Use the convolution theorem to find the inverse Laplace transform of the given function. StartFraction 5 Over s cubed (s squared plus 25 )EndFraction 5 s3s2+25 laplace transform Superscript negative 1 Baseline StartSet StartFraction 5 Over s cubed (s squared plus 25 )EndFraction EndSet (t )ℒ−1 5 s3s2+25(t)

Answers

Answer 1

Answer:

[tex]\frac{1}{2}[/tex][tex]t^{2}Sin5t[/tex]

Step-by-step explanation:

using the Convolution theorem to find the inverse of :

     [tex]\frac{5}{s^{3}(s^{2}+25 ) }[/tex]

   [tex]L^{-1}[/tex]  [tex]\frac{5}{s^{3}(s^{2}+25 ) }[/tex] = [tex]\frac{1}{s^{3} }[/tex] × [tex]\frac{5}{s^{2}+25}[/tex]

we know from derivation that

Sin(at) =  [tex]\frac{a}{s^{2}+a^{2} }[/tex]

Hence: [tex]\frac{5}{s^{2}+25}[/tex]  = Sin5t

Also:  [tex]L^{-1}[/tex] [tex]\frac{n!}{s^{n+1} }[/tex] = [tex]t^{n}[/tex]

     [tex]L^{-1}[/tex]  [tex]\frac{1}{s^{3} }[/tex] = [tex]\frac{1}{2}[/tex] [tex]L^{-1}[/tex] ([tex]\frac{2!}{s^{3} }[/tex])

 = [tex]\frac{1}{2}[/tex][tex]t^{2}[/tex]

therefore [tex]L^{-1}[/tex]  [tex]\frac{5}{s^{3}(s^{2}+25 ) }[/tex] = [tex]\frac{1}{2}[/tex][tex]t^{2}Sin5t[/tex]


Related Questions

Help me plz
Solve for X
20 points*

Answers

Answer:

x = 4

Step-by-step explanation:

14x - 15 + 139 = 180

(Alternate & Supplementary angles)

14x = 56

x = 4

78.3 + -17 evaluate the expression

Answers

Answer:

it is 61.3

Step-by-step explanation:

A circle is centered on point B. Points A, C and D lie on it's circumference. If ADC measures 20 degrees, what does ABC measure

Answers

The Answer is : ABC = 40

"Tongue Piercing May Speed Tooth Loss, Researchers Say" is the headline of an article. The article describes a study of 51 young adults with pierced tongues. The researchers found receding gums, which can lead to tooth loss, in 19 of the participants. (a) Construct a 95% confidence interval for the proportion of young adults with pierced tongues who have receding gums. (Round your answers to three decimal places.) ( .138 Incorrect: Your answer is incorrect. , .503 Incorrect: Your answer is incorrect. )

Answers

Answer:

The 95% confidence interval for the proportion of young adults with pierced tongues who have receding gums is (0.24, 0.506).

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

For this problem, we have that:

[tex]n = 51, \pi = \frac{19}{51} = 0.373[/tex]

95% confidence level

So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.373 - 1.96\sqrt{\frac{0.373*0.627}{51}} = 0.24[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.373 + 1.96\sqrt{\frac{0.373*0.627}{51}} = 0.506[/tex]

The 95% confidence interval for the proportion of young adults with pierced tongues who have receding gums is (0.24, 0.506).

Find the absolute value.
|-89= 0






please help thank you​

Answers

the answer is 89

Step-by-step explanation:

it does not matter if the number is negative the absolute value is the number inside the lines

Answer:

The absolute value of this one is 89. Because for example: |-3|=3 because any number is in that sign || the number will turn to positive. For example, If it is |-3| it will turn to 3

A rectangular box is to have a square base and a volume of 72 ft3. If the material for the base costs $0.62/ft2, the material for the sides costs $0.15/ft2, and the material for the top costs $0.18/ft2, determine the dimensions (in ft) of the box that can be constructed at minimum cost.
a. length
b. width
c. height

Answers

Answer:

a. length  = 0.7211 ft

b. width  = 0.7211 ft

c. height = 140.3846 ft

Step-by-step explanation:

This is an optimiztion with restriction problem.

