Using a formula estimate the body surface area of a person whose height is 150 cm and who weighs 80 kg.

A.

1.55 m2

B.

1.83 m2

C.

0.47 m2

D.

0.45 m2

Answers

Answer 1

Answer:

B. [tex]1.83\text{ m}^2[/tex]

Step-by-step explanation:

We are asked to find the body surface area of a person whose height is 150 cm and who weighs 80 kg.

[tex]\text{Body surface area}( m^2)=\sqrt{\frac{\text{Height (cm)}\times \text{Weight (kg)}}{3600}}[/tex]

Substitute the values:

[tex]\text{Body surface area}( m^2)=\sqrt{\frac{150\text{ cm}\times 80\text{(kg)}}{3600}}[/tex]

[tex]\text{Body surface area}( m^2)=\sqrt{\frac{12,000}{3600}}[/tex]

[tex]\text{Body surface area}( m^2)=\sqrt{3.3333333}[/tex]

[tex]\text{Body surface area}( m^2)=1.825741[/tex]

[tex]\text{Body surface area}( m^2)=1.83[/tex]

Therefore, the body surface area of the person would be 1.83 square meters.


Related Questions

Vanillin is the substance whose aroma the human nose detectsin
the smallest amount. The threshold limit is 2.0
x10-11grams per liter of air. If the current priceof
50.0g of vanillin is $112, determine the cost to suppy
enoughvanillin so that the aroma could be detectable in a large
aircrafthangar of volume 5.0 x 107 m3.

Answers

Answer:

$2.24

Step-by-step explanation:

Given:

Threshold limit =  2.0 × 10⁻¹¹ grams per liter of air

Current price of 50.0 g vanillin = $112

Volume of aircraft hanger = 5.0 × 10⁷ m³

Now,

1 m³ = 1000 L

thus,

5.0 × 10⁷ m³ = 5.0 × 10⁷ × 1000 = 5 × 10¹⁰ L

therefore,

The mass of vanillin required = 2 × 10⁻¹¹ × 5 × 10¹⁰ = 1 g

Now,

50 grams of vanillin costs = $112

thus,

1 gram of vanillin will cost = [tex]\frac{\textup{112}}{\textup{50}}[/tex] = $2.24

What is amount of interest I earned on $4,000 deposited in a savings account with 4% interest compounded annually after 4 years?

Give answer in US dollars and cents, rounded to the nearest cent. Do NOT enter "$" sign

Answers

Answer:

$ 679.43

Step-by-step explanation:

Since, the amount formula in compound interest is,

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

Where,

P = initial amount,

r = annual rate of interest,

n = number of compounding periods in a year,

t = number of years,

Here, P = $ 4,000, r = 4% = 0.04, t = 4 years, n = 1,

So, the amount after 4 years would be,

[tex]=4000(1+0.04)^4\approx \$4679.43[/tex]

Hence, the amount of interest,

[tex]I=A-P=4679.43-4000 = \$ 679.43[/tex]

What is the negation of the following statement: "I exercise and I feel tired."

A. I exercise and I feel tired.
B. I exercise and I feel envigorated.
C. I don't exercise or I feel tired.
D. I exercise or I feel tired.
E. I don't exercise and I feel tired.
F. I don't exercise or I feel envigorated.
G. I don't exercise and I feel envigorated.
H. I exercise or I feel envigorated.

Answers

Answer:

G. I don't exercise and I feel envigorated.

Step-by-step explanation:

In this sentence the I exercise and I feel tired you need to say in order tos ay the negation of this sentence would be:

I do not exercise nor feel tired, since there´s no option that says this, we can choose the one that says I don´t exercise, and envigorated is the opposite than tired, so the correct option would be I don´t exercise and I feel envigorated.

Final answer:

The correct negation of the statement "I exercise and I feel tired" is "I don't exercise or I feel envigorated," which corresponds to option F.

Explanation:

The negation of the compound statement "I exercise and I feel tired" involves negating both parts of the statement and changing the conjunction 'and' to 'or'. This is in line with De Morgan's laws which state that the negation of a conjunction is the disjunction of the negations. Therefore, the negated form of the statement would be "I don't exercise or I don't feel tired." From the given options, the one that best matches this structure is:

F. I don't exercise or I feel envigorated.

Envigorated is understood as the opposite of feeling tired in this context. So, statement F is the correct negation as it correctly captures the negation of both parts of the original statement.

Estimate how many books can be shelved in a college library with 3500 m2 of floor space. Assume 8 shelves high, having books on both sides, with corridors 1.5 m wide. Assume books are approximately 25 cm deep and 5 cm wide, on average.

Answers

Approximately 347,200 books can be shelved in the college library with 3500 m² of floor space.

Given:

Floor space of the library = 3500 m²

Height of each shelf = 1.5 mWidth of each shelf = 0.5 m (assuming each book is 5 cm wide and there are two rows of books on each shelf)Depth of each shelf = 0.25 m (assuming each book is 25 cm deep)Width of each corridor = 1.5 m

To estimate how many books can be shelved in a college library with 3500 m² of floor space, we can use the following assumptions:

8 shelves high on both sidesCorridors 1.5 m wideBooks are approximately 25 cm deep and 5 cm wide, on average.

To calculate the number of books that can be shelved, we need to find the volume of the shelving space and divide it by the volume of each book.

To find the volume of the shelving space, we need to subtract the volume of the corridors from the total volume of the library. The total volume of the library is:

[tex]V_{library} = (63\ yards) \times (32 \ yards) \times (6\ yards)[/tex]

Converting yards to meters, we get:

[tex]V_{library} = (63 \times 0.9144 \ meters) \times (32 \times 0.9144 \ meters) \times (6 \times 0.9144\ meters)[/tex]

Simplifying the equation, we get:

[tex]V_{library} \approx 1407\ m^3[/tex]

The volume of the corridors can be calculated as follows:

[tex]V_{corridors} = (8\ shelves) \times (0.5\ m + 1.5\ m) \times (1.5\ m) \times (63\ m + 32\ m)[/tex]

Simplifying the equation, we get:

[tex]V_{corridors} = 756\ m^3[/tex]

Therefore, the volume of the shelving space is:

[tex]V_{shelving} = V_{library} - V_{corridors} \\V_{shelving} \approx 651 \ m^3[/tex]

To find the volume of each book, we can multiply the depth, width, and height of each book:

[tex]V_{book} = (0.25\ m) \times (0.05\ m) \times (0.15\ m)[/tex]

Simplifying the equation, we get:

[tex]V_{book} = 0.001875 \ m^3[/tex]

Finally, we can divide the volume of the shelving space by the volume of each book to find the number of books that can be shelved:

[tex]Number\ of\ books = \frac{V_{shelving}} {V_{book}} \\Number\ of\ books \approx 347,200[/tex]

To learn more about the volume;

https://brainly.com/question/23477586

#SPJ12

The number of books can be shelved in a college library with [tex]3500 \ m^2[/tex] of floor space is 700,000 books.

