Verify that y = c_1 + c_2 e^2x is a solution of the ODE y" - 2y' = 0 for all values of c_1 and c_2.

Answers

Answer 1

Answer:

For any value of C1 and C2, [tex]y = C1 + C2*e^{2x}[/tex] is a solution.

Step-by-step explanation:

Let's verify the solution, but first, let's find the first and second derivatives of the given solution:

[tex]y = C1 + C2*e^{2x}[/tex]

For the first derivative we have:

[tex]y' = 0 + C2*(2x)'*e^{2x}[/tex]

[tex]y' = C2*(2)*e^{2x}[/tex]

For the second derivative we have:

[tex]y'' = C2*(2)*(2x)'*e^{2x}[/tex]

[tex]y'' = C2*(2)*(2)*e^{2x}[/tex]

[tex]y'' = C2*(4)*e^{2x}[/tex]

Let's solve the ODE by the above equations:

[tex]y'' - 2y' = 0[/tex]

[tex]C2*(4)*e^{2x} - 2*C2*(2)*e^{2x} = 0[/tex]

[tex]C2*(4)*e^{2x} - C2*(4)*e^{2x} = 0[/tex]

From the above equation we can observe that for any value of C2 the equation is solved, and because the ODE only involves first (y') and second (y'') derivatives, C1 can be any value as well, because it does not change the final result.  


Related Questions

a gross of baseball cards contains 144 packs of cards. each pack contains 8 baseball cards how many cards do you have in all?

Answers

912 cards in all

If there are 114 packs of cards and 8 in each you multiply 114 by 8 and get 912.

Final answer:

To find the total number of baseball cards, multiply the number of packs (144) by the number of cards in each pack (8), resulting in a total of 1,152 cards.

Explanation:

If a gross of baseball cards contains 144 packs of cards and each pack contains 8 baseball cards, the total number of cards would be calculated by multiplying the number of packs by the number of cards in each pack.

To get the total number of baseball cards.

144 packs x 8 cards/pack = 1,152 cards

Hence, a gross of baseball cards contains 1,152 cards in total.

Learn more about Multiplication here:

https://brainly.com/question/35502092

#SPJ2

The marketing manager for a newspaper has commissioned a study of the advertisements in the classified section. The results for the Wednesday edition showed that 208 are help dash wanted ​ads, 552 are real estate ​ads, and 331 are other ads. a. If the newspaper plans to select an ad at random each week to be published​ free, what is the probability that the ad for a specific week will be a help dash wanted ​ad

Answers

Answer:

[tex]\frac{208}{1091}[/tex]

Step-by-step explanation:

To find probability of x, we need to find the number of x divided by total number.

Here,

Total = 208 + 552 + 331 = 1091

Number of help dash wanted ad = 208

Hence, the probability that the ad for a specific week is a help dash wanted ad = 208/1091

Let p and q denote the following statements. pis "The chair is broken." qis "The stove is hot." Write the compound statement. The chair is broken or the stove is not hot, in symbolic form. The chair is broken or the stove is not hot. The symbolic form is a

Answers

Is q i think it is .

Final answer:

The statement 'The chair is broken or the stove is not hot' translates to 'p v ~q' in symbolic form, where 'p' represents 'The chair is broken,' and 'q' represents 'The stove is hot.' The 'v' symbolizes 'or,' and '~' indicates negation.

Explanation:

The question requests the compound statement 'The chair is broken or the stove is not hot' be written in symbolic form using propositional logic. Given the statements, p is 'The chair is broken,' and q is 'The stove is hot,' we can translate the request into symbolic form. The use of 'or' in propositional logic is represented by the symbol 'v' (wedge), and the negation of a statement is represented by the symbol '~' (tilde). Therefore, 'The stove is not hot' can be represented as '~q'.

To combine these statements into the requested compound statement, we use:
p v ~q
This reads as 'p or not q', which translates back into the original statement 'The chair is broken or the stove is not hot.' This allows us to see how logical operators like disjunction ('or') and negation ('not') work together to construct compound statements in propositional logic.

Which of the following is NOT a principle of​ probability? Choose the correct answer below. A. All events are equally likely in any probability procedure. B. The probability of an event that is certain to occur is 1. C. The probability of an impossible event is 0. D. The probability of any event is between 0 and 1 inclusive.

Answers

Answer:

The correct option is A.

Step-by-step explanation:

The formula of probability is

[tex]P=\frac{a}{b}[/tex]

Where, a≤b, a is total favorable outcomes and b is total possible outcomes.