We have to minimize the cost, with the restriction of the volume being equal to 72 ft3.

As the cost for the sides is constant, we know that length and width are equal.

Then, we can express the volume as:

[tex]V=x\cdot y\cdot z=x^2z=73[/tex]

being x: length and z: height

We can express the height in function of the length as:

[tex]x^2z=73\\\\z=73x^{-2}[/tex]

Then, the cost of the box can be expressed as:

[tex]C=0.62(x^2)+4*0.15(xz)+0.18(x^2)=(0.62+0.18)x^2+0.60xz\\\\C=0.8x^2+0.60x*x^{-2}=0.8x^2+0.6x^{-1}[/tex]

To optimize C, we derive and equal to zero

[tex]\dfrac{dC}{dx}=\dfrac{d}{dx}[0.8x^2+0.6x^{-1}]=1.6x-0.6x^{-2}=0\\\\\\1.6x=0.6x^{-2}\\\\x^{1+2}=0.6/1.6=0.375\\\\x=\sqrt[3]{0.375} =0.7211[/tex]

The height z is then

[tex]z=73x^{-2}=\dfrac{73}{0.7211^2}=\dfrac{73}{0.52}=140.3846[/tex]

12x+7<-11 and 5x-8>= 40

Answers

Answer:

  no solution

Step-by-step explanation:

First inequality:

  12x < -18 . . . . subtract 7

  x < -18/12 . . . divide by 12

  x < -1.5 . . . . . . write as decimal

__

Second inequality:

  5x -8 ≥ 40

  5x ≥ 48 . . . . . . add 8

  x ≥ 9.6 . . . . . . . divide by 5

__

There are no solutions to this pair of inequalities. No value of x can be both less than -1.5 and greater than 9.6.

Toby skated from his house to the beach at a constant speed of 8 88 kilometers per hour, and then skated from the beach to the park at a constant speed of 7 77 kilometers per hour. The total distance Toby skated was 20 2020 kilometers, and it took him twice as long to get to the park.

Answers

Answer:

8b+7p=20

p=2b

Step-by-step explanation:

You're welcome. Thou shall complete thou work without any trouble.

Kirk goes to the gym every 3 days. Deshawn goes to the
gym every 4 days. If they join the gym on the same day,
when is the first day that they'll be at the gym together?​

Answers

The day when they would meet first time after joining the gym together will be 12.

What is Algebra?

The analysis of mathematical representations is algebra, and the handling of those symbols is logic.

Kirk goes to the gym every 3 days.

Deshawn goes to the gym every 4 days.

If they join the gym on the same day.

Then the day when they would meet first time after joining the gym together will be

LCM of 4, 3 will be 12.

Then the day will be 12.

More about the Algebra link is given below.

https://brainly.com/question/953809

#SPJ2

Final answer:

Kirk and Deshawn will be at the gym together on the 12th day since they joined.

Explanation:

Gym memberships for Kirk and Deshawn occur every 3 days and 4 days respectively. To find the first day they'll be at the gym together, we need to find the lowest common multiple of 3 and 4.

LCM(3, 4) = 12. Therefore, Kirk and Deshawn will be at the gym together on the 12th day since they joined the gym.

A simple random sample of size nequals10 is obtained from a population with muequals63 and sigmaequals18. ​(a) What must be true regarding the distribution of the population in order to use the normal model to compute probabilities involving the sample​ mean? Assuming that this condition is​ true, describe the sampling distribution of x overbar.

Answers

Answer:

The sample size is smaller than 30, so we need to assume that the underlying population is normally distributed.

The  sampling distribution of x overbar will be approximately normally distributed with mean 63 and standard deviation 5.69.

Step-by-step explanation:

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this problem

The sample size is smaller than 30, so we need to assume that the underlying population is normally distributed.

If it is:

[tex]\mu = 63, \sigma = 18, n = 10, s = \frac{18}{\sqrt{10}} = 5.69[/tex]

The  sampling distribution of x overbar will be approximately normally distributed with mean 63 and standard deviation 5.69.