Assume that the room is square-shaped.

The size of an average book is [tex]0.05\times0.25 \ m[/tex]. Thus, the thickness of the shelf is 0.5 m.

Area of the room, [tex]A=3500 \ m^2[/tex]

Width of the corridor space, [tex]W_c=1.5 \ m[/tex]

As the room is square-shaped, its width is as follows:

[tex]W_{room}=\sqrt{3500}[/tex]

[tex]= 59.16 m[/tex]

The area of a square with side a is [tex]a^2[/tex].

The total number of rows (r) is

[tex]r=\frac{W_{room}}{W_c+shelfsize}[/tex]

[tex]= \frac{59.16}{1.5+0.5}[/tex]

[tex]= 29.28 m[/tex]

The total number of shelves

[tex]= r\times 8(height of the shelves)\times2(facing both sides)[/tex]

[tex]= 473.28[/tex]

As the room is square-shaped, the length of each shelf is [tex]59.16 \ m[/tex].

The number of books on each shelf (n) is as follows:

[tex]n=\frac{Length \ of \ each \ row}{Thickness \ of \ each \ book}[/tex]

= [tex]\frac{59.16}{0.04}[/tex]

[tex]= 1479[/tex]

The total number of books is the sum of books on all shelves. Thus, the total number of books (N) is as follows:

[tex]N=n\times (Total \ number \ of \ shelves)[/tex]

[tex]= 1479\times473.28[/tex]

[tex]= 699981.12[/tex]

[tex]\approx 700000[/tex]

Thus, there are approximately 700,000 books.

To learn more about the unitary method visit:

brainly.com/question/22056199.

#SPJ12

Write the negation of: If we lose electricity, then the data will be lost.

Write the negation of: If we lose electricity, then the data will be lost. Proposedsolution: PA- I have proposed PQ but I need a proper negation and proof tables.

Answers

Step-by-step explanation:

Consider the provided statement.

If we lose electricity, then the data will be lost.

We are need to write the negation of the above statement.

First divide the whole statement in two parts

Let us consider p = We lose electricity and q = The data will be lost.

The symbol use for negation is tilde [tex]\sim[/tex]

[tex]\sim(p\rightarrow q)[/tex]

[tex]p\wedge \sim q[/tex]

Represent T for true and F for False.

The required table is shown below:

p           q           [tex](p\wedge \sim q)[/tex]

F            F                F

F            T                F

T            F                T

T            T                F

Hence the required table is shown above.

In a certain region of the country it is known from
pastexperience that theprobability of selecting an adult over 40
yearsof age with cancer is 0.05. If the probability of a
doctorcorrectly diagnosing a person with cancer as having the
disease is0.78 and the probability of incorrectly diagnosing a
person withoutcancer as having the disease is .06, what is the
probability that aperson is diagnosed as having cancer?

Answers

Answer:

There is a 9.6% probability that a person is diagnosed as having cancer.

Step-by-step explanation:

In this problem, we have these following probabilities:

A 5% probability that an adult over 40 has cancer.

This also means that:

There is a 95% probability that an adult over 40 does not have cancer. (Since either the adult has cancer or does not have cancer, and the sum of the probabilities is 100%).

A 78% probability of a person that has cancer being diagnosed,

A 6% probability of a person that does not have cancer being diagnosed.

What is the probability that a person is diagnosed as having cancer?

[tex]P = P_{1} + P_{2}[/tex]

[tex]P_{1}[/tex] is the probability of those who have cancer being diagnosed. So it is 78% of 5%. So

[tex]P_{1} = 0.05*0.78 = 0.039[/tex]

[tex]P_{2}[/tex] is the probability of those who do not have cancer being diagnosed. So it is 6% of 95%. So

[tex]P_{1} = 0.06*0.95 = 0.057[/tex]

So

[tex]P = P_{1} + P_{2} = 0.039 + 0.057 = 0.096[/tex]

There is a 9.6% probability that a person is diagnosed as having cancer.

Solve the system of linear equations using the Gauss-Jordan elimination method. 5x + 3y = 16 −2x + y = −13 (x, y) =

Answers

Answer:

The solution for this system is [tex]x = 5, y = 3[/tex].

Step-by-step explanation:

The Gauss-Jordan elimination method is done by transforming the system's augmented matrix into reduced row-echelon form by means of row operations.

We have the following system:

[tex]5x + 3y = 16[/tex]

[tex]-2x + y = -13[/tex]

This system has the following augmented matrix.

[tex]\left[\begin{array}{ccc}5&3&16\\-2&1&-13\end{array}\right][/tex]

The first step is dividing the first line by 5. So:

[tex]L_{1} = \frac{L_{1}}{5}[/tex]

We now have

[tex]\left[\begin{array}{ccc}1&\frac{3}{5}&\frac{16}{5}\\-2&1&-13\end{array}\right][/tex]

Now i want to reduce the first row, so I do:

[tex]L_{2} = L_{2} + 2L_{1}[/tex]

So we have

[tex]\left[\begin{array}{ccc}1&\frac{3}{5}&\frac{16}{5}\\0&\frac{11}{5}&-\frac{33}{5}\end{array}\right][\tex].

Now, the first step to reduce the second row is:

[tex]L_{2} = \frac{5L_{2}}{11}[/tex]

So we have:

[tex]\left[\begin{array}{ccc}1&\frac{3}{5}&\frac{16}{5}\\0&1&-3\end{array}\right][/tex].

