Option Is (e. 120.) The number of different ways that 3 positions can be filled by the applicants is 120.

Explanation:

To determine the number of different ways that 3 positions can be filled by these applicants, we can use the concept of combinations. Since there are 10 candidates and the order of the positions does not matter, we can use the combination formula. The number of combinations of 10 candidates taken 3 at a time is given by:

C(10, 3) = 10! / (3!(10-3)!)

Simplifying this expression, we get:

C(10, 3) = 10! / (3!7!)

Calculating the factorial values, we have:

C(10, 3) = 10 * 9 * 8 / (3 * 2 * 1) = 120

Therefore, the number of different ways that 3 positions can be filled by these applicants is 120.

Learn more about Combinations here:

https://brainly.com/question/39347572

#SPJ3

Suppose that 7 female and 5 male applicants have been successfully screened for 5 positions. If the 5 positions are filled at random from the 12 ​finalists, what is the probability of selecting

a. 3 females and 2 males?
b. 4 females and 1 male?
c. 5 females?
d. at least 4 females?

Answers

a. ~0.442, b. ~0.221, c. 0, d. ~0.221. Calculated using combinations: [tex]\( \frac{C(n, k)}{C(12, 5)} \)[/tex].

To solve this problem, we can use the concept of combinations, which is a way to calculate the number of possible outcomes when order doesn't matter.

Let's define:

- [tex]\( n \)[/tex] as the total number of finalists (12 in this case)

- [tex]\( k \)[/tex] as the number of positions to be filled (5 in this case)

- [tex]\( n_F \)[/tex] as the number of female finalists (7 in this case)

- [tex]\( n_M \)[/tex] as the number of male finalists (5 in this case)

We'll use the formula for combinations:

[tex]\[ C(n, k) = \frac{n!}{k!(n - k)!} \][/tex]

where [tex]\( n! \)[/tex] represents the factorial of [tex]\( n \)[/tex], which is the product of all positive integers up to [tex]\( n \)[/tex].

a. Probability of selecting 3 females and 2 males:

[tex]\[ P(3 \text{ females, } 2 \text{ males}) = \frac{C(7, 3) \times C(5, 2)}{C(12, 5)} \][/tex]

[tex]\[ = \frac{\frac{7!}{3!4!} \times \frac{5!}{2!3!}}{\frac{12!}{5!7!}} \][/tex]

[tex]\[ = \frac{\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times \frac{5 \times 4}{2 \times 1}}{\frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1}} \][/tex]

[tex]\[ = \frac{35 \times 10}{792} \][/tex]

[tex]\[ = \frac{350}{792} \][/tex]

[tex]\[ \approx 0.442\][/tex]

b. Probability of selecting 4 females and 1 male:

[tex]\[ P(4 \text{ females, } 1 \text{ male}) = \frac{C(7, 4) \times C(5, 1)}{C(12, 5)} \][/tex]

[tex]\[ = \frac{\frac{7!}{4!3!} \times \frac{5!}{1!4!}}{\frac{12!}{5!7!}} \][/tex]

[tex]\[ = \frac{\frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times \frac{5}{1}}{\frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1}} \][/tex]

[tex]\[ = \frac{35 \times 5}{792} \][/tex]

[tex]\[ = \frac{175}{792} \][/tex]

[tex]\[ \approx 0.221\][/tex]

c. Probability of selecting 5 females:

Since there are only 7 female finalists, it's impossible to select 5 females out of them for 5 positions. So, the probability is 0.

d. Probability of at least 4 females:

This includes the cases of selecting 4 females and 5 females.

[tex]$\begin{aligned} & P(\text { at least } 4 \text { females })=P(4 \text { females, } 1 \text { male })+P(5 \text { females }) \\ & =\frac{175}{792}+0 \\ & =\frac{175}{792} \\ & \approx 0.221\end{aligned}$[/tex]

So, the probabilities are:

a. Approximately 0.442

b. Approximately 0.221

c. 0

d. Approximately 0.221

A man starts walking north at 4 ft/s from a point P. Five minutes later a woman starts walking south at 5 ft/s from a point 500 ft due east of P. At what rate are the people moving apart 15 minutes after the woman starts walking

Answers

Answer:

Both are moving apart with the rate of 8.99 feet per sec.

