Type 11//5 in the simplest form

Answers

Answer 1

Answer:

Exact Form:

11/  5

Decimal Form:

2.2

Mixed Number Form:

2  1/ 5

Step-by-step explanation:

For the decimal, divide 11 by 5.

To get the Mixed number form, find out how many times 5 goes into 11, then then what is left over. Put the number left over the number that was dividing. 5 goes into 11 2 times, then 1 is left over, put the 1 over 5.


Related Questions

which graph represents the solution to 7x>21 or 6x-9<21

Answers

Answer:

3 < x OR 5 > x

Step-by-step explanation:

Divide 3 on both sides; move 9 to the other side of the inequality symbol to get 6x < 30. Then divide both sides by 6.

**NOTE: The ONLY time you reverse the inequality sign is when you are dividing\multiplying by a negative [this does not apply so no need to worry].

I am joyous to assist you anytime.

The solution to both the inequalities will lie in (3 , 5) region, this is represented by line C.

What is an Inequality?

An Inequality is the statement formed when two algebraic expressions are equated using an Inequality operator.

The inequalities are

7x>21 and  6x-9<21

7x >21

    Dividing 7 on the both sides

     x >3

6x-9 <21

      Adding 9 on both sides

       6x < 30

     Dividing 6 on both sides

      x < 5

Therefore, the solution to both the inequalities will lie in (3 , 5) region, this is represented by line C.

The complete question is attached with the answer.

To know more about Inequality

https://brainly.com/question/20383699

#SPJ2

If in right triangle ABC with right angle C, sin A = 3/5 then what is the value of sin B?

Answers

Check the picture below.

For this case we have to define trigonometric relationships in rectangular triangles that the sine of an angle is given by the leg opposite the angle, on the hypotenuse of the triangle.

If we have to:

[tex]Sin A = \frac {3} {5}[/tex]

So:

Leg opposite angle A is: 3

The hypotenuse is: 5

If we apply the Pythagorean theorem, we find the value of the other leg:

[tex]x = \sqrt {5 ^ 2-3 ^ 2}\\x = \sqrt {25-9}\\x = \sqrt {16}\\x = 4[/tex]

So, the Sine of B is given by:

[tex]Sin B = \frac {4} {5}[/tex]

Answer:

[tex]SinB = \frac {4} {5}[/tex]

Shona spins a spinner with three equal-sized spaces—red, green, and yellow—and then rolls a six-sided die numbered from 1 to 6.

The sample size for this compound event is __ . If instead of three colored spaces, the spinner has four colored spaces, the sample size would be __.


A:6,12,14,18


B:12,14,18,24

Answers

Answer with explanation:

Sample size--

It is the collections of all the possible outcomes of an event.

(A)

It is given that:

Shona spins a spinner with three equal-sized spaces—red, green, and yellow and then rolls a six-sided die numbered from 1 to 6.

This means that the possible outcomes are given as follows:

(Red,1)          (Green,1)           (Yellow,1)

(Red,2)         (Green,2)          (Yellow,2)

(Red,3)         (Green,3)           (Yellow,3)

(Red,4)         (Green,4)           (Yellow,4)

(Red,5)         (Green,5)           (Yellow,5)

(Red,6)         (Green,6)           (Yellow,6)

This means that the total number of outcomes are: 18

Hence, the sample size for this compound event is:  18

(B)

If the spinner has four colored spaces.

Let the fourth color be: Blue

Then the possible outcomes are given by:

(Red,1)          (Green,1)           (Yellow,1)           (Blue,1)

(Red,2)         (Green,2)          (Yellow,2)          (Blue,2)

(Red,3)         (Green,3)           (Yellow,3)          (Blue,3)

(Red,4)         (Green,4)           (Yellow,4)          (Blue,4)  

(Red,5)         (Green,5)           (Yellow,5)          (Blue,5)

(Red,6)         (Green,6)           (Yellow,6)          (Blue,6)

Hence, the total number of outcomes are:  24

The sample size of this compound event would be 24.

Answer:

a- 18

b- 24

Step-by-step explanation:

Swaziland has the highest HIV prevalence in the world : 25.9% of this country’s population is infected with HIV. The ELISA test is one of the first and most accurate tests for HIV. For those who carry HIV, the ELISA test is 99.7% accurate. For those who do not carry HIV, the ELISA test is 92.6% accurate. 1. If an individual from Swaziland has tested positive, what is the probability that he carries HIV ? 2. If an individual from Swaziland has tested negative, what is the probability that he is HIV free ?