What is the relationship between x and y

Answers

Given:

Given that the table with values of x and y.

We need to determine the relationship between x and y.

Slope:

The slope of the relation can be determined using the formula,

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

Substituting the points (2,11) and (4,9), we get;

[tex]m=\frac{9-11}{4-2}[/tex]

[tex]m=\frac{-2}{2}[/tex]

[tex]m=-1[/tex]

Thus, the slope of the relation is m = -1.

y - intercept:

The y - intercept of the relation is the value of y when x = 0.

Hence, from the table, it is obvious that when x = 0, the value of y is 13.

Thus, the y - intercept of the relation is b = 13.

Relationship between x and y:

The relationship between x and y can be determined using the formula,

[tex]y=mx+b[/tex]

Substituting m = -1 and y =13, we get;

[tex]y=-x+13[/tex]

Thus, the relationship between x and y is [tex]y=-x+13[/tex]

Two similar cylinders have surface areas of 24 cm2 and 54 cm2. The volume of the smaller cylinder is 16 cm2.

What is the volume of the larger cylinder?

Answers

Given:

Given that two similar cylinder have surface areas 24π cm² and 54π cm².

The volume of the smaller cylinder is 16π cm³

We need to determine the volume of the larger cylinder.

Volume of the larger cylinder:

The ratio of the two similar cylinders having surface area of 24π cm² and 54π cm², we have;

[tex]\frac{24 \pi}{54 \ pi}=\frac{4}{9}[/tex]

       [tex]=\frac{2^2}{3^2}[/tex]

Thus, the ratio of the surface area of the two cylinders is [tex]\frac{2^2}{3^2}[/tex]

The volume of the larger cylinder is given by

[tex]\frac{2^2}{3^2}\times \frac{2}{3}=\frac{16 \pi }{x}[/tex]

where x represents the volume of the larger cylinder.

Simplifying, we get;

[tex]\frac{2^3}{3^3}=\frac{16 \pi }{x}[/tex]

[tex]\frac{8}{27}=\frac{16 \pi }{x}[/tex]

Cross multiplying, we get;

[tex]8x=16 \pi \times 27[/tex]

[tex]8x=432 \pi[/tex]

 [tex]x=54 \pi \ cm^3[/tex]

Thus, the volume of the larger cylinder is 54π cm³

Answer:

54π cm³

Step-by-step explanation:

The following gambling game has been proposed, which a player must pay to play. First, a value U is chosen uniformly from the set [0, 10]. Next, a number is chosen according to a Poisson random variable with a parameter U. Letting X be the number chosen, the player receives $X. Find E[X], which is the amount a player should pay to make this a fair game HINT: Use the Law of Total Probability for Expectations, E[X]

Answers

Answer:

The player should be required to pay $5 to make this a fair game.

Step-by-step explanation:

U ~ Uniform(0, 10)

E[U] = (0 + 10)/2

         = 5

X | U ~ Poisson(U)

E[X | U] = U

By law of total probability for expectations,

E[X] = E[E[X|U]] = E[U] = $5

Therefore the player should be required to pay $5 to make this a fair game.

After a college football team once again lost a game to their archrival, the alumni association conducted a survey to see if alumni were in favor of firing the coach. A simple random sample of 100 alumni from the population of all living alumni was taken. Sixty-four of the alumni in the sample were in favor of firing the coach. Let p represent the proportion of all living alumni who favored firing the coach. Suppose the alumni association wished to see if the majority of alumni are in favor of firing the coach. To do this they test the hypotheses H0: p = 0.50 versus Ha: p > 0.50.
(A) What is the P-value for this hypothesis test?

Answers

Final answer:

The P-value for this hypothesis test is 0.0228.

Explanation:

To find the P-value for this hypothesis test, we need to calculate the proportion of alumni who favored firing the coach in the sample. Out of 100 alumni, 64 were in favor. So, the sample proportion is 64/100 = 0.64.

Now, we need to calculate the test statistic, which follows a normal distribution. The formula for the test statistic is: z = (p' - p) / sqrt(p * (1-p) / n), where p' is the sample proportion, p is the claimed proportion under the null hypothesis, and n is the sample size.