Step-by-step explanation:

From the figure attached,

Man is walking north with the speed = 4 ft per second

[tex]\frac{dx}{dt}=4[/tex] feet per sec.

Woman starts walking due south with the speed = 5ft per second

[tex]\frac{dy}{dt}=5[/tex] ft per sec.

We have to find the rate of change in distance z.

From the right angle triangle given in the figure,

[tex]z^{2}=(x+y)^{2}+(500)^{2}[/tex]

We take the derivative of the given equation with respect to t,

[tex]2z.\frac{dz}{dt}=2(x+y)(\frac{dx}{dt}+\frac{dy}{dt})+0[/tex] -----(1)

Since distance = speed × time

Distance covered by woman in 15 minutes or 900 seconds = 5(900) = 450 ft

y = 4500 ft

As the man has taken 5 minutes more, so distance covered by man in 20 minutes or 1200 sec = 4×1200 = 4800 ft

x = 4800 ft

Since, z² = (500)² + (x + y)²

z² = (500)² + (4500 + 4800)²

z² = 250000 + 86490000

z = √86740000

z = 9313.43 ft

Now we plug in the values in the formula (1)

2(9313.43)[tex]\frac{dz}{dt}[/tex] = 2(4800 + 4500)(4 + 5)

18626.86[tex]\frac{dz}{dt}[/tex] = 18(9300)

[tex]\frac{dz}{dt}=\frac{167400}{18626.86}[/tex]

[tex]\frac{dz}{dt}=8.99[/tex] feet per sec.

Therefore, both the persons are moving apart by 8.99 feet per sec.

Final answer:

To find the rate at which the people are moving apart 15 minutes after the woman starts walking, calculate the displacements of both individuals and then find the total displacement between them. Answer comes to be 611.52 feet.

Explanation:

Rate at which people are moving apart:

The question asks at what rate are two people moving apart 15 minutes after one of them starts walking, given that one walks north and the other south from different points. To solve this, one has to understand relative velocity and the concept of adding vectors graphically.

Calculate the man's northward displacement after 15 minutes: 4 ft/s * 5 minutes = 20 ft

Calculate the woman's southward displacement after 15 minutes: 5 ft/s * 15 minutes = 75 ft

Find the total displacement between them: ([tex]\sqrt{(500^2 + 20^2)[/tex]) + [tex]\sqrt{(500^2 + 75^2))[/tex] = 611.52 ft

A sumo wrestling ring is circular and has a circumference of 4.6\pi \text{ meters}4.6π meters4, point, 6, pi, start text, space, m, e, t, e, r, s, end text. What is the area AAA of the sumo wrestling ring in square meters? Give your answer in terms of \piπpi. A=A=A, equals \text{m}^2m 2

Answers

Answer:

The area of the sumo wrestling ring is [tex]5.29 \pi[/tex]

Step-by-step explanation:

The circumference of the circular sumo wrestling ring is [tex]4.6\pi[/tex], that means its radius [tex]r[/tex] is:

[tex]2\pi r=4.6\pi[/tex]

[tex]r=\frac{4.6}{2} =\boxed{2.3\:meters.}[/tex]

Now once we have the radius [tex]r[/tex] of the sumo wrestling ring we can find its area [tex]A[/tex] by the following formula:

[tex]A=\pi r^2[/tex]

Putting in the value of [tex]r=2.3\:meters[/tex] we get:

[tex]A=\pi (2.3m)^2=\boxed{5.29\pi\:\:m^2}[/tex]

Therefore the area of the sumo wrestling ring is [tex]{5.29\pi\:\:m^2[/tex]

Answer:

5.29pi

Step-by-step explanation:

Write the equation of the linear relationship in slope-intercept form, using decimals as needed.
x 25 35 45 55
y 92.5 87.5 82.5 77.5

The equation that represents this relationship is y = ?