If an event is certain to occur, then a=b and the probability of an event that is certain to occur is

[tex]P=\frac{a}{a}=1[/tex]

If an event is impossible, then a=0 and the probability of an impossible event is

[tex]P=\frac{0}{a}=0[/tex]

Since total favorable outcomes a and total possible outcomes b can not be negative, a is always less than of equal to b. So,

[tex]0\leq \frac{a}{b}\leq 1[/tex]

[tex]0\leq P\leq 1[/tex]

Therefore the probability of any event is between 0 and 1 inclusive.

All events are not equally likely in any probability procedure. So, the statement "All events are equally likely in any probability procedure" is not true.

Therefore the correct option is A.

Final answer:

The statement 'All events are equally likely in any probability procedure' is NOT a fundamental principle of probability. Events in a probability procedure can have different probabilities based on the situation.

Explanation:

The question is asking to identify which of the given options is NOT a principle of probability. Here, the principles of probability suggest that the probability of an event that is certain to occur is 1 (option B), the probability of an impossible event is 0 (option C), and that the probability of any event is between 0 and 1 inclusive (option D). These are well-established principles of probability and hold true in most situations.

However, option A, 'All events are equally likely in any probability procedure', is NOT a fundamental principle of probability. This is not always true as the likelihood of events can vary greatly depending on the scenario. For instance, if you roll a fair six-sided dice, the probability of landing a 1 is 1/6, but in sampling with or without replacement, probabilities of different outcomes can differ. Thus, it is not a rule that all outcomes are always equally likely in any probabilistic process.

A simple real-life application of this can be seen in card games. If you draw one card from a standard deck of 52, the probability of drawing a heart is 1/4, not equal to the probability of drawing a specific number card like the 7 of clubs, which is 1/52. Therefore, the statement that 'all events are equally likely in any probability procedure' is not always true.

Learn more about Probability here:

https://brainly.com/question/22962752

#SPJ6

3. Find all the solutions to the equation x^2-x=0 mod 12. Comment on your answer.

Answers

Answer:

The solutions of the given equation are:

              x=0,1,4 and 9

Step-by-step explanation:

We are asked to find the solution of the equation:

[tex]x^2-x=0\ \text{mod}\ 12[/tex]

i.e. we have to find the possible values of x such that the equation is true.

If x=0

then

[tex]x^2-x=0-0\\\\i.e.\\\\x^2-x=0[/tex]

Hence, x=0 is the solution of the equation.

if x=1

then

[tex]x^2=1\\\\Hence,\\\\x^2-x=1-1\\\\i.e.\\\\x^2-x=0[/tex]

Hence, x=1 is  a solution.

If x=2

then

[tex]x^2=4[/tex]

i.e.

[tex]x^2-x=4-2\\\\i.e.\\\\x^2-x=2\neq 0[/tex]

Hence, x=2 is not  a solution.

If x=3

then

[tex]x^2=9[/tex]

i.e.

[tex]x^2-x=9-3\\\\i.e.\\\\x^2-x=6\neq 0[/tex]

Hence, x=3 is not  a solution.

If x=4

then

[tex]x^2=16=4\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=4-4\\\\i.e.\\\\x^2-x=0[/tex]

Hence, x=4 is a solution to the equation.

If x=5

then

[tex]x^2=25=1\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=1-4\\\\i.e.\\\\x^2-x=-3=9\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=9\neq 0[/tex]

Hence, x=5 is not a solution.

If x=6

then

[tex]x^2=36\\\\i.e.\\\\x^2=0\ \text{mod}\ 12\\\\i.e.\\\\x^2=0[/tex]

Hence,

[tex]x^2-x=0-6\\\\i.e.\\\\x^2-x=-6=6 \text{mod}\ 12\\\\i.e.\\\\x^2-x=6\neq 0[/tex]

Hence, x=6 is not a solution

If x=7

then,

[tex]x^2=49=1\ \text{mod}\ 12\\\\i.e.\\\\x^2=1[/tex]

Hence,

[tex]x^2-x=1-7\\\\i.e.\\\\x^2-x=-6=6\ \text{mod}\ 12\\\\i.e.\\\\x^2-x=6\neq 0[/tex]

Hence, x=7 is not a solution.

If  x=8

then,

[tex]x^2=64=4\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=4-8\\\\i.e.\\\\x^2-x=-4=8\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=8\neq 0[/tex]

Hence, x=8 is not a solution.