Now, to reduce the second row, we do:

[tex]L_{1} = L_{1} - \frac{3L_{2}}{5}[/tex]

And the augmented matrix is:

[tex]\left[\begin{array}{ccc}1&0&5\\0&1&-3\end{array}\right][/tex]

The solution for this system is [tex]x = 5, y = 3[/tex].

Answer:

This is it:

Step-by-step explanation:

don't click any links

Four teams A,B,C, and D compete in a tournament, and exactly one of them will win the tournament. Teams A and B have the same chance of winning the tournament. Team C is twice as likely to win the tournament as team D. The probability that either team A or team C wins the tournament is 0.6. Find the probabilities of each team winning the tournament.

Answers

Answer:

A= 0,2

B= 0,2

C= 0,4

D=0,2

Step-by-step explanation:

We know that only one team can win, so the sum of each probability of wining  is one

P(A)+P(B)+P(C)+P(D)=1

then we Know that the probability of Team A and B are the same, so

P(A)=P(B)

And that the  the probability that either team A or team C wins the tournament is 0.6, so P(A)+Pc)= 0,6, then P(C)= 0.6-P(A)

Also, we know that team C is twice as likely to win the tournament as team D, so P(C)= 2 P(D) so P(D) = P(C)/2= (0.6-P(A))/2

Now if we use the first formula:

P(A)+P(B)+P(C)+P(D)=1

P(A)+P(A)+0.6-P(A)+(0.6-P(A))/2=1

0,5 P(A)+0.9=1

0,5 P(A)= 0,1

P(A)= 0,2

P(B)= 0,2

P(C)=0,4

P(D)=0,2

Teams A and B each have a 0.2 probability of winning, team C has a 0.4 probability, and team D has a 0.2 probability of winning the tournament. The given conditions were used to calculate these probabilities step-by-step.

To find the probabilities of each team (A, B, C, and D) winning the tournament, let's denote the probability for each team as follows: P(A), P(B), P(C), and P(D). According to the problem, we are given these conditions:

Teams A and B have the same chance of winning: P(A) = P(B)Team C is twice as likely to win the tournament as team D: P(C) = 2P(D)The probability that either team A or team C wins is 0.6: P(A) + P(C) = 0.6

Let's express everything in terms of P(D):

P(A) = P(B) (Let it be x)P(C) = 2P(D)

From the total probability, we know that:

P(A) + P(B) + P(C) + P(D) = 1

Substituting the given conditions:

x + x + 2P(D) + P(D) = 12x + 3P(D) = 1

From condition 3:

x + 2P(D) = 0.6

We now have two equations:

2x + 3P(D) = 1x + 2P(D) = 0.6

First, solve for x in terms of P(D) from equation 2:

x = 0.6 - 2P(D)

Substitute this into equation 1:

2(0.6 - 2P(D)) + 3P(D) = 11.2 - 4P(D) + 3P(D) = 11.2 - P(D) = 1P(D) = 0.2

Now substitute P(D) back to find x:

x = 0.6 - 2(0.2) = 0.6 - 0.4 = 0.2

Therefore, P(A) = P(B) = 0.2.

Using P(C) = 2P(D):P(C) = 2(0.2) = 0.4

Summarizing the probabilities:

P(A) = 0.2P(B) = 0.2P(C) = 0.4P(D) = 0.2

find the solution of cos(t) * f ` (t) = sin(t)

Answers

Answer:

The solution is [tex]f(t)=-\ln \left|\cos \left(t\right)\right|+C[/tex]

Step-by-step explanation:

We know that this ordinary differential equation (ODE) is separable if we can write F(x,y) = f(x)g(y) for some function f(x), g(x).

We can write this ODE in this way

[tex]cos(t) \cdot f'(t)=sin(t)\\f'(t)=\frac{sin(t)}{cos(t)}[/tex]

[tex]\mathrm{If\quad }f^{'} \left(x\right)=g\left(x\right)\mathrm{\quad then\quad }f\left(x\right)=\int g\left(x\right)dx[/tex]

[tex]f(t) =\int\limits{\frac{sin(t)}{cos(t)}} \, dt[/tex]

To solve this integral we need to follow this steps

[tex]\int \frac{\sin \left(t\right)}{\cos \left(t\right)}dt = \\\mathrm{Apply\:u-substitution:}\:u=\cos \left(t\right)\\\int \frac{\sin \left(t\right)}{u}dt \\\mathrm{And \:du=-sin(t)\cdot dt}\\\mathrm{so \>dt=\frac{du}{-sin(t)}}\\\int \frac{\sin \left(t\right)}{u}dt = -\int \frac{1}{u}du[/tex]

[tex]\mathrm{Use\:the\:common\:integral}:\quad \int \frac{1}{u}du=\ln \left(\left|u\right|\right)\\-ln|u|\\\mathrm{Substitute\:back}\:u=\cos \left(t\right)\\-\ln \left|\cos \left(t\right)\right|\\[/tex]

Add the constant of integration

[tex]f(t)=-\ln \left|\cos \left(t\right)\right|+C[/tex]

The equation for a parabola has the form y = ax^2 + bz + c, where a, b, and c are constants and aメ0. Find an equation for the parabola that passes through the points (-1,14), (2,-7), and (5, 8) Answer: y-

Answers

Answer:

a = 2, b = -9, c = 3

Step-by-step explanation:

Replacing x, y values of the points in the equation y = a*x^2 + b*x +c give the following:  

(-1,14)

14 = a*(-1)^2 + b*(-1) + c  

(2,-7)

-7 = a*2^2 + b*2 + c  

(5, 8)  

8 = a*5^2 + b*5 + c  

Rearranging:

a - b + c = 14  

4*a + 2*b + c = -7

25*a + 5*b + c = 8

This is a linear system of equations with 3 equations and 3 unknows. In matrix notation the system is A*x = b whith:

A =

1    -1  1

4    2  1

25  5  1

x =

a  

b

c

b =

14

-7

8

Solving A*x = b gives x = Inv(A)*b, where Inv(A) is the inverse matrix of A. From calculation software (I used Excel) you get:

inv(A) =  

0.055555556 -0.111111111   0.055555556

-0.388888889 0.444444444   -0.055555556

0.555555556 0.555555556 -0.111111111

inv(A)*b

2

-9

3

So, a = 2, b = -9, c = 3

Hello, I asked help for this problem several times to no answer. I dont understand it and can use any help. Please, and thank you. please see the picture attached!