Answers

Final answer:

The equation of the linear relationship given the x and y coordinates is calculated in slope-intercept form by finding the slope and y-intercept. In this case, the equation of the line is y = -0.5x + 95.

Explanation:

In mathematics, the equation of a linear relationship can be represented in the slope-intercept form, which is y = mx + c.

Where, 'm' is the slope of the line and 'c' is the y-intercept.

Given the x and y coordinates, we can calculate the slope 'm' using the formula, m = (y2 - y1) / (x2 - x1).

For example: m = (87.5-92.5) / (35-25) = -5 / 10 = -0.5. So the slope 'm' is -0.5.

Now we can find the y-intercept 'c' by substituting the known x,y coordinates and the slope into the equation and solving for 'c'. Let's take x = 25 and y = 92.5, substituting these values, we will get c = y - mx =  92.5 - (-0.5 * 25) = 95.

So, the equation of the straight line in slope-intercept form is y = -0.5x + 95.

Learn more about Equation of Line here:

https://brainly.com/question/21511618

#SPJ12

Isabelle proves that the triangles are congruent by using the parallel lines to determine a second set of angles are congruent. What statement and reason could she have used? ∠ABC ≅ ∠BAC; corresponding angles of parallel lines are congruent. ∠CAB ≅ ∠DCB; alternate interior angles of parallel lines are congruent ∠ABC ≅ ∠DCB; alternate interior angles of parallel lines are congruent ∠ACD ≅ ∠ABD; corresponding angles of parallel lines are congruent.

Answers

Answer:

C

Step-by-step explanation:

The true statement is that proves the congruence of both triangles is:

∠ABC ≅ ∠DCB; alternate interior angles of parallel lines are congruent

How to prove that angles are congruent

From the complete question, we have the following highlights

Angles B and C are alternate interior anglesThe triangles are bounded by parallel lines

The above highlights mean that:

Angles ABC and DCB are congruent, by the theorem of alternate interior angles of parallel lines

Hence, the true statement is (c)

Read more about congruent triangles at:

https://brainly.com/question/1675117

Consider an employee's whose earnings, in dollars, are according to the continuous stream f(t)=5,000e0.1t for t>0, where t is measured in years. How many years will it take them to earn a combined total of $100,000? Give your answer in years to the nearest year.

Answers

It will take approximately 10.986 years for the employee to earn a combined total of $100,000. Rounding to the nearest year, it will take approximately 11 years for the employee to reach this earnings milestone.

To determine how many years it will take for the employee to earn a combined total of $100,000, we need to set up and solve the following integral:

[tex]\[ \int_{0}^{t} 5000e^{0.1\tau} \, d\tau = 100,000 \][/tex]

Here, [tex]\( t \)[/tex] represents the time in years. The integral represents the accumulated earnings from the start (0 years) to t years based on the continuous stream function[tex]\( f(\tau) = 5000e^{0.1\tau} \).[/tex]

Let's solve this integral:

[tex]\[ \int_{0}^{t} 5000e^{0.1\tau} \, d\tau = \left. \frac{5000}{0.1}e^{0.1\tau} \right|_{0}^{t} \][/tex]

Evaluate this at the upper and lower limits:

[tex]\[ \frac{5000}{0.1}e^{0.1t} - \frac{5000}{0.1}e^{0.1 \times 0} \][/tex]

Simplify:

[tex]\[ 50000(e^{0.1t} - 1) \][/tex]

Now, set this expression equal to the target earnings of $100,000 and solve for  t :

[tex]\[ 50000(e^{0.1t} - 1) = 100,000 \][/tex]

Divide both sides by 50000:

[tex]\[ e^{0.1t} - 1 = 2 \][/tex]

Add 1 to both sides:

[tex]\[ e^{0.1t} = 3 \][/tex]

Now, take the natural logarithm (ln) of both sides:

[tex]\[ 0.1t = \ln(3) \][/tex]

Solve for t:

[tex]\[ t = \frac{\ln(3)}{0.1} \][/tex]

Using a calculator:

[tex]\[ t \approx \frac{1.0986}{0.1} \]\[ t \approx 10.986 \][/tex]

he brain volumes ​(cm cubedcm3​) of 20 brains have a mean of 1103.81103.8 cm cubedcm3 and a standard deviation of 121.9121.9 cm cubedcm3. Use the given standard deviation and the range rule of thumb to identify the limits separating values that are significantly low or significantly high. For such​ data, would a brain volume of 1367.61367.6 cm cubedcm3 be significantly​ high?

Answers

Answer: We can say that brain volume of 1367.6 cubic cm would be significantly high.

Step-by-step explanation:

Since we have given that

n = 20 brains

Mean = 1103.8 cubic. cm

Standard deviation = 121.9 cubic. cm

According to range rule of thumb, the usual values must lie within 2 standard values from the mean.

So, it becomes,

[tex]\bar{x}-2\sigma\\\\=1103.8-2\times 121.9\\\\=1103.8-243.8\\\\=860[/tex]

and

[tex]\bar{x}+2\sigma\\\\=1103.8+2\times 121.9\\\\=1103.8+243.8\\\\=1225.7[/tex]

We can see that 1376.6 does not lie within (860,1225.7).

So, we can say that brain volume of 1367.6 cubic cm would be significantly high.

Telephone calls arrive at a doctor’s office according to a Poisson process on the average of two every 3 minutes. Let X denote the waiting time until the first call that arrives after 10 a.m.
(a) What is the pdf of X?
(b) Find P(X > 2).

Answers

Answer:

a) [tex]f(x)=\frac{2}{3}e^{-\frac{2}{3}x}[/tex] when [tex]x\geq 0[/tex]

[tex]f(x)=0[/tex] otherwise

b) [tex]P(X<2)=0.2636[/tex]

Step-by-step explanation:

First of all we have a Poisson process with a mean equal to :

μ = λ = [tex]\frac{2}{3}[/tex] (Two phone calls every 3 minutes)

Let's define the random variable X.

X : ''The waiting time until the first call that arrives after 10 a.m.''

a) The waiting time between successes of a Poisson process is modeled with a exponential distribution :

X ~ ε (λ)    Where λ is the mean of the Poisson process

The exponential distribution follows the next probability density function :

I replace λ = a for the equation.

[tex]f(x)=a(e)^{-ax}[/tex]

With

[tex]x\geq 0[/tex]

and

[tex]a>0[/tex]

[tex]f(x)=0[/tex] Otherwise

In this exercise λ= a = [tex]\frac{2}{3}[/tex] ⇒

[tex]f(x)=(\frac{2}{3})(e)^{-\frac{2}{3}x}[/tex]

[tex]x\geq 0[/tex]

[tex]f(x)=0[/tex] Otherwise

That's incise a)

For b) [tex]P(X>2)[/tex] We must integrate between 2 and ∞ to obtain the probability or either use the cumulative probability function of the exponential

[tex]P(X\leq x)=0[/tex]

when [tex]x<0[/tex]

and

[tex]P(X\leq x)=1-e^{-ax}[/tex] when [tex]x\geq 0[/tex]

For this exercise

[tex]P(X\leq x)=1-e^{-\frac{2}{3}x}[/tex]

Therefore

[tex]P(X>2)=1-P(X\leq 2)[/tex]

[tex]P(X>2)=1-(1-e^{-\frac{2}{3}.2})=e^{-\frac{4}{3}}=0.2636[/tex]

(A) The pdf of X, the waiting time until the first call after 10 a.m., is f(x; 2/3) = (2/3) * e^(-(2/3) * x), and, (B) the probability that X > 2 (the first call arrives more than 2 minutes after 10 a.m.) is approximately 0.264.