Answers

Answer:

1. If an individual from Swaziland has tested positive, what is the probability that he carries HIV ?

P=0.8249 or 82.49%

2. If an individual from Swaziland has tested negative, what is the probability that he is HIV free ?

P=0.9988 or 99.88%

Step-by-step explanation:

Make the conditional probability table:

  Individual

              Infected       Not infected

ELISA

Positive              

Negative  

Totals      

The probability of an infected individual with a positive result from the ELISA is obtained from multiplying the probability of being infected (25.9%) with the probability of getting a positive result in the test if is infected (99.7%), the value goes in the first row and column:

P=0.259*0.997=0.2582 or 25.82%

              Individual

              Infected       Not infected Totals

ELISA

Positive    25.82%        

Negative    

Totals      

The probability of a not infected individual with a negative result from the ELISA is obtained from multiplying the probability of not being infected (100%-25.9%=74.1%) with the probability of getting a negative result in the test if isn't infected (92.6%), the value goes in the second row and column:

P=0.741*0.926=0.6862 or 68.62%

              Individual

              Infected       Not infected Totals

ELISA

Positive    25.82%        

Negative                     68.62%

Totals      

In the third row goes the total of the population that is infected (25.9%) and the total of the population free of the HIV (74.1%)

Individual:

              Infected       Not infected Totals

ELISA

Positive    25.82%        

Negative                        68.62%          

Totals       25.9%             74.1%          

Each column must add up to its total, so the probability missing in the first column is 25.9%-25.82%=0.08%, and the ones for the second column is 74.1%-68.62%=5.48%.

             Individual

              Infected       Not infected Totals

ELISA

Positive    25.82%          5.48%            

Negative    0.08             68.62%          

Totals       25.9%             74.1%            

             Individual

The third column is filled with the totals of each row:

              Infected       Not infected Totals

ELISA

Positive    25.82%          5.48%            31.3%

Negative    0.08             68.62%          68.7%

Totals       25.9%             74.1%            100%

The probability A of tested positive is 31.3% and the probability B for tested positive and having the virus is 25.82%, this last has to be divided by the possibility of positive.

P(B/A)=0.2582/0.313=0.8249 or 82.49%

The probability C of tested negative is 68.7% and the probability D for tested negative and not having the virus is 68.62%, this last has to be divided by the possibility of negative.

P(D/C)=0.6862/0.687=0.9988 or 99.88%

Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
Match each exponential function to the description of its percent rate of change.
22% growth
12% decay
12% growth
22% decay
2% decay
2% growth
20% growth
20% decay
RX) = 42(1.12)*
Rx) = 44(0.88)*
R(X) = 22(0.8)*
RX) = 124(1.22)*

Answers

Answer:

Top to Bottom:

12% growth12% decay20% decay22% growth

Step-by-step explanation:

Subtract 1 from the number in parentheses (the base of the exponential factor). Multiply the result by 100%. This gives you the percentage growth (positive) or decay (negative).

  (1.12 -1)×100% = +12% (growth)

  (0.88 -1)×100% = -12% (decay)

  (0.80 -1)×100% = -20% (decay)

  (1.22 -1)×100% = +22% (growth)

_____

The sign of the change (+ or -) and the description (growth or decay) convey the same information. It can be confusing to say -12% decay. Rather, the decay is 12%, or the growth is -12%. Above, we tried to indicate that positive is growth and negative is decay. We're not trying to say that the decay is -12%.

Given f(x) and g(x) = f(x) + k, use the graph to determine the value of k.

A.) 2
B.) 3
C.) 4
D.) 5

Answers

Answer:

C.) 4

Step-by-step explanation:

You can solve this a couple ways but I solved it by looking at the graph. g(x) is 4 units above f(x). Adding four to f(x) would shift it up 4 units. Hope that helped.

Answer:

The correct option is C.

Step-by-step explanation:

The translation is defined as

[tex]g(x)=f(x)+k[/tex]

Where, a is horizontal shift and b is vertical shift.

If k>0, then the graph shifts b units up and if k<0, then the graph shifts b units down.

In the given graph red line represents the the function g(x) and blue line represents the function f(x).

y-intercept of g(x) = 1

y-intercept of f(x) = -3

[tex]k=1-(-3)=1+3=4[/tex]

It means the graph of f(x) shifts 4 unit up to get the graph of g(x). So, the value of k is 4.

Therefore the correct option is C.

I'm given 10=log(x) and I'm supposed to find the x-intercept.

Do I do (10^10)=x or do I change 10 to 0?

Answers

Answer:

  x = 10^10

Step-by-step explanation:

You are right to question the question. As posed, it makes no sense.

The idea of an x-intercept is applicable to a relation involving two variables that can be graphed on a coordinate plane.

If you graph this equation on an x-y plane, it will be a vertical line at x = 10^10, so that would be the x-intercept.

_____

I suggest you ask for an explanation from your teacher.

_____

The graph of y=log(x) is something else entirely, as you know. The x-intercept of that graph is x=1.

please help im confused

Answers

Answer:

m∠1 = 43°27'm∠2 = 136°33'm∠4 = 136°33'

Step-by-step explanation:

Angles 1 and 3 are vertical angles, so are equal:

  m∠1 = m∠3 = 43°27'

Angles 2 and 3 are a linear pair, so are supplementary:

  m∠2 = 180° - m∠3 = 180° - 43°27' = 136°33'

Angles 2 and 4 are also vertical angles, so are equal:

  m∠4 = m∠2 = 136°33'

_____

There are 60 minutes in a degree, so 180° is the same as 179°60'. Subtraction can proceed in the usual way after this rewrite:

  180° - 43°27' = 179°60' -43°27'

  = (179 -43)° +(60 -27)' = 136°33'

"the fromula for the perminter of a rectangle is given by P= 2L +2W where l is the length and w is the width. Assume the ermiter of a rectangular plot of land is 480 ft. The length is twice the width. Find the length of rectangular plot of land

Answers

Answer:

The length of rectangular plot of land is 160 ft.