Answers

Check the picture below.

let's recall that a straight-line has 180°, and that sum of all interior angles in a triangle is also 180°.

A theater has 10 seats in the first row and 30 seats in the 6th row. How many seats are in the 11th row?

(It's ok if you give me the equation, that's all I need please and thank you)

Answers

Find the difference per row:

10 seats in the first row

30 seats in the sixth row:

30 -10 = 20 seats difference.

6-1 = 5 rows difference.

20 seats /  5 rows = 4 seats per row.

This means for every additional row, there are 4 more seats per row.

The equation would be:

Sn = S +(n-1)*d

Where d is the difference = 4

S = number of seats from starting row = 10

n = the number of rows wanted

S(11) = 10 + (11-1)*4

S(11) = 10 + 10*4

S(11) = 10 + 40

S(11) = 50

Check:

Row 6 = 30 seats

Row 7 = 30 + 4 = 34 seats

Row 8 = 34 + 4 = 38 seats

Row 9 = 38 + 4 = 42 seats

Row 10 = 42 + 4 = 46 seats

Row 11 = 46 + 4 = 50 seats.

A real estate agent has surveyed houses in several nearby zip codes in an attempt to put together a comparison for a new property that she would like to put on the market. The 583 houses she surveyed have a mean price of $176,678 with a standard deviation of $61,029. The mean house size is 1,676 square ft, with a standard deviation of 582 square ft. (Use 2 decimal places for the questions below.) Which is more unusual in this market: a house in that sells for $357,000 or a house with an area of 3,600 square ft?

Answers

Answer:

The house with an area 3,600 square feet is more unusual

Step-by-step explanation:

Given:

Number of houses surveyed = 583

Mean price = $176,678

Standard deviation = $61,029

Mean house size = 1,676 square ft

standard deviation = 582 square ft

Now,

the as z score = [tex]\frac{\textup{(X - mean )}}{\textup{standard deviation}}[/tex]

thus,

for selling value of $357,000

z score = [tex]\frac{\textup{(357,000 - 176,678 )}}{\textup{61,029}}[/tex]

or

z score = 2.95

and for house with an area 3,600 square feet

z score =  [tex]\frac{\textup{(3600 - 1676)}}{\textup{582}}[/tex]

or

z score = 3.30

Hence, the house with an area 3,600 square feet is more unusual

Final answer:

To determine the more unusual house in the market, we calculate the z-scores. A house priced at $357,000 has a z-score of 2.95, while a house of 3,600 square feet has a z-score of 3.31. Therefore, the larger house size is more unusual.

Explanation:

To determine which house is more unusual in the given market, we need to calculate the number of standard deviations each value is from the mean, also known as the z-score. The z-score is calculated by taking the difference between the value and the mean, and then dividing by the standard deviation. For the price of the house, the z-score is calculated as follows:

Z = (Value - Mean) / Standard Deviation

For the $357,000 house price:

Z = ($357,000 - $176,678) / $61,029 = 2.95

For the 3,600 square ft house:

Z = (3,600 - 1,676) / 582 = 3.31

The house with an area of 3,600 square ft is 3.31 standard deviations away from the mean, whereas the $357,000 house price is 2.95 standard deviations away from the mean. Hence, the house with an area of 3,600 square ft is more unusual compared to the market's average.

Let A 10,1,2,3,4,5,61, let B 0,1,2,3,4,5,6,7,81, and let R be the relation from A to B given by "the greatest common divisor of a and b is 2." [Note: "greatest common divisor" is sometimes called "highest common factor".] List the elements of R.

Answers

Answer:

R={(10,2),(10,4),(10,6),(2,2),(2,4),(2,6),(4,2),(4,6)}

Step-by-step explanation:

We are given that

A={10,1,2,3,4,5,61}

B={0,1,2,3,4,5,6,7,81}

We are given that R be the relation from  A to B

R={gcd(a,b)=2,a[tex]\inA,b\inB[/tex]}

Gcd=Greatest common divisor  of a and b.

We have to find the elements in R

(10,2)=2,(10,4)=2,(10,6)=2

(2,2)=2,(2,4)=2,(2,6)=2

(4,2)=2,(4,6)=2

Therefore, R={(10,2),(10,4),(10,6),(2,2),(2,4),(2,6),(4,2),(4,6)}

(b) Suppose the 4 × 6 coefficient matrix for a system of linear equations has 4 pivot columns. Say as much as you can about the solutions to the corresponding system of equations, with explanation.

Answers

Answer:

The system is consistent with infinitely many solutions.

Step-by-step explanation:

Consider the provided information.

It is given that the 4 × 6 coefficient matrix for a system of linear equations has 4 pivot columns.

4 pivot columns means that there is a  pivot in every row but not in every column as we know that the number of columns are greater than 4.

In a coefficient matrix the columns without pivot elements correspond to free variables.

If a system of linear equations has no solution then it is known as inconsistent otherwise its called consistent.

Infinite solution: The system of equation is consistent but  at least one of the variables is free.

As each row has  pivot that means that means system of linear equations has solution. Also at least one of the variable is free that means it has infinitely many solutions.

Thus, the system is consistent with infinitely many solutions as there is a pivot in every row but not every column.

Final answer:

A 4 × 6 coefficient matrix with 4 pivot columns indicates an underdetermined system of linear equations, leading to an infinite number of solutions within a two-dimensional solution space.

Explanation:

When a 4 × 6 coefficient matrix for a system of linear equations has 4 pivot columns, it indicates the presence of 4 independent equations for solving the variables. However, since there are 6 columns in total and 4 of them are pivot columns, it implies that there are 6 variables in the system. The presence of 4 pivot columns means that 4 of these variables can be solved in terms of the remaining 2 variables, assuming the system has consistent equations. Therefore, the system does not have a unique solution; instead, it has an infinite number of solutions that form a two-dimensional solution space, because the system is underdetermined (more variables than independent equations).