Plugging in the values, we get: z = (0.64 - 0.50) / sqrt(0.50 * (1-0.50) / 100) = 2.00

The P-value is the probability of observing a test statistic as extreme as 2.00, assuming the null hypothesis is true. We can look up this probability in a standard normal distribution table or use a statistical software. In this case, the P-value is 0.0228.

i need this answered asap

Answers

It's a parallelogram, opposite sides congruent.

6x - 7 = 2x + 9

4x = 16

x = 4

12 = y + 3

9 = y

Answer: x=4, y=9

Answer:

x = 4 and y = 9

Step-by-step explanation:

This is a parallelogram, which we can tell because of the arrows. Basically, opposite sides are parallel. By definition, then, opposite sides of this polygon are equal: LM = ON and LO = MN. That means we can set the various expressions equal to each other:

LM = ON  ⇒  6x - 7 = 2x + 9  ⇒  4x = 16  ⇒  x = 4

LO = MN  ⇒  12 = y + 3  ⇒  y = 9

Thus, x = 4 and y = 9.

Hope this helps!

how much water does it take to completely fill a pool that is 50m long 25m wide and 2.5m deep

Answers

Answer:

[tex]3,125[/tex]

Step-by-step explanation:

If you want to fill a pool, you will use the formula for finding the volume:

[tex]v=l*w*h[/tex]

In this case, height being depth:

[tex]v=l*w*d[/tex]

Insert values

[tex]v=50*25*2.5[/tex]

Simplify

[tex]v=1,250*2.5\\v=3,125[/tex]

You would need a lot of water.

Answer:

3125000 liter

Step-by-step explanation:

hope i helped

if i can be brainliest that would be great

                             

                             

If the sphere shown above has a radius of 17 units, then what is the approximate volume of the sphere?

Answers

Answer:

Approximately 20,579 units.

a box of cookies contain 12 chocolate chip cookies, 6 peanut butter cookies, and 6 sugar cookies, what is the probability of randomly selecting a chocolate chip cookie, eating it, and then randomly selecting a sugar cookie?

Answers

The probability of first selecting a chocolate chip cookie and then selecting a sugar cookie from a box containing 24 cookies in total is 6/46 or approximately 0.1304.

The question refers to calculating the probability of selecting cookies of different flavors one after the other without replacement from a box. To begin with, we must find the probability of selecting a chocolate chip cookie followed by the probability of selecting a sugar cookie after one chocolate chip cookie has been removed.

Firstly, the total count of cookies is 12 chocolate chip + 6 peanut butter + 6 sugar cookies = 24 cookies. The probability (P) of selecting a chocolate chip cookie first is P(chocolate chip) = 12/24 = 1/2. After eating the chocolate chip cookie, there are 23 cookies left and the probability of then selecting a sugar cookie is P(sugar) = 6/23 since there are 6 sugar cookies left out of the remaining 23 cookies.

Since these events are sequential without replacement, we can find the combined probability of both events by multiplying the probabilities of each event. Thus, the combined probability is P(chocolate chip then sugar) = P(chocolate chip) *P(sugar) = (1/2) * (6/23) = 6/46.

The combined probability of first selecting a chocolate chip cookie and then selecting a sugar cookie is therefore 6/46 or about 0.1304.

does this answer and help me with all subjects?

Answers

yes, just ask your question on the "ask" page, select a subject, choose how many points you want to assign to the question and the answers will usually appear in 10 minutes ;)

When telephone subscribers call from the National Magazine Subscription Company, 18% of the people who answer stay on the line for more than one minute. If 800 people are called in a day, find the probability that a. at least 150 stay on the line for more than one minute. (Use normal approximation to binomial). b. more than 200 stay on the line. (Use Normal approximation to Binomial).

Answers

Answer:

a) 30.50% probability that  at least 150 stay on the line for more than one minute.

b) 0% probability that more than 200 stay on the line for more than one minute.