Step-by-step explanation:

L = 2 W (the length is twice the width)

P = 480 ft. (perimeter of rectangular plot of land)

L = ?

2. 2W + 2W= 480 ft  >>> (2 times twice width=L) + 2W=480 ft.

4W + 2W= 480 ft >>>> 6W= 480 ft.

W= 80 ft.

L = 2. 80 = 160 ft. (Length is twice the width)

P= 2L + 2W (formula for the perimeter)

2. 160 + 2. 80 = 480 ft.

Which of the following is an equation of a line that is parallel to y = 4 x + 9 ? (Choose all correct equations.)
y = 2 x + 9
y = 4 x − 7
12 x − 3 y = 6
− 20 x + 5 y = 45

Answers

Answer:

The second, third and fourth are parallel to the given equation

Step-by-step explanation:

In order to determine if the slopes are the same, put all of the equations in slope-intercept form:  y = mx + b.  In order for lines in this form to be parallel, the m values of each have to be the exact same number, in our case, 4.  Equation 2 has a 4 in the m position, just like the given, so that one is easy.  Equation 2 is parallel.

Let's solve the third equation for y:

12x - 3y = 6 so

-3y = -12x + 6 and

y = 4x - 2.  Equation 3 is parallel since there is a 4 in the m position.

Let's solve the fourth equation for y:

-20x + 5y = 45 so

5y = 20x + 45 and

y = 4x + 9.  Equation 4 is also parallel since there is a 4 in the m position.

What are some ways tanθ=sinθ/cos θ can be expressed?

Answers

Answer:

See explanation

Step-by-step explanation:

We can express

[tex] \tan( \theta) = \frac{ \sin \theta}{ \cos \theta } [/tex]

in so many ways using trigonometric identities.

Let us rewrite to obtain:

[tex]\tan( \theta) = \frac{1}{ \cos \theta } \times \sin \theta[/tex]

This implies that

[tex]\tan( \theta) = \sec \theta \sin \theta[/tex]

When we multiply the right side by

[tex] \frac{ \cos \theta}{ \cos \theta} [/tex]

we get:

[tex]\tan( \theta) = \frac{ \sin \theta \cos \theta }{ \cos ^{2} \theta } [/tex]

[tex]\tan( \theta) = \frac{ \sin 2\theta }{ 2 - 2\sin^{2} \theta } [/tex]

Etc

In the xy-plane, a parabola defined by the equation y=(x-8)^2 intersects the line defined by the equation y=36 at two points, P and Q. What is the length of PQ?

A) 8
B) 10
C) 12
D) 14

Answers

Answer:

12

Step-by-step explanation:

Alright so we are asked to find the intersection of y=(x-8)^2 and y=36.

So plug second equation into first giving:  36=(x-8)^2.

36=(x-8)^2

Take square root of both sides:

[tex]\pm 6=x-8[/tex]

Add 8 on both sides:

[tex]8 \pm 6=x[/tex]

x=8+6=14 or x=8-6=2

So we have the two intersections (14,36) and (2,36).

We are asked to compute this length.

The distance formula is:

[tex]\sqrt{(14-2)^2+(36-36)^2}[/tex]

[tex]\sqrt{14-2)^2+(0)^2[/tex]

[tex]\sqrt{14-2)^2[/tex]

[tex]\sqrt{12^2}[/tex]

[tex]12[/tex].

I could have just found the distance from 14 and 2 because the y-coordinates were the same. Oh well. 14-2=12.

Intersecting lines that form right angles are called

Answers

Answer:

Perpendicular intersecting lines.

Step-by-step explanation:

A '+' has intersecting perpendicular lines.

they are perpendicular lines

Mahnoor randomly selects times to walk into a local restaurant and observe the type of music being played. She found that the restaurant was playing country 111111 times, rock & roll 171717 times, and blues 888 times. Use the observed frequencies to create a probability model for the type of music the restaurant is playing the next time Mahnoor walks in. Input your answers as fractions or as decimals rounded to the nearest hundredth.

Answers

Answer:  

Outcome     :  A(Country)    B(Rock & roll)    C(blues)

Probability  :     [tex]\dfrac{11}{36}[/tex]                     [tex]\dfrac{17}{36}[/tex]                     [tex]\dfrac{1}{9}[/tex]

Step-by-step explanation:

A probability model is a mathematical display of a random situation S contain various sets .

Let A be the event that they play a country music, B be the event that they play rock & roll and C be the event that they play blues.

Then , n (A) = 11, n(B)=17 and n(C)=8

Let S be the combined set of number of times music played in local restaurant.