The concept of pivot columns is crucial in linear algebra for understanding the solvability of linear equation systems. A pivot column in a matrix corresponds to an independent equation in the system, which directly affects the nature of the solutions. When dealing with a system of linear equations, it is essential to determine the number of pivot columns to understand the dimensions of the solution space and whether the system is over-determined, underdetermined, or exactly determined.

Adam wishes to have $16,000 available in 18 yrs to purchase a new car for his son. To accomplish this goal, how much should adam invest now in a CD that pays 1.24% interest compounded monthly?

Answers

Answer:

To accomplish this goal, how much should adam invest now $12800.7525 in a CD that pays 1.24% interest compounded monthly.

Step-by-step explanation:

Amount = 16000

Time = 18 years

Interest = 1.24% interest compounded monthly

So, Formula : [tex]A=P(1+\frac{r}{n})^{nt}[/tex]

Formula : [tex]16000=P(1+\frac{1.24}{100 \times 12})^{12 \times 18}[/tex]

[tex]16000=P(1.24992651224)[/tex]

[tex]\frac{16000}{1.24992651224}=P[/tex]

[tex]12800.7525=P[/tex]

Hence To accomplish this goal, how much should adam invest now $12800.7525 in a CD that pays 1.24% interest compounded monthly.

Which image (A'B'C'D') of ABCD cannot be produced using only reflections? A. B. C. D.

Answers

Answer:

the answer is D

Step-by-step explanation:


Decide which of the following represent true statements about the nature of set. For any that are false, provide a specific example where the statement in question does not hold.

(a) If A1 ⊇ A2 ⊇ A3 ⊇ A4 ... are all sets containing an infinite number of elements, then the intersection n-1 An is infinite as well.

Answers

Answer:

If the intersection is finite the statement  is true, but if the intersection is infinite the statement is false.

Step-by-step explanation:

From the statement of the problem I am not sure if the intersection is finite or infinite. Then, I will study both cases.

Let us consider first the finite case: [tex]A = \cap_{i=1}^{n}A_i[/tex]. Because the condition A1 ⊇ A2 ⊇ A3 ⊇ A4 ... we can deduce that the set [tex]A_n[/tex] is a subset of each set [tex]A_i[/tex] with [tex] i\leq n[/tex]. Thus,

[tex]\cap_{i=1}^{n}A_i = A_n[/tex].

Therefore, as [tex]A_n[/tex] is infinite, the intersection is infinite.

Now, if we consider the infinite intersection, i.e. [tex]A = \cap_{k=1}^{\infty}A_k[/tex] the reasoning is slightly different. Take the sets

[tex]A_k = (0,1/k)[/tex] (this is, the open interval between 0 and [tex]1/k[/tex].)

Notice that (0,1) ⊇ (0,1/2) ⊇ (0, 1/3) ⊇(0,1/4) ⊇...So, the hypothesis of the problem are fulfilled. But,

[tex]\cap_{k=1}^{\infty}(0,1/k) = \empyset[/tex]

In order to prove the above statement, choose a real number [tex]x[/tex] between 0 and 1. Notice that, no matter how small [tex]x[/tex] is, there is a natural number [tex]K[/tex] such that [tex]1/K<x[/tex]. Then, the number [tex]x[/tex] is not in any interval [tex](0,1/k)[/tex] with [tex]k>K[/tex]. Therefore, [tex]x[/tex] is not in the set [tex]\cap_{k=1}^{\infty}(0,1/k)[\tex].

Suppose that for a function f,f(2) is not defined. Also suppose that limx→2−f(x)=7 and limx→2+f(x)=7. Which, if any, of the following statements is false? a) limx→2f(x)=7 b) f has jump discontinuity at x = 2 c) If we re-define f so that f(2) = 7 then the new function will be continuous at x = 2 d) f has removable discontinuity at x = 2 e) All of the above statements are true.

Answers

All of the statements are true.

If the limit of a function f(x) at x = a is exist .

            [tex]\lim_{x \to a+} f(x)= \lim_{x \to a-} f(x)=f(a)[/tex]

Given that,

          [tex]\lim_{x \to 2-} f(x)= \lim_{x \to 2+} f(x)=7[/tex]

But f(2) is not defined.

It means that function f(x) has jump discontinuity at x = 2

A removable discontinuity is a point on the graph that is undefined or does not fit the rest of the graph.

So that, Function f(x) has removable discontinuity at x = 2

Learn more:

https://brainly.com/question/20543024

Final answer:

The false statement among the given options is that redefining f(2) to 7 will make the new function continuous at x = 2.

Explanation:

The false statement among the options given is (c) If we re-define f so that f(2) = 7 then the new function will be continuous at x = 2.

The given information states that both the left and right limits as x approaches 2 are equal to 7, which suggests that the limit as x approaches 2 exists and is equal to 7. This means that option (a) lim x→2 f(x)=7 is true.

We know that f(2) is not defined in the original function, meaning there is a hole in the graph at x = 2. Therefore, option (d) f has a removable discontinuity at x = 2 is also true.

However, if we redefine f(2) = 7, the new function will still have a jump discontinuity at x = 2 since there will be a discontinuity between the values of f(2) before and after the redefinition. Therefore, option (c) is false.

So, the correct answer is (c) If we redefine f so that f(2) = 7 then the new function will be continuous at x = 2.

Learn more about Limits and Continuity here:

https://brainly.com/question/30328478

#SPJ6

There are 360 people in my school. 15 take calculus, physics, and chemistry, and 15 don't take any of them. 180 take calculus. Twice as many students take chemistry as take physics. 75 take both calculus and chemistry, and 75 take both physics and chemistry. Only 30 take both physics and calculus. How many students take physics?

Answers

Answer:

150 students take physics.

Step-by-step explanation:

To solve this problem, we must build the Venn's Diagram of this set.

I am going to say that:

-The set A represents the students that take calculus.

-The set B represents the students that take physics

-The set C represents the students that take chemistry.

-The set D represents the students that do not take any of them.

We have that:

[tex]A = a + (A \cap B) + (A \cap C) + (A \cap B \cap C)[/tex]

In which a is the number of students that take only calculus, [tex]A \cap B[/tex] is the number of students that take both calculus and physics, [tex]A \cap C[/tex] is the number of students that take both calculus and chemistry and [tex]A \cap B \cap C[/tex] is the number of students that take calculus, physics and chemistry.