(a) To find the probability density function (pdf) of X, we first need to understand the arrival rate of the calls, which follows a Poisson process. In our case, the arrival rate (λ) is two calls every 3 minutes, which could also be expressed as 2/3 of a call per minute.

For a Poisson process, the waiting times between arrivals are exponentially distributed. Therefore, the pdf for X, the waiting time until the first call, is given by the exponential distribution function.

The exponential distribution has the following pdf:

f(x; λ) = λ * e^(-λ * x)

In our case, substituting λ = 2/3 (the arrival rate per minute), the pdf of waiting time X becomes:

f(x; 2/3) = (2/3) * e^(-(2/3) * x)

(b) The second part of the question asks for the probability that the waiting time until the first call, X, is greater than 2 minutes.

For an exponential distribution, the cumulative distribution function (CDF), which gives the probability that a random variable is less than or equal to a certain value, is as follows:

F(x; λ) = 1 - e^(-λ * x)

We need P(X > 2), but it's easier to compute P(X <= 2), and then subtract that from 1.

So, we first find the cumulative probability that the waiting time is 2 minutes or less, using our given λ and x = 2:

P(X <= 2) = F(2; 2/3) = 1 - e^(-(2/3) * 2)

After calculating, this probability is approximately 0.736.

Therefore, the probability that waiting time X is greater than 2 minutes, P(X > 2), is simply 1 minus this result, which approximately equals to 0.264.

To learn more about probability

https://brainly.com/question/13604758

#SPJ6

Amaya has a store credit of 50.86 she plans to purchase a video game for $24.97 and a golf club accessory for $6.99 how much store credit will she have left

Answers

Amaya will have $18.90 store credit left.

Step-by-step explanation:

Available store credit = $50.86

Cost of video game = $24.97

Cost of golf club accessory = $6.99

Total amount spent = Cost of video game + cost of golf club accessory

[tex]Total\ amount\ spent=24.97+6.99\\Total\ amount\ spent=\$31.96[/tex]

Remaining store credit = Available store credit - total amount spent

[tex]Remaining\ store\ credit=50.86-31.96\\Remaining\ store\ credit=\$18.90[/tex]

Amaya will have $18.90 store credit left.

Keywords: Addition, subtraction

Learn more about addition at:

brainly.com/question/11566221brainly.com/question/12896802

#LearnwithBrainly

Use​ Descartes' Rule of Signs to determine the possible numbers of positive and negative real zeros of f (x )equals x cubed plus 5 x squared plus 7 x plus 6f(x)=x3+5x2+7x+6. What are the possible numbers of positive real​ zeros?

Answers

Answer:

  0

Step-by-step explanation:

All of the terms have positive signs, so there are no sign changes. Zero sign changes means there are zero positive real roots.

A rectangular area of 36 f t2 is to be fenced off. Three sides will use fencing costing $1 per foot and the remaining side will use fencing costing $3 per foot. Find the dimensions of the rectangle of least cost. Make sure to use a careful calculus argument, including the argument that the dimensions you find do in fact result in the least cost (i.e. minimizes the cost function).

Answers

Answer:

x = 8,49 ft

y  = 4,24  ft  

Step-by-step explanation:

Let  x be the longer side of rectangle   and  y  the shorter

Area of rectangle     =    36 ft²     36  =  x* y   ⇒ y =36/x

Perimeter of rectangle:

P  =  2x   +   2y    for convinience we will write it as    P  = ( 2x + y ) + y

C(x,y)   =  1 * ( 2x  +  y  )  +  3* y

The cost equation as function of x is:

C(x)  =  2x  + 36/x   + 108/x

C(x)  =  2x  + 144/x

Taking derivatives on both sides of the equation

C´(x)  = 2  - 144/x²

C´(x)  = 0         2  - 144/x² = 0       ⇒  2x²  -144 = 0    ⇒  x² =  72

x = 8,49 ft       y  = 36/8.49    y  = 4,24  ft    

How can we be sure that value will give us a minimun

We get second derivative

C´(x)  = 2  - 144/x²      ⇒C´´(x)  = 2x (144)/ x⁴

so C´´(x) > 0

condition for a minimum

The office building is 48 floors high. Half of the floors have 18 windows each and half of the floors have 36 windows each. How many windows does the building have in all?