Then ,  [tex]n(S)=11+17+8=36[/tex]

Then , [tex]P(A)=\dfrac{n(A)}{n(S)}=\dfrac{11}{36}[/tex]

[tex]P(B)=\dfrac{n(B)}{n(S)}=\dfrac{17}{36}[/tex]

[tex]P(C)=\dfrac{n(C)}{n(S)}=\dfrac{8}{36}=\dfrac{1}{9}[/tex]

Now, the required probability model:-

Outcome     : A(Country)    B(Rock & roll)    C(blues)

Probability  :     [tex]\dfrac{11}{36}[/tex]                     [tex]\dfrac{17}{36}[/tex]                     [tex]\dfrac{1}{9}[/tex]

               

Answer:

country = 0.31

rock and roll =0.47

Blues = 0.22

Step-by-step explanation: Here we go :O

Let's put the count of each type of music from the sample into a table.

country = 11

Rock and roll= 17

blues = 8

Total = 36

We get the probabilities by dividing the frequencies by the total. (Remember to round to the nearest hundredth.)

11/36 = country

17/36 = rock and roll

8/36 = blues

Divide these

country = 0.31

rock and roll =0.47

Blues = 0.22

Please help!! math question below!!! pic

Answers

Answer:

  about 32,000

Step-by-step explanation:

You are being asked to evaluate the quartic for x=7.

f(7) = (((-0.022·7 +0.457)7 -2.492)7 -5279)7 +87.419

  = ((.303·7 -2.492)7 -5.279)7 +87.419

  = (-0.371·7 -5.279)7 +87.419

  = -7.876·7 +87.419

  = 32.287

The number of dolls sold in 2000 was approximately 32,000.

Find the minimum value of the region formed by the system of equations and functions below.
y ≥ x ­- 3
y ≤ 6 ­- 2x
2x + y ≥ - ­3
f(x, y) = 3x + 4y

­A. -12
­B. -4.5
C. 9
D. 24

Answers

Answer:

  A.  -12

Step-by-step explanation:

A graph shows the vertices of the feasible region to be (0, 6), (3, 0) and (0, -3). Of these, the one that minimizes f(x, y) is (0, -3). The minimum value is ...

  f(0, -3) = 3·0 + 4(-3) = -12

_____

Comment on the graph

Here, three regions overlap to form the region where solutions are feasible. By reversing the inequality in each of the constraints, the feasible region shows up on the graph as a white space, making it easier to identify. The corner of the feasible region that minimizes the objective function is the one at the bottom, at (0, -3).

Final answer:

The minimum value of the function f(x,y) = 3x+4y in the feasible region defined by the given system of inequalities is -19, which unfortunately does not match any of the given options. The steps involve graphing the inequalities, finding the vertices of the feasible region, and substituting those points into the function to find the minimum value.

Explanation:

This problem includes finding the minimum value of the given function in a defined region dictated by the system of inequalities. I will guide you step by step on how to reach the solution. This is basically an optimization problem dealing with linear programming. The system of inequalities yields a feasible region, and the function you want to minimize is the given f(x, y) = 3x + 4y.

Your first step is to graph the inequalities and find the feasible region, this will give you the points (vertices) that we need. The inequalities are: y ≥ x ­- 3,  y ≤ 6 ­- 2x and 2x + y ≥ - ­3. By graphing these inequalities, the intersection points are: (3,0), (1,-2), and (-1,-4).

The minimal value for the function, f(x,y), must be at one of these vertices. Substitute each of these points into the function f(x,y) = 3x+4y to see which gives the smallest result:

At (3,0), f(x,y) = 3*3+4*0 = 9.At (1,-2), f(x,y) = 3*1+4*(-2) = -5.At (-1,-4), f(x,y) = 3*(-1)+4*(-4) = -19.

Therefore, the minimum value of f(x,y) in this region is -19, however, this option is not listed among your choices. It may be that there's a mistake. Ensure you've copied the questions and options accurately.

Learn more about System of inequalities here:

https://brainly.com/question/6908880

#SPJ11

A biologist is researching the population density of antelopes near a watering hole. The biologist counts 32 antelopes within a radius of 34 km of the watering hole. What is the population density of antelopes? Enter your answer in the box. Use 3.14 for pi and round only your final answer to the nearest whole number.

Answers

Answer:

18 antelopes/km^2

Step-by-step explanation: Took the test ;)

Final answer:

The population density of antelopes near the watering hole is approximately 9 antelopes per km² when rounded to the nearest whole number.

Explanation:

The concept of population density is fundamental in ecology and refers to the number of individuals of a species per unit of area.

To calculate population density for the population of antelopes the biologist is studying, we first need to determine the area covered, which is a circle with a radius of 34 km.

Using the given value of pi (3.14), the area (A) is calculated with the formula A = πr², where r is the radius.

The area is therefore 3.14 × (34 km)² = 3.14 × 1,156 km² = 3,629.44 km².

Next, the population density (D) is determined by dividing the number of individuals (N) by the area (A), which in this case is D = N / A = 32 antelopes / 3,629.44 km² ≈ 0.00 88 antelopes per km².

Rounding the final value to the nearest whole number gives us a population density of 9 antelopes per km².