Step-by-step explanation:

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

[tex]E(X) = np[/tex]

The standard deviation of the binomial distribution is:

[tex]\sqrt{V(X)} = \sqrt{np(1-p)}[/tex]

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that [tex]\mu = E(X)[/tex], [tex]\sigma = \sqrt{V(X)}[/tex].

In this problem, we have that:

[tex]n = 800, p = 0.18[/tex]

So

[tex]\mu = E(X) = np = 800*0.18 = 144[/tex]

[tex]\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{800*0.18*0.82} = 10.87[/tex]

a. at least 150 stay on the line for more than one minute.

Using continuity correction, [tex]P(X \geq 150 - 0.5) = P(X \geq 149.5)[/tex], which is 1 subtracted by the pvalue of Z when X = 149.5. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{149.4 - 144}{10.87}[/tex]

[tex]Z = 0.51[/tex]

[tex]Z = 0.51[/tex] has a pvalue of 0.6950

1 - 0.6950 = 0.3050

30.50% probability that  at least 150 stay on the line for more than one minute.

b. more than 200 stay on the line.

Using continuity correction, [tex]P(X \geq 200 + 0.5) = P(X \geq 200.5)[/tex], which is 1 subtracted by the pvalue of Z when X = 200.5. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{200.5 - 144}{10.87}[/tex]

[tex]Z = 5.2[/tex]

[tex]Z = 5.2[/tex] has a pvalue of 1

1 - 1 = 0

0% probability that more than 200 stay on the line for more than one minute.

Find BC if BC=x+2, AB=2x-6, and AC=17.

Answers

Answer:

BC = 9

Step-by-step explanation:

Assuming this is a straight line

AB + BC = AC

2x-6 + x+2 = 17

Combine like terms

3x -4 = 17

Add 4 to each side

3x-4+4 = 17+4

3x = 21

Divide each side by 3

3x/3 =21/3

x =7

We want to find BC

BC =x+2

     =7+2

     =9

What is the place value of 4 in 4.09

Answers

Thousands place. Hope this helped
Thousands place. :) hope It helps

Three forces act on a hook. Determine the magnitude of the resultant of the force.

Answers

Use Hooke's law... (just kidding)

Break down each force vector into horizontal and vertical components.

[tex]\vec F_1=(1000\,\mathrm N)(\cos30^\circ\,\vec x+\sin30^\circ\,\vec y)\approx(866.025\,\mathrm N)\,\vec x+(500\,\mathrm N)\,\vec y[/tex]

[tex]\vec F_2=(1500\,\mathrm N)(\cos160^\circ\,\vec x+\sin160^\circ\,\vec y)\approx(-1409.54\,\mathrm N)\,\vec x+(513.03\,\mathrm N)\,\vec y[/tex]

[tex]\vec F_3=(750\,\mathrm N)(\cos195^\circ\,\vec x+\sin195^\circ\,\vec y)\approx(-724.444\,\mathrm N)\,\vec x+(-194.114\,\mathrm N)\,\vec y[/tex]

The resultant force is the sum of these vectors,

[tex]\vec F=\displaystyle\sum_{i=1}^3\vec F_i\approx(-1267.96\,\mathrm N)\,\vec x+(818.916\,\mathrm N)\,\vec y[/tex]

and has magnitude

[tex]|\vec F|\approx\sqrt{(-1267.96\,\mathrm N)^2+(818.916\,\mathrm N)^2}\approx1509.42\,\mathrm N[/tex]

The closest answer is D.

Final answer:

To determine the magnitude of the resultant force acting on a hook when three forces are applied, you can use vector addition. If you have the information of the forces and the angles between them, you can calculate the resultant force using trigonometric functions.

Explanation:

To determine the magnitude of the resultant force when three forces act on a hook, you must realize that forces are vector quantities. This means that they have both a magnitude (how much force is being applied) and a direction (the direction the force is being applied in).

If the forces are concurrent (i.e., they act at the same point), one usually uses the parallelogram law or the triangle rule to find the resultant force. You can add two forces to create a resultant, then add the third force to that resultant to find the total resultant. If the forces and the angles between them are known, you can use trigonometric functions to calculate the resultant force.