Answers

Answer:

1296 windows

Step-by-step explanation:

HALF of the floors, means

HALF of 48, that is:

48 * 0.5 = 24

Thus, we can say:

24 floors each have 18 windows, and

24 floors each have 36 windows

Total Number of Windows:

24 * 18 = 432 windows

24 * 36 = 864 windows

Total = 432 + 864 = 1296 windows

Answer:

1296 windows are present in the building

Explanation:

Given the office building is 48 floors high

Half of floors have 18 windows each

Then , half of floors =[tex]\frac{48}{2}[/tex] = 24 floors

Total windows on half of the floors, that is 24 floors

= [tex]18\times 24[/tex]

= 432 windows

Also, half of the floors have 36 windows each

Total windows on rest half floors (24 floors)

=[tex]36 \times 24[/tex]

= 864 windows

Total windows = 432 + 864 = 1296 windows

Therefore, 1296 windows are present in the building

Consider the given function and the given interval.
f(x) = 3 sqrt x, [0, 16]
(a) Find the average value fave of f on the given interval
(b) Find c such that fave = f
(c). (Round your answer to three decimal places.)

Answers

Answer:

  (a)  fave = 8

  (b)  c = 64/9

  (c)   c ≈ 7.111

Step-by-step explanation:

(a) The average value of the function is its integral over the interval, divided by the width of the interval.

  [tex]f_{ave}=\displaystyle\frac{1}{16-0}\int_0^{16} {3x^{\frac{1}{2}}} \, dx=\left.\frac{x^{3/2}}{8}\right|_0^{16}=8[/tex]

__

(b) We want ...

  f(c) = 8

  3√c = 8 . . . . . use f(c)

  √c = 8/3 . . . . . divide by 3

  c = (8/3)² . . . . square

  c = 64/9

__

(c) c ≈ 7.111

Final answer:

To find the average value of a function, evaluate the definite integral over the interval and divide by the length of the interval.

Explanation:

To find the average value of a function on a given interval, we need to evaluate the definite integral of the function over the interval and divide it by the length of the interval.

For the given function f(x) = 3√x on the interval [0, 16], the average value fave is given by:

fave = (1/[16-0]) * ∫(0 to 16) 3√x dx

Simplifying this integral, we get:

fave = 3/16 * (2/3) * (16^(3/2) - 0^(3/2)) = 4(16 - 0) = 64

Learn more about Average value of a function here:

https://brainly.com/question/32589988

#SPJ3

Harry has a small business cleaning kitchens and bathrooms. He usually cleans a bathroom in 1 hour and cleans a kitchen in 45 minutes. He never works more than 15 hours in a week. Harry earns $60 per bathroom and $20 per kitchen job. He does not do more than 8 bathroom jobs per week (the smell gets to him). Find a combination of bathroom and kitchen jobs per week that will maximize his income and state the amount.

Answers

Answer:

8 bathroom jobs and 9 kitchen jobs

Step-by-step explanation:

B=60

K=20

8*60=480

9*20=180

that would give harry 660 dollars in a week. HOWEVER- we have to make sure that its equal to or less than 15 hours of work.

8*1h= 8 hours in bathroom

9*45m=6.75hr in kitchen

8 hours+6.75 hours=14.75hr 14.75 hr<15hr so it works.