The double number line shows that in 3 seconds an ostrich can run 63 meters . Based on the ratio shown in the double number line how far can the ostrich run in 5 seconds

Answers

3 seconds for 63 meters
then, 1 second for 21 meters
therefore, 5 seconds for 105 meters

Answer:

Ostrich can run in 5 second = 105 meter .

Step-by-step explanation:

Given  : The double number line shows that in 3 seconds an ostrich can run 63 meters .

To find : Based on the ratio shown in the double number line how far can the ostrich run in 5 seconds.

Solution : We have given

ostrich can run in 3 second = 63 meter .

Let ostrich can run in 5 second = x meter .

By the Ratio : 63 : 3 :: x : 5

[tex]\frac{63}{3} =\frac{x}{5}[/tex]

On cross multiplication

63 * 5 = 3 * x

315 = 3 x

On dividing both sides by 3

x = 105 meter .

Therefore, ostrich can run in 5 second = 105 meter .

Write an equation in slope-intercept form for the line passing through the pair of points.
(-1, 2), (4, -3)

A) y = -x + 1
B) y = 0x - 1
C) y = -x - 1
D) y = 0x + 1

Answers

Answer:

A) y= -x + 1

Step-by-step explanation:

The slope-intercept form of an equation of a line:

[tex]y=mx+b[/tex]

m - slope

b - y-intercept

The formula of a slope:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

==========================================

We have the points (-1, 2) and (4, -3).

Calculate the slope:

[tex]m=\dfrac{-3-2}{4-(-1)}=\dfrac{-5}{5}=-1[/tex]

Put the value of the slope an the coordinates of the point 9-1, 2) to the equation of a line:

[tex]2=(-1)(-1)+b[/tex]

[tex]2=1+b[/tex]              subtract 1 from both sides

[tex]1=b\to b=1[/tex]

Finally:

[tex]y=-x+1[/tex]

Answer:

A line in form of y = ax + b passes (0, 2)

=> 2 = 0x + b => b = 2

This line also passes (4, 6)

=> 6 = 4x + 2 => x = 1

=> Equation of this line: y = x + 2

=> Option C is correct

Hope this helps!

:)

Step-by-step explanation:

Four buses carrying 148 students from the same school arrive at a football stadium. The buses carry, respectively, 40, 33, 25, and 50 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on her bus. (a) Which of E[X] or E[Y] do you think is larger? Why? (b) Compute E[X] and E[Y].

Answers

Answer:

E[X] is larger than  E[Y]

E[X]  = 39.283784  and E[Y] = 37

Step-by-step explanation:

Given data

total students = 148

bus 1 students = 40

bus 2 students = 33

bus 3 students = 25

bus 4 students = 50

to find out

E[X] and E[Y]

solution

we know bus have total 148 students and 4 bus

so E[X] is larger than  E[Y] because maximum no of students are likely to chosen to bus and probability of bus is 1/4  as chosen students

and probability  of 40 i.e. P(40)  students = 40/148

P(33) = 33/148

P(25) = 25 / 148

P(50) = 50 / 148

first we find out i.e

E[X]  = 40 P(40) + 33 P(33)+  25 P(25)+  50 P(50)

E[X]  = 40  (40/148) + 33 (33/148)+  25 (25/148)+  50 (50/148)

E[X]  = 39.283784

and

y is bus chosen

E[Y] = 1/4 (40+ 33 + 25 + 50)

so E[Y] = 1/4 (40+ 33 + 25 + 50)

E[Y] = 1/4 (148)

E[Y] = 37

so E[X]  = 39.283784  and E[Y] = 37

Final answer:

The values of E[X] and E[Y] can be calculated by finding the sum of the product of each bus's student count and their respective probabilities. E[X] is expected to be less than E[Y] because students are chosen from each bus inversely proportional to the bus's total students, while for Y, each bus has equal probability of being chosen.

Explanation:

The problem describes an expectation value calculation in the context of probability for two random variables X and Y. X represents a randomly selected student from 148 students who arrived at a stadium in 4 different buses and Y represents a randomly selected bus from the 4 buses and its number of students.

Let's calculate the expected value for X (E[X]) and Y (E[Y]). The expected value of a random variable is computed as a weighted average of the possible outcomes, where each outcome is weighted by its probability. The formula is E(X) = µ = Σ xP(x). Therefore, we need to find the number of students on each bus and their respective probabilities.

For bus 1, we have 40 students, for bus 2, we have 33 students, for bus 3, we have 25 students, and for bus 4, we have 50 students. These numbers represent the possible outcomes for both random variables X and Y. Now, we need to find their respective probabilities, which are determined by the number of students in each bus divided by the total number of students (148).

For X or E[X], the probability of any student being chosen is inversely proportional to the number of students in each bus (since the student is being randomly chosen), while for Y or E[Y], the probability of any bus being chosen is the same (since the bus is being randomly chosen). Therefore, we can expect E[X] to be less than E[Y], as the probability distribution for Y is more weighted towards buses with more students.