For instance, if the three forces are F1, F2, and F3, and the angles between them are θ1, θ2, and θ3, the resultant force R can be found using the following equation:

R = √[ (F1 + F2cosθ2 + F3cosθ3)^2 + (F2sinθ2 + F3sinθ3)^2 ]

This equation will give the magnitude of the resultant force. Please note that to use this equation, you must have enough information about the forces and the angles between them.

Learn more about Resultant Force here:

https://brainly.com/question/37085280

#SPJ3

Consider the polynomial p(s) = s2 + bs + c where b and c are real numbers. Show that all the roots of p(s) are both contained in the open left half plane {s : s < 0} if and only if b > 0 and c > 0. Hint: use the quadratic formula.

Answers

Answer:

It is shown in the explanation

Step-by-step explanation:

p(s) = s² + bs + c

a = 1

b = b

c = c

We get Δ as follows

Δ = (b²-4*a*c) = b² - 4*1*c = b² - 4c > 0  ⇒   b² > 4c  ⇔ c > 0

s = (-b + √(b² - 4c))/2(1)

⇒   s₁ = (-b + √(b² - 4c))/2

s₂ = (-b - √(b² - 4c))/2(1)

⇒   s₂ = (-b - √(b² - 4c))/2

We have that -b < 0  ⇔ b > 0

then s₁ < 0 and s₂ < 0 ⇔ c > 0 and b > 0

Answer:

For roots to lie on the left half plane, b ⊃ 0 and c ⊃0

Step-by-step explanation:

From quadratic formula, we have;

x = -b±√(b²-4ac)/2a

From the given expression p(s) = s² + bs + c,

x = s

a = 1

b = b

c = c

The quadratic formula can then be written as;

s =  -b±√(b²-4*1*c)/2*1

   =  -b±√(b²-4c)/2

s₁ =  -b+√(b²-4c)/2

s₂ =  -b±√(b²-4c)/2

From the equation above,

Sum of root = -b

Product of root = c

If both the root lie on left side of the s-plane, then sum of roots will be negative. Hence, -b ∠0. That is, b ⊃0

Also, the product root will be positive, c ⊃ 0

Hence, for roots to lie on the left half plane, b ⊃ 0 and c ⊃0

In a bag of candy, there are 2 cinnamon, 1 butterscotch, and 2 peppermints. What is the probability of randomly selecting a peppermint?

Answers

Answer:

2/5

Step-by-step explanation:

The total number of candies are 2+1+2 = 5 candies

P (peppermint) = number of peppermints/total

                        =2/5

Answer:

2/5

Step-by-step explanation:

The probability is 2/5.There are five in all and two peppermint.Put it as a fraction and you get 2/5.

What is your favorite color? A larger survey of countries, including the United States, China, Russia, France, Turkey, Kenya, and others, indicated that most people prefer the color blue. In fact, about 24% of the population claim blue as their favorite color. Suppose a random sample of n = 75 college students were surveyed and x = 19 of them said that blue is their favorite color. Does this information imply that the proportion of college students who prefer blue differs from that of the general population? Use ???? = 0.05.

Answers

Answer:

[tex]z=\frac{0.253 -0.24}{\sqrt{\frac{0.24(1-0.24)}{75}}}=0.264[/tex]  

[tex]p_v =2*P(z>0.264)=0.792[/tex]  

So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of students said that blue is their favorite color is not different from 0.24

Step-by-step explanation:

Data given and notation

n=75 represent the random sample taken

X=19 represent the students said that blue is their favorite color

[tex]\hat p=\frac{19}{75}=0.253[/tex] estimated proportion of  students said that blue is their favorite color

[tex]p_o=0.24[/tex] is the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)

[tex]p_v[/tex] represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion is different from 0.24.:  

Null hypothesis:[tex]p=0.24[/tex]  

Alternative hypothesis:[tex]p \neq 0.24[/tex]  

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)  

The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

[tex]z=\frac{0.253 -0.24}{\sqrt{\frac{0.24(1-0.24)}{75}}}=0.264[/tex]  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.  