By the same logic, we have:

[tex]B = b + (B \cap C) + (A \cap B) + (A \cap B \cap C)[/tex]

[tex]C = c + (A \cap C) + (B \cap C) + (A \cap B \cap C)[/tex]

This diagram has the following subsets:

[tex]a,b,c,(A \cap B), (A \cap C), (B \cap C), (A \cap B \cap C), D[/tex]

There are 360 people in my school. This means that:

[tex]a + b + c + (A \cap B) + (A \cap C) + (B \cap C) + (A \cap B \cap C) + D = 360[/tex]

The problem states that:

15 take calculus, physics, and chemistry, so:

[tex]A \cap B \cap C = 15[/tex]

15 don't take any of them, so:

[tex]D = 15[/tex]

75 take both calculus and chemistry, so:

[tex]A \cap C = 75[/tex]

75 take both physics and chemistry, so:

[tex]B \cap C = 75[/tex]

30 take both physics and calculus, so:

[tex]A \cap B = 30[/tex]

Solution:

The problem states that 180 take calculus. So

[tex]a + (A \cap B) + (A \cap C) + (A \cap B \cap C) = 180[/tex]

[tex]a + 30 + 75 + 15 = 180[/tex]

[tex]a = 180 - 120[/tex]

[tex]a = 60[/tex]

Twice as many students take chemistry as take physics:

It means that: [tex]C = 2B[/tex]

[tex]B = b + (B \cap C) + (A \cap B) + (A \cap B \cap C)[/tex]

[tex]B = b + 75 + 30 + 15[/tex]

[tex]B = b + 120[/tex]

-------------------------------

[tex]C = c + (A \cap C) + (B \cap C) + (A \cap B \cap C)[/tex]

[tex]C = c + 75 + 75 + 15[/tex]

[tex]C = c + 165[/tex]

----------------------------------

Our interest is the number of student that take physics. We have to find B. For this we need to find b. We can write c as a function o b, and then replacing it in the equations that sums all the subsets.

[tex]C = 2B[/tex]

[tex]c + 165 = 2(b+120)[/tex]

[tex]c = 2b + 240 - 165[/tex]

[tex]c = 2b + 75[/tex]

The equation that sums all the subsets is:

[tex]a + b + c + (A \cap B) + (A \cap C) + (B \cap C) + (A \cap B \cap C) + D = 360[/tex]

[tex]60 + b + 2b + 75 + 30 + 75 + 15 + 15 = 360[/tex]

[tex]3b + 270 = 360[/tex]

[tex]3b = 90[/tex]

[tex]b = \frac{90}{3}[/tex]

[tex]b = 30[/tex]

30 students take only physics.

The number of student that take physics is:

[tex]B = b + (B \cap C) + (A \cap B) + (A \cap B \cap C)[/tex]

[tex]B = b + 75 + 30 + 15[/tex]

[tex]B = 30 + 120[/tex]

[tex]B = 150[/tex]

150 students take physics.

Final answer:

Using a Venn Diagram approach and the information given, we find that 45 students take physics at the school.

Explanation:

To find out how many students take physics at the school, we can use the Venn Diagram principle and the given data. We know that 15 students take calculus, physics, and chemistry together. Additionally, 180 students take calculus, and twice as many students take chemistry as take physics. With 75 students taking both calculus and chemistry, and another 75 taking both physics and chemistry, while only 30 take both physics and calculus, we can establish relationships and solve for the number of students taking each subject.

Let's denote the number of students taking physics as P. Then, the number of students taking chemistry would be 2P.

Total taking calculus and chemistry (C ∩ Ch) = 75Total taking calculus and physics (C ∩ P) = 30Total taking physics and chemistry (P ∩ Ch) = 75Total taking all three (C ∩ P ∩ Ch) = 15Students taking none = 15

To avoid double counting, we must subtract those taking all three subjects once for each combination:

(C ∩ Ch) - (C ∩ P ∩ Ch) = 75 - 15 = 60 (only calculus and chemistry)(C ∩ P) - (C ∩ P ∩ Ch) = 30 - 15 = 15 (only calculus and physics)(P ∩ Ch) - (C ∩ P ∩ Ch) = 75 - 15 = 60 (only physics and chemistry)

With twice as many students in chemistry as in physics, we can write the equation:

180 + 2P + P - (15 + 60 + 15 + 60) + 15 = 360

Solving for P:

P + 2P + 180 - 150 + 15 = 3603P = 360 - 45 - 1803P = 135P = 45

Therefore, 45 students take physics at the school.

Sales of a certain MP3 players are approximated by the relationship S(x) = 4740x + 31,000(0 x 5) where S(x) denotes the number of MP3 players sold in year x (x = 0 corresponds to the year 2000). Find the number of MP3 players expected to be sold in 2002.

Answers

Answer:

40480 MP3 players expected to be sold in 2002.

Step-by-step explanation:

Sales of a certain MP3 players are approximated by the relationship;

[tex]S(x)=4740x+ 31000[/tex]  (0≤x≤5)

(x = 0 corresponds to the year 2000)

That means 2002 corresponds to x = 2

Now substituting x = 2 in the expression.

[tex]S(x)=4740(2)+ 31000[/tex]

= [tex]9480+31000[/tex]

= 40480.

Hence, 40480 MP3 players expected to be sold in 2002.

The investors club invests 500 at 6% simple interest. How much
is in the account afte 90 days?

Answers

Answer: There would be $507.39 in the account after 90 days.

Step-by-step explanation:

Since we have given that

Principal = $500

Rate of interest = 6%

Number of days = 90 days

As we know that "Simple interest":

[tex]Interest=\dfrac{P\times R\times T}{100}\\\\Interest=\dfrac{500\times 6\times 90}{100\times 365}\\\\Interest = \$7.39[/tex]

So, Amount = Principal + Interest

Amount = $500 + $ 7.39

Amount = $507.39

Hence, There would be $507.39 in the account after 90 days.