To calculate E[Y] and E[X], we follow the expected value formula and multiply each outcome (each bus's number of students) by its probability for both X and Y. So, E[X] is summation over { 40 * ( 40 / 148), 33 * ( 33 / 148), 25 * ( 25 / 148), 50 * ( 50 / 148) } and E[Y] is summation over { 40 * ( 1 / 4), 33 * ( 1 / 4), 25 * ( 1 / 4), 50 * ( 1 / 4) } respectively.

Learn more about Expected Value here:

https://brainly.com/question/37190983

#SPJ3

5 kilograms of coffee are going going to be shared equally among 4 people.

How many kilograms of coffee does each person get?

Choose 1 Answer:

Answers

Answer:

B: between 1 and 2

Step-by-step explanation:

Since you share 5 kg amongst 4 you need to divide it by 4.

5 / 4 = 1.25 kg

This is between 1 and 2 kg

Answer: B. Between 1 and 2 kilograms.

Step-by-step explanation: Divide the amount of coffee by the number of people.

5/4=1.25.

Each person will get 1.25 kilograms of coffee, which is between 1 and 2 kilograms.

Arthur is comparing the prices of two rental car companies. Company A charges $22 per day and an additional $5 as service charges. Company B charges $20 per day and an additional $16 as service charges.

Answers

21

Step-by-step explanation:

Answer:

company A because its less money

Step-by-step explanation:

Please help me with this. I am stuck on this like glue on this problem

Answers

[tex]\bf \begin{array}{ccll} term&value\\ \cline{1-2} s_5&10\\ s_6&10r\\ s_7&10rr\\ s_8&10rrr\\ &10r^3 \end{array}\qquad \qquad \stackrel{s_8}{80}=10r^3\implies \cfrac{80}{10}=r^3\implies 8=r^3 \\\\\\ \sqrt[3]{8}=r\implies \boxed{2=r} \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf n^{th}\textit{ term of a geometric sequence} \\\\ s_n=s_1\cdot r^{n-1}\qquad \begin{cases} s_n=n^{th}\ term\\ n=\textit{term position}\\ s_1=\textit{first term}\\ r=\textit{common ratio}\\ \cline{1-1} n=8\\ s_8=80\\ r=2 \end{cases}\implies 80=s_1(2)^{8-1} \\\\\\ 80=s_1(2)^7\implies \cfrac{80}{2^7}=s_1\implies \cfrac{80}{128}=s_1\implies \boxed{\cfrac{5}{8}=s_1}[/tex]

Review To construct a solenoid, you wrap insulated wire uniformly around a plastic tube 12 cm in diameter and 60 cm in length. You would like a 2.0 −A current to produce a 2.6 −kG magnetic field inside your solenoid. Part A What is the total length of wire you will need to meet these specifications? Express your answer using two significant figures.

Answers

Answer:

46.80 m

Step-by-step explanation:

Given:

Magnetic field, B = 2.6 kG = 2600 G = 0.26T

Diameter of the plastic tube = 12 cm = 0.12m

Length of the plastic tube = 60 cm

Current, I = 2 A

The formula for the magnetic field (B) at the center of a solenoid is calculated as:

[tex]B=\frac{\mu_oNI}{L}[/tex]

where,

I = current

N = Turns

L = Length

[tex]\mu_o[/tex]= permeability of the free space

on substituting the values in the above equation, we get

[tex]0.26=\frac{4\pi \times10^{-7}\times N\times 2}{0.6}[/tex]

or

N = 62070.42 Turns

also, each turn is a circumference of the plastic tube.

The circumference of the plastic tube, C = 2π×0.12 =  0.7539 m

Thus,

The total length of the wire required, L = (62070.42) × 0.7539 m = 46799.99 ≈ 46800 m  = 46.80 km

In the figure below, if arc XY measures 116 degrees, what is the measure of angle ZYX?

Answers

Answer:

∠ZYX = 58°

Step-by-step explanation:

The measure of an inscribed angle or a tangent- chord angle is one half the measure of the intercepted arc.

arc XY is the intercepted arc, hence

∠ZYX = 0.5 × 116° = 58°

Answer: [tex]ZYX=58\°[/tex]

Step-by-step explanation:

It is important to remember that, by definition:

[tex]Tangent\ chord\ Angle=\frac{1}{2}Intercepted\ Arc[/tex]

 In this case you know that for the circle shown in the figure, the arc XY measures 120 degrees, therefore you can find the measure of the angle ZYX. Then you get that the measure of the this angle is the following:

[tex]ZYX=\frac{1}{2}XY\\\\ZYX=\frac{1}{2}(116\°)\\\\ZYX=58\°[/tex]

The monthly wind speeds over a one-year period at Denver International Airport were recorded and the values for each month averaged. The average monthly wind speeds, in mph, from January to December during that time period were 9.7, 10.0, 10.8, 11.9, 11.0, 10.7, 10.3, 10.1, 9.9, 9.9, 9.6, and 10.1.

use the statistics calculator to find the statistical measures.

The median of the data set is .

The mean of the data set is .

The population standard deviation of the data set is .

Answers

Answer:

median: 10.1

mean: 10.333

SD: 0.632

Final answer:

The median of the data set is 10.1 mph. The mean of the data set is 10.26 mph. The population standard deviation of the data set is approximately 0.5339 mph.