The significance level provided [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.  

Since is a bilateral test the p value would be:  

[tex]p_v =2*P(z>0.264)=0.792[/tex]  

So the p value obtained was a very high value and using the significance level given [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of students said that blue is their favorite color is not different from 0.24

Answer:

0.792

Step-by-step explanation:

Convert 4π/3 radians to degrees.

135°

180°

60°

240°

Answers

Answer:

240°

Step-by-step explanation:

[tex] \frac{4\pi^{c} }{3} = \frac{4 \times 180 \degree}{3} = 4 \times 60 \degree = 240 \degree \\ [/tex]

5(y+4)=6y need help in this math is for my son

Answers

Answer:

y =20

Step-by-step explanation:

5(y+4)=6y

Distribute

5y +20 = 6y

Subtract 5y from each side

5y-5y+20=6y-5y

20 =y

Answer:

solution

5y+20=6y

5y-6y=20

-y=20

Find the product of 0.032 and -1.9

Answers

Answer:

i think it's -0.0608

Step-by-step explanation:

please help????
?????
????

Answers

Answer: -b, 0

Explaination: the value is going to be the same as (b,0) but it’s going to be negative because it’s on the left side of the graph :)
(-b,0) because the one on the right is positive b so if it’s on the left that means it’ll be negative
Other Questions
python Write a function max_magnitude() with two integer input parameters that returns the largest magnitude value. Use the function in a program that takes two integer inputs, and outputs the largest magnitude value. In a very crowded department store during the Christmas rush, a woman suddenly feels a stranger rubbing his genital area against her thigh. He continues until the crowd begins to break up, then moves away. The MOST likely diagnosis for this man is: An equilateral triangle is similar to a scalene triangle. True or False The probability of winning the shell games if you randomly pick is 1 in 3. What would be the approximate probability of winning 4 games in a row? Roberto decorates rectangular signs. One sign is 2/3 foot long and 1/4 foot wide. Another sign is 1/2 foot long and 1/3 foot wide. It takes Roberto 3/4 hour to decorate a 1-square-foot sign. What is the total amount of time, in hours, it takes Roberto to decorate both signs. Show or explain each step you used to find your answer Ichthyosaurs were giant marine reptiles. Fossils indicate that they possessed dorsal fins and tails, as do fish, even though their closest relatives were terrestrial reptiles that had neither dorsal fins nor aquatic tails. The dorsal fins and tails of ichthyosaurs and fish are examples of:_______ In what way(s) was Elizabethan culture similar to modern American culture? The rate of change of angular momentum of a particle equals the torque of the net force acting on it is called Which of the following are not terms in the series below? Check all that apply. Please help with this Will your folks _____ before Tuesday? a) leaving b) leave c) leaves if a rabbit can move 4/5 of a mile every hour then how many hours would it take for a rabbit to go 8 Miles A biologist is studying the effects that applying insecticide to a fruit farm has on the local bat population. She collects 23 bats and finds the mean weight of this sample to be 503.4 grams. Assuming the selected bats are a random sample, she concludes that because the sample mean is an unbiased estimator of the population mean, the mean weight of bats in the population is also 503.4 grams. Explain why this is an incorrect interpretation of an unbiased estimator. is 0 an irrational number What is the type of fee charged for withdrawing money from a CD before thedate of maturation?OOOA. FDIC feeB. Early redemption feeC. Liquidity feeSUBMITPREVIOUS What were charateristics that pulled the Greek city states apart Find the area of the shaded region. Round to the nearest tenth. Identify the pair of angles as complementary, supplementary, or neither.A.supplementaryB.complementaryC.neither In three to four sentences, explain some of the factors thatcause changes in demand and why it is important forconsumers to understand these changes. Ben Affleck has a cleft chin, but his ex-wife Jennifer Garner does not. Neither one of their two daughters (Violet and Seraphina) has a cleft chin, but son Samuel does. Draw a pedigree for the Garner/Affleck family including the genotypes for all five individuals. Use your pedigree to answer the question: What are the genotypes of Ben, Jen, Violet, Seraphina, and Samuel?