Other Questions
A home has a living room that is 14 ft. wide, 22 ft. long, and a height of 9ft. Bob needs to paintthe room. He has to paint the walls and the ceiling. There are two 3.0 ft. by 5.0 ft. windows anda 4.0 ft. by 7.0 ft. opening into the room. A gallon of paint covers 320 ft? How many gallons ofpaint are needed? Explain how you reached your answer. (All data are accurate to twosignificant figures.) Brian is a sophomore and works all of the hours his employer will let him. He is the first person in when called to fill in for an extra shift. At home there are many stressors including a houseful of siblings and parents who are overworked and struggling to make ends meet. Brian may be experiencing:a. burnout b. pseudomaturityc. egocentrismd. societal prejudice The designer also programs a bird with a path that can be modeled by a quadratic function. The bird starts at the vertex of the path at (0, 20) and passes through the point (10, 8). What is the slope of the line that represents the turtle's path? Joe bought g gallons of gasoline for $2.85 per gallon and c cans of oil for $3.15 per can.PART AWhat expression can be used to determine the total amount Joe spent on gasoline and oil?PART BIf he bought 8.4 gallons of gasoline and 6 cans of oil, how much will he have spent in all? A pet store sold 74 puppies in a week if each puppy is $ 65 how much money would they have made The collapse of the roman empire most likely helped empower the catholic church because Un partido entre el Bara y el Real Madrid es importante en toda Espaa. Ronaldinho fue (was) el futbolista estrella (soccer star) del. Los aficionados las victorias de sus equipos en las calles (streets). La rivalidad entre el Real Madrid y el Bara est relacionada con la. How is a gas affected when pressure, temperature, or volumechange? 1. Jimena limpia el congelador. Jimena est en . 2. Don Diego limpia el escritorio. Don Diego est en . 3. Felipe pasa la aspiradora debajo de la mesa y las sillas. Felipe est en . 4. Juan Carlos sacude el silln. Juan Carlos est en . 5. Marissa hace la cama. Marissa est en . A road crew can repave 1/30 miles of road each hour. They must repave a road that is 2/5 miles long. How long will it take the crew to repave the road?Write your answer in simplest form. Procter and gamble vizir launch case study review Should P&G launch Vizir in Germany or as a Eurobrand ? When should the launch take place? Copper(II) sulfate pentahydrate, CuSO4 5 H2O, (molar mass 250 g/mol) can be dehydrated by repeated heating in a crucible. Which value is closest to the percentage mass of water lost from the total mass of salt in the crucible when the crucible undergoes repetitive heatings until a constant mass is reached?36%26%13%25% What coordinate do lines 2/3x+1/6y=2/3 and 4x+y=4 meet? In Rutherford's scattering experiments, alpha particles (charge =+2e ) were fired at a gold foil. Consider an alpha particle with an initial kinetic energy heading directly for the nucleus of a gold atom (charge =+79e). The alpha particle will come to rest when all its initial kinetic energy has been converted to electrical potential energy.Find the distance of closest approach between the alpha particle and the gold nucleus for the case K= 2.9MeV in fm. Decide si cada oracin est escrita en tiempo presente, pasado o futuro. En este momento hace mucho sol. presente pasado futuro Communications satellites are placed in a circular orbit where they stay directly over a fixed point on the equator as the earth rotates. These are called geosynchronous orbits. The altitude of a geosynchronous orbit is 3.58107m(22,000miles). Part AWhat is the period of a satellite in a geosynchronous orbit? Part B Find the value of g at this altitude. Part C What is the weight of a 2000 kg satellite in a geosynchronous orbit? "A justification/recommendation report would be written to evaluate which equipment to buy. Justification reports are always indirect because the audience must be persuaded. First the writer would discuss the problem and then address alternative solutions. The author would choose the most promising alternativethe recommendationand explain why its advantages surpass its disadvantages." Which statements describe crossing over? increases genetic variation across gametes occurs between homologous chromosomes separates chromosome pairs into gametes occurs between duplicated sister chromatids What is the value of x to the nearest foot? Two in-phase loudspeakers are placed along a wall and are separated by a distance of 4.00 m. They emit sound with a frequency of 514 Hz. A person is standing away from the wall, in front of one of the loudspeakers. What is the closest distance from the wall the person can stand and hear constructive interference? The speed of sound in air is 343 m/s.Multiple choice:1.64 m1.15 m0.344 m0.729 m