Explanation:

The median of a data set is the middle value when the data is arranged in ascending or descending order. To find the median of the given data set, we need to arrange the wind speeds in ascending order:

9.69.79.99.910.010.110.110.310.710.811.011.9

Since we have 12 values in the data set, the median will be the average of the 6th and 7th values, which are both 10.1. Therefore, the median of the data set is 10.1 mph.

The mean or average of a data set is found by summing all the values and dividing by the number of values. For the given data set, the sum of the wind speeds is 123.1 mph (9.6 + 9.7 + 9.9 + 9.9 + 10.0 + 10.1 + 10.1 + 10.3 + 10.7 + 10.8 + 11.0 + 11.9) and there are 12 values. Dividing the sum by 12, the mean of the data set is 10.26 mph.

The population standard deviation is a measure of the spread or dispersion of the data. To calculate it, we need to subtract the mean from each value, square the result, sum them all, divide by the number of values, and take the square root. Using the given wind speeds:

(9.6 - 10.26)^2 = 0.0576(9.7 - 10.26)^2 = 0.3136(9.9 - 10.26)^2 = 0.0964(9.9 - 10.26)^2 = 0.0964(10.0 - 10.26)^2 = 0.0676(10.1 - 10.26)^2 = 0.0256(10.1 - 10.26)^2 = 0.0256(10.3 - 10.26)^2 = 0.0016(10.7 - 10.26)^2 = 0.0196(10.8 - 10.26)^2 = 0.0324(11.0 - 10.26)^2 = 0.0544(11.9 - 10.26)^2 = 2.7264

Summing these values gives us 3.4368. Dividing by 12, we get 0.2864. Finally, taking the square root, the population standard deviation of the data set is approximately 0.5339 mph.

The coordinates of the vertices of a regular polygon are given. Find the area of the polygon to the nearest tenth.
A(0, 0), B(2, -2), C(0, -4), D(-2, -2)

Answers

Answer:

The area is equal to [tex]8\ units^{2}[/tex]

Step-by-step explanation:

we have

A(0, 0), B(2, -2), C(0, -4), D(-2, -2)

Plot the figure

The figure is a square (remember that a regular polygon has equal sides and equal internal angles)

see the attached figure

The area of the square is

[tex]A=AB^{2}[/tex]

Find the distance AB

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

substitute the values

[tex]AB=\sqrt{(-2-0)^{2}+(2-0)^{2}}[/tex]

[tex]AB=\sqrt{(-2)^{2}+(2)^{2}}[/tex]

[tex]AB=\sqrt{8}[/tex]

[tex]AB=2\sqrt{2}\ units[/tex]

Find the area of the square

[tex]A=(2\sqrt{2})^{2}[/tex]

[tex]A=8\ units^{2}[/tex]

Marco is studying a type of mold that grows at a fast rate. He created the function f(x) = 345(1.30)x to model the number of mold spores per week. What does the 1.30 represent? How many mold spores are there after 4 weeks? Round your answer to the nearest whole number

Answers

Answer:

1.30 is the growth factor per week985 mold spores after 4 weeks

Step-by-step explanation:

The base of the exponential factor in a growth formula is the growth factor. Here, that is 1.30. It represents the multiplier of the number of spores each week.

Putting 4 into the formula, we find ...

  f(4) = 345×1.30^4 ≈ 985 . . . . mold spores after 4 weeks

Answer:

george floyd

Step-by-step explanation:

cmon start bouncing

A ball is dropped from a certain height. The function below represents the height f(n), in feet, to which the ball bounces at the nth bounce:

f(n) = 9(0.7)n

What does the number 0.7 represent?

The ball bounces to 30% of its previous height with each bounce.
The height at which the ball bounces at the nth bounce is 0.3 feet.
The ball bounces to 70% of its previous height with each bounce.
The height from which the ball was dropped at the nth bounce is 0.7 feet.

Answers

Answer:

  The ball bounces to 70% of its previous height with each bounce.

Step-by-step explanation:

In physics terminology, the number 0.7 is the coefficient of restitution. It is the ratio of the height of bounce (n+1) to the height of bounce (n).

The meaning of the number is that the ball bounces to 70% of the height of the previous bounce.

Answer:

The ball bounces to 70% of its previous height with each bounce.

Step-by-step explanation:

A ball is dropped from a certain height. The function below represents the height f(n), in feet, to which the ball bounces at the nth bounce:

f(n) = 9(0.7)n

The number 0.7 represents that the ball bounces to 70% of its previous height with each bounce.

What is the value of x in trapezoid ABCD? x=15 x=20 x=45 x=60

Answers

Answer:

A. X = 15 is the correct answer.

Step-by-step explanation:

It's the only one that really makes sense.

Hope this helped :)

The value of the variable x will be 15. Then the correct option is A.

What is a trapezoid?

It is a polygon that has four sides. The sum of the internal angle is 360 degrees. In a trapezoid, one pair of opposite sides are parallel.

The trapezoid is an isosceles trapezoid.

An isosceles trapezoid is the form of trapezoid on which the non-parallel sides are of equal length.