Use mathematical induction to prove that for each integer n ≥ 4, 5^n ≥ 2 2^n+1 + 100

Answers

The given Statement which we have to prove using mathematical induction is

   [tex]5^n\geq 2*2^{n+1}+100[/tex]

for , n≥4.

⇒For, n=4

LHS

[tex]=5^4\\\\5*5*5*5\\\\=625\\\\\text{RHS}=2.2^{4+1}+100\\\\=64+100\\\\=164[/tex]

 LHS >RHS

Hence this statement is true for, n=4.

⇒Suppose this statement is true for, n=k.

 [tex]5^k\geq 2*2^{k+1}+100[/tex]

                      -------------------------------------------(1)

Now, we will prove that , this statement is true for, n=k+1.

[tex]5^{k+1}\geq 2*2^{k+1+1}+100\\\\5^{k+1}\geq 2^{k+3}+100[/tex]

LHS

[tex]5^{k+1}=5^k*5\\\\5^k*5\geq 5 \times(2*2^{k+1}+100)----\text{Using 1}\\\\5^k*5\geq (3+2) \times(2*2^{k+1}+100)\\\\ 5^k*5\geq 3\times (2^{k+2}+100)+2 \times(2*2^{k+1}+100)\\\\5^k*5\geq 3\times(2^{k+2}+100)+(2^{k+3}+200)\\\\5^{k+1}\geq (2^{k+3}+100)+3\times2^{k+2}+400\\\\5^{k+1}\geq (2^{k+3}+100)+\text{Any number}\\\\5^{k+1}\geq (2^{k+3}+100)[/tex]

Hence this Statement is true for , n=k+1, whenever it is true for, n=k.

Hence Proved.

The number of bacteria in a flask grows according to the differential equation (dy)/(dt)= 0.06 y In this question, time is measured in hours and the number of bacteria, y, is measured in millions. The number of bacteria at time t = 0 is 4 million. Enter a formula for the number of bacteria at time t y = Click here to preview your answer. Incorrect: Your answer is incorrect. What is the value of the growth constant? Growth constant : per hour. How long does it take for the number of bacteria to double? (Enter your answer correct to two decimal places.) Doubling time : hours. How many million bacteria will be present after 9 hours have passed? (Enter your answer correct to one decimal place.) Number present after 9 hours : million.

Answers

Answer:

  a) y = 4e^(0.06t)

  b) 0.06

  c) 11.55 hours

  d) 6.9 million

Step-by-step explanation:

When the growth rate (millions per hour) is proportional to the number (millions), the relationship is exponential. The growth rate is the constant of proportionality.

a) Formula for y(t):

  y = 4e^(0.06t)

__

b) The growth constant is 0.06, the multiplier of t in the exponential function. It is the constant of proportionality in the given differential equation:

  y' = 0.06y.

__

c) The doubling time is found from ...

  2 = e^(0.06t) . . . the multiplying factor is 2 to double the original number

  ln(2) = 0.06t . . . . taking natural logs

  ln(2)/0.06 = t ≈ 11.55 h . . . . doubling time

__

d) Put t=9 into the formula from part (a). After 9 hours, there will be ...

  y(9) = 4e^(0.06·9) ≈ 6.9 . . . . million bacteria present

Answer:

y = 4e^(0.06t).

Step-by-step explanation:

dy/dt = 0.06y

Solving:

dy = 0.06y dt

dy/y = 0.06dt

Integrating both sides:

ln y = 0.06t + C

y = e^(0.06t + C)

y = Ae^(0.06t)   where A is a constant.

At t = 0 , y = 4 million so

y = 4 = Ae^0 = A

So the formula is

y = 4e^(0.06t).

Let z≥2. What is the remainder of 10^z −1 divided by 4?

Answers

Answer:

The remainder is 3.

Step-by-step explanation:

We have to find out,

[tex]10^z-1(mod 4)=?\text{ where }z\geq 2[/tex]

If z = 2,

[tex]10^{2}-1=100-1=99[/tex]

∵ 99 ( mod 4 ) = 3,

Suppose,

[tex](10^{k}-1)(mod 4)=3\forall \text{ k is an integer greater than 2,}[/tex]

Now,

[tex](10^{k+1}-1) ( mod 4)[/tex]

[tex]= (10^k.10 - 10+9)(mod 4)[/tex]

[tex] = 10(mod 4)\times (10^k-1)(mod 4 ) + 9 ( mod 4)[/tex]

[tex]= (2\times 3)(mod 4) + 1[/tex]

[tex]=2+1[/tex]

[tex]=3[/tex]

Hence, our assumption is correct.

The remainder of [tex]10^z -1[/tex] divided by 4 is 3 where, z ≥ 2.

Give the equivalent measure of the ff. use the international metric system. show your solution a. 2.5km = __mm b. 0.05cm= ___mm c. 200.5 g = __kg d 0.03 t = __g e. 30412 sec = __hr

Answers

Answer and Explanation:

To find : Convert the given units ?

Solution :  

a) 2.5 km to mm

[tex]1\ km = 1000000\ mm[/tex]

[tex]2.5\ km = 2.5\times 1000000\ mm[/tex]

[tex]2.5\ km = 2500000\ mm[/tex]

b) 0.05 cm to mm

[tex]1\ cm = 10\ mm[/tex]

[tex]0.05\ cm =0.05\times 10\ mm[/tex]

[tex]0.05\ cm =0.5\ mm[/tex]

c) 200.5 g to kg

[tex]1\ g = 0.001\ kg[/tex]

[tex]200.5\ g =200.5\times 0.001\ kg[/tex]

[tex]200.5\ g =0.2005\ kg[/tex]

d) 0.03 tone into g

[tex]1\ t =1000000\ g[/tex]

[tex]0.03\ t =0.03\times 1000000\ g[/tex]

[tex]0.03\ t =30000\ g[/tex]

e) 3.0412 sec into hour

[tex]1\ sec =\frac{1}{3600}\ hr[/tex]

[tex]3.0412\ sec =3.0412\times \frac{1}{3600}\ hr[/tex]

[tex]3.0412\ sec =0.000844\ hr[/tex]

Determine whether the data shows a linear relationship. If so, write an equation of a line of it.

Answers

Answer:

The data do not show a linear relationship

Step-by-step explanation:

A plot of the points connected by straight lines makes it pretty clear they do not all fall on the same line. There is no linear relationship here.