If x=9

then,

[tex]x^2=81=9\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2=9[/tex]

Hence,

[tex]x^2-x=9-9\\\\i.e.\\\\x^2-x=0[/tex]

Hence, x=9 is a solution.

If x=10

then,

[tex]x^2=100=4\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=4-10\\\\i.e.\\\\x^2-x=-6=6\ \text{mod}\ 12\\\\i.e.\\\\x^2-x=6\neq 0[/tex]

Hence, x=10 is not a solution.

If x=11

then,

[tex]x^2=121=1\ \text{mod}\ 12[/tex]

i.e.

[tex]x^2-x=1-11\\\\x^2-x=-10=2\ \text{mod}\ 12\\\\i.e.\\\\x^2-x=2\neq 0[/tex]

Hence, x=11 is not a solution.

Write down the converse and contrapositive. If 2 divides x, then x is an even number. Hint call this (p?q)

Answers

Answer:  

The converse and contrapositive of the given conditional statement are :

Converse : "If x is an even number, then 2 divides x".

Contrapositive : "If x is not an even number, then 2 does not divide x."

Step-by-step explanation:  We are given to write the converse and contrapositive of the following conditional statement :

"If 2 divides x, then x is an even number."

Let us consider that

p : 2 divides x

and

q : x is an even number.

We know that

the CONVERSE of a conditional statement p ⇒ q is written as q ⇒ p.

So, the converse of the given statement is

"If x is an even number, then 2 divides x".

The CONTRAPOSITIVE of the conditional statement  p ⇒ q is written as ~q ⇒ ~p (where ~p stands for the negation of p).

So, the contrapositive of the given statement is

"If x is not an even number, then 2 does not divide x."

Thus, the converse and contrapositive of the given statement are :

Converse : "If x is an even number, then 2 divides x".

Contrapositive : "If x is not an even number, then 2 does not divide x."

Suppose a preliminary screening is given to prospective student athletes at a university to determine whether they would qualify for a scholarship. The scores are approximately normal with a mean of 85 and a standard deviation of 20. If the range of possible scores is 0 to 100, what percentage of students has a score less than 85?

Answers

Answer:

80

Step-by-step explanation:

Answer:

50% of students has a score less than 85

Step-by-step explanation:

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 85, \sigma = 20[/tex]

What percentage of students has a score less than 85?

This is the pvalue of Z when X = 85. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{85 - 85}{20}[/tex]

[tex]Z = 0[/tex]

[tex]Z = 0[/tex] has a pvalue of 0.5

50% of students has a score less than 85

Find a counter example to show that the following statement is false:

For all nonzero real numbers a, b, c, d, a/b + c/d = a+c/b+d

A. a=3, b=5,c=-3,d=5
B. a=0, b=4,c=0,d=9
C. a=-2, b=1,c=2,d=1
D.a=1, b=2,c=1,d=2

Answers

Answer:

Option D. is the answer.

Step-by-step explanation:

The given statement is [tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]

Now we have to find a counter example from the given options that the statement is False.

A. a = 3, b = 5, c = -3, d = 5

[tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]=[tex]\frac{3}{5}+\frac{-3}{5}=\frac{3-3}{5+5}[/tex]

0 = 0

So the given statement is true.

B. a = 0, b = 4, c = 0, d= 9

[tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]

0 + 0 = 0

So for this example the given statement is true.

C. a = -2, b = 1, c = 2, d = 1

[tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]

[tex]\frac{-2}{1}+\frac{2}{1}=\frac{-2+2}{1+1}[/tex]

0 = 0

Statement is true for these values.

D. a = 1, b = 2, c = 1, d = 2

[tex]\frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}[/tex]

[tex]\frac{1}{2}+\frac{1}{2}=\frac{1+1}{2+2}[/tex]

[tex]1=\frac{1}{2}[/tex]

Therefore, for these values of a, b, c and d, the given statement is False.

Option D. is the answer.

Final answer:

To find a counter example for the given statement, we need to test the options provided. However, all the options satisfy the equation, indicating that the statement holds true for all nonzero real numbers.

Explanation:

To find a counter example for the given statement, we need to find values for a, b, c, and d that make the equation a/b + c/d = a+c/b+d false. Let's consider the options given:

Option A: a=3, b=5, c=-3, d=5Option B: a=0, b=4, c=0, d=9Option C: a=-2, b=1, c=2, d=1Option D: a=1, b=2, c=1, d=2

We can see that for all the options, the equation holds true. Therefore, there is no counter example and the statement is true for all nonzero real numbers.