In the isosceles trapezoid, the sum of the opposite angles is 180 degrees.

Then the sum of the angle B and angle D will be 180°.

∠B + ∠D = 180°

 9x + 3x = 180

        12x = 180°

            x = 180°

            x = 15°

Thus, the value of the variable x will be 15.

Then the correct option is A.

The question was incomplete, but the complete question is attached below.

More about the trapezoid link is given below.

https://brainly.com/question/22607187

#SPJ5

Other Questions
Read the following two arguments about school uniforms then answer the question below.Carl: "Imagine a world without color and free choice. That will be the world we live in if we are forced to wear uniforms. The uniforms will be ugly. They will make you look like a nerd, because uniforms are what all nerds wear. Don't be one of the fools that thinks this is a good idea, because everyone knows we do not need uniforms.Beth: "Uniforms are a great idea for our school. Studies have shown that schools that adopted a uniform saw a 10% increase in grades. I know Carl says that the uniforms are ugly, however as a guy, what does he know about fashion? The uniforms will not be ugly, because uniforms are not ugly."Who uses assertion in their argument? a room with dimensions 10 ft by 5 ft require 400 tiles. how many tiles are needed for a room that measures 7 ft by 21 ft? Two lines are graphed below. What can we conclude about them? Select all that apply. coordinate plane showing y equals 3 x plus 1 and y equals negative one third x minus 2 The lines are perpendicular.The lines are parallel.The lines have the same slope.The lines have opposite reciprocal slopes. How did the First Great Awakening impact women? A) Women felt they could only serve God in a church B) Women realized they could not be saved C) Women were allowed to analyze their feeling publicly D) Women that God did not recognize them circle Q has a ciecumference of approximately 50 centimeters. what is the approximate length of diameter d, use 3.14 for pie.round to the nearest tenth of a centimeter A particle moves in a 15-cm-radius circle centered at the origin and completes 1.0 rev every 3.0 s. (a) Find the speed of the particle. (b) Find its angular speed o. (c) Write an equation for the x component of the position of the particle as a function of time t, assuming that the particle is on the -x axis at time t 0 According to Raoult's law, which statement is FALSE? a) The vapor pressure of a solvent over a solution decreases as its mole fraction increases. b) The vapor pressure of a solvent over a solution is less than that of pure solvent. c) The greater the pressure of a gas over a solution the greater its solubility. d) The solubility of a gas increases as the temperature decreases. e) Ionic solutes dissociate in solution causing an enhancement of all colligative properties. mrs. yamato is a cook. she needs to bake enough muffins to serve 350 if each pan holds 12 muffins about how many pans of muffins must she bake At higher elevations, the boiling point of water decreases, due to the decrease in atmospheric pressure. As a result, what could besaid about hard boiling an egg?a. At higher elevations, it would take less time to hard boil an egg, because there is less atmosphericpressure.b. At higher elevations, it would take longer to hard boil an egg, because there is a lower boiling point,the egg is boiling in water at a lower temperature.c. At higher elevations, it would take less time to hard boil an egg, because there is a lower boiling pointTherefore it would take less time to achieve the boiling point.d. At higher elevations, it would take longer to hard boil an egg, because it would take longer to achievethe boiling point What is the area outside the thermodynamic system called? O A) Phase O B) Universe C) Isolated D) Surroundings 0 E) External Conditions Save The transcription terminator stops DNA polymerase, AND results in the polymerase falling off the DNA template. adds a terminator nucleotide to the RNA, AND results in a hairpin loop structure in RNA. stops DNA polymerase, AND adds a terminator nucleotide to the RNA. results in a hairpin loop structure in RNA, AND stops DNA polymerase. results in a hairpin loop structure in RNA, AND results in the polymerase falling off the DNA template. In periods of rising prices, the inventory method which gives the lowest possible ending inventory cost is the (A) FIFO method. (B) LIFO method. (C) weighted-average method. (D) lower of cost or market inventory method. The data set represents the total number of tickets each person purchased for a play.0, 0, 1, 1, 1, 2, 2, 2, 4,4What is the median of the data? A hill frequently used for sled riding has an angle of elevation of 25 degrees at it's bottom. If the length of a sledders ride is 52 ft, estimate the height of the hill. A M14 x 2 hexagonal head bolt is used to clamp together two 15 mm steel plates. Young's modulus of the bolt and the plates can be taken as 207 GPa. (i)-Determine a suitable length for the bolt. (ii)-Determine the bolt stiffness (iii)-Determine the stiffness of the members Which of the following are solutions to the equation below?Check all that apply.(3x + 4)2 = 14 Which of the following are solutions to the equation. 6x^2-2x+36=5x^2+10x Concord Corporation reported net income of $177,200 for 2017. Concord Corporation also reported depreciation expense of $35,230 and a loss of $4,920 on the disposal of plant assets. The comparative balance sheets show an increase in accounts receivable of $14,160 for the year, a $17,220 increase in accounts payable, and a $4,190 increase in prepaid expenses. Prepare the operating activities section of the statement of cash flows for 2017. Use the indirect method What is the domain of the function why were galileo's astronomical observation important to the scientific revolution