Draw a graph of order 4 and size equal to zero. What is this graph called?

Answers

Answer:

The draw in the file is a realization of a graph of order 4 and size zero.

In the book of Douglas West, Introduction to Graph Theory the name of this graph is 'Trivial graph'

Step-by-step explanation:

Remember that the order of a graph is the number of vertices and the size of the graph is the number of edges of the graph.

A chemist wants to mix a 22% acid solution with a 36% acid solution to get 28 L of a 26% acid solution. How many liters of the 22% solution and how many liters of the 36% solution should be mixed?

Answers

Answer:

20 L of 22% solution and 8 L of 36% solution

Step-by-step explanation:

Volume of 22% solution + volume of 36% solution = volume of 26% solution

x + y = 28

Acid in 22% solution + acid in 36% solution = acid in 26% solution

0.22x + 0.36y = 0.26(28)

0.22x + 0.36y = 7.28

Solve the system of equations using either elimination or substitution.  I'll use substitution:

x = 28 − y

0.22(28 − y) + 0.36y = 7.28

6.16 − 0.22y + 0.36y = 7.28

0.14y = 1.12

y = 8

x = 28 − y

x = 20

The chemist should use 20 L of 22% solution and 8 L of 36% solution.

Answer:

There should be mixed 20 L of the 22% acid solution with 8L of the 36% acid solution

Step-by-step explanation:

We are mixing two acids.

 

x = liters of 22% acid solution

y = liters of 36% acid solution

 

x + y = 28    (total liters)

0.22x +0.36y = 0.26* 28  

 

Since x+y=28 means y = 28-x

 

Now we will use substitution to find x

0.22x + 0.36(28-x) = 0.26 * 28

0.22x + 10.08 - 0.36x = 7.28

0.14x = 2.8

x = 20

y = 28 - 20 = 8  

⇒ We use 20 liters of the 22% solution to be mixed with 8 liters of the 36% solution to form  28l of a  26% acid solution.

What is the x-intercept of the linear equation y = 4x – 4

Answers

Answer: (1,0)

Step-by-step explanation: What is the x-intercept of the linear equation y = 4x – 4?

y = 4x - 4

x-intercept ⇒ y = 0

which means that we need to substitute the y by 0.

0 = 4x-4

4x = 4

x = 1

As it is a linear equation, 1st degree, there is only one point.

This way, the linear y = 4x - 4 intercept x on point (1,0)

Other Questions
Ten times the sum of half a number x and 9 is 13. What is 5.9 rounded to An article fills 5/8 of a magazine page. Arelated photo takes up 1/4 of the article. Howmuch of the page is taken up by the photo? What is the solution of the following system?-2x-y=1-4x-2y=-1A. infinitely many solutionsB. no solutionsC. (3,8)D.(-3,-8) Consider the following table.x 1 3 5 7 9y 9 7 7 3 2(a) Find the equation of the least-squares line for the data. through a point not in a plane are an infinite number of lines parallel to the plane always sometimes never PLEASE HELP 10PTS!!Which religion established a rigid caste system, but it was formally abolished in the mid-20th century? Islam Jainism Hinduism Shinto Hermann Corporation had net income of $200,000 and paid dividends to commonstockholders of $50,000 in 2012. The weighted average number of shares outstanding in2012 was 50,000 shares. Hermann Corporation's common stock is selling for $50 pershare on the New York Stock Exchange. Hermann Corporation's price-earnings ratio is WORTH 50 POINTS!!!! PLZ HELP ME!! ASAP!!Measuring: Liquid Volume Write your answers to the questions below in the spaces provide. If you need more space, use the back of this sheet. The volume of an object is the amount of space it takes up. You will often measure the volume of liquids using a graduated cylinder. (Graduated means that the cylinder is marked with measurement units.) Always read a graduated cylinder at eye level. Also, water in a graduated cylinder has a curved surfaces called the meniscus. Read the volume at the bottom of the meniscus. Hints: Always check the unnumbered marks on a graduated cylinder to see how many sections there are and what they measure. Also, sometimes you have to estimate a measurement between two marks. Prove to yourself that both graduated cylinders on the right contain 25 mL. What is the volume of the liquid shown in graduated cylinders 1-4 below? What is the total volume in graduated cylinder 5? 6. If the diagrams for questions 4 and 5 show the same graduated cylinder before and after the rock was added, what can you infer about the volume of the rock? ______________________________________________________________________________ 7. Think About It Describe how you can use a graduated cylinder to measure the volume of an irregular object. In analyzing the number of different bases in a DNA sample, which result would be consistent with the base-pairing rules?a. A = Gb. A + G = C + Tc. A + T = G + Cd. A = C A dealer bought 50 caps for Rs 1500. He sold 15 for Rs. 35 each and 15 for Rs. 40 each. At what price per cap should he sell the remainder to gain 15% on his outlay? Suppose an author uses multiple narrators to tell a story about a magicianwho amazes a town with his performance until he is exposed as a hoax by hisassistant. Which sentence from the story would best convey the point of viewof a townsperson?OA. The onlookers gasped as she grabbed his wand.OB. How could I have been so gullible?OC. I'll wait until a large crowd is assembled to make my move.OD. My heart sank as angry eyes stared at me. Christ was called a Faithful High Priest in comparison to:AaronMosesEli How did Taq DNA polymerase acquire its name? which of the following representaions shows how one variable changes in response to another variable A. Models B. line graphs C. Pine charts D. Complex systems What does the term "Industrial Revolution refer to? Find the measures of the unknown angles in degrees.Blank #1: value for cBlank #2: value for wBlank # 1Blank # 2 Which of the following represents the additive identity?1. ab = ab2. a x 1 = a3. a+b = b+a4. a + 0 = a Suppose that you are on an unknown planet in a distant galaxy, and you are trying to determine the acceleration of gravity of this planet. The length of a physical pendulum be 0.81 m and the measured period was 1.138 s. Determine the gravitational acceleration of this planet? Adalimumab (Humira), a recombinant human monoclonal antibody, is available in a prefilled syringe containing 40 mg/0.8 mL. Calculate the concentration of drug on a mg/mL basis.