Learn more about Counter example here:

https://brainly.com/question/29193211

#SPJ3

Calculate the percent of customer returns for a week with the following figures: gross sales, $7,500; returns, $95 on Monday, $19 on Tuesday, $50 on Wednesday, $140 on Thursday, $160 on Friday, and $80 on Saturday.

Answers

Answer:

The percentage of customer returns is 7%.

Step-by-step explanation:

Given,

Total gross sales = $ 7,500

Returns are,

$95 on Monday, $19 on Tuesday, $50 on Wednesday, $140 on Thursday, $160 on Friday, and $80 on Saturday,

So, the total returns = $ 95 + $ 50 + $ 140 + $ 160 + $ 80 = $ 525,

Hence, the percent of customer returns for the week = [tex]\frac{\text{Total returns}}{\text{Total gross sales}}\times 100[/tex]

[tex]=\frac{525}{7500}\times 100[/tex]

[tex]=\frac{52500}{7500}[/tex]

[tex]=7\%[/tex]

Write the rational expression in lowest terms. x^2-9x+8/x^2 + x-3; x^2-9x+8/x^2+2x-3 (Simplify your answer.)

Answers

Answer:

[tex]\frac{x-8}{x+3}[/tex]

Step-by-step explanation:

Given expression,

[tex]\frac{x^2-9x+8}{x^2+2x-3}[/tex]

[tex]=\frac{x^2-(8+1)x+8}{x^2+(3-1)x-3}[/tex]

[tex]=\frac{x^2-8x-x+8}{x^2+3x-x-3}[/tex]

[tex]=\frac{x(x-8)-1(x-8)}{x(x+3)-1(x+3)}[/tex]

[tex]=\frac{(x-1)(x-8)}{(x-1)(x+3)}[/tex]

[tex]=\frac{x-8}{x+3}[/tex]

Since, further simplification is not possible,

Hence, the given rational expression in lowest terms is,

[tex]\frac{x-8}{x+3}[/tex]

Find the size of each of 6 payments made at the end of each year into a 6% rate sinking fund which produces $82000 at the end of 6 years. The payment size is $? rounded to the nearest cent

Answers

Answer:

at the end of 1st year we pay $ 11756

at the end of 2nd year we pay $ 24217

at the end of 3rd year we pay $ 37426

at the end of 4th year we pay $ 51427

at the end of 5th year we pay $ 66269

at the end of 6th year we pay $ 82001

Step-by-step explanation:

Given data

rate ( i ) = 6%

Future payment  = $82000

no of time period ( n ) = 6

to find out

size of all of 6 payments

solution

we know future payment formula i.e.

future payment = payment per period ( [tex](1 + rate)^{n}[/tex] - 1 )   / rate

put all these value and get payment per period

payment per period = future payment × rate  /  ( [tex](1 + rate)^{n}[/tex] - 1 )   / rate

payment per period = 82000 × 0.06  /  ( [tex](1 + 0.06)^{6}[/tex] - 1 )   / rate

payment per period = 82000 × 0.06 / 0.4185

payment per period = $ 11756.27

at the end of 1st year we pay $ 11756

and at the end of 2nd year we pay $ 11756 × ( 1  + 0.06) + 11756

and at the end of 2nd year we pay $ 24217

and at the end of 3rd year we pay $ 24217 × ( 1  + 0.06) + 11756

and at the end of 3rd year we pay $ 37426

and at the end of 4th year we pay $ 37426 × ( 1  + 0.06) + 11756

and at the end of 4th year we pay $ 51427

and at the end of 5th year we pay $ 51427 × ( 1  + 0.06) + 11756

and at the end of 5th year we pay $ 66269

and at the end of 6th year we pay $ 66269 × ( 1  + 0.06) + 11756

and at the end of 6th year we pay $ 82001

PLEASE HELP

I am confused on these equations

Answers

Answer:

See below.

Step-by-step explanation:

I'll show you step by step how to do the synthetic division.

You are dividing polynomial -6x^4 + 22x^3 + 3x^2 + 15x + 20 by x - 4.

From the polynomial, you only need the coefficients in descending order of degree as they are written.

         -6    22    3    15    20

In synthetic division, you divide by x - b. You are dividing by x - 4, so b = 4.

The 4 is written to the left of the coefficients of the polynomial.

      ___________________

4   |       -6    22    3    15    20

      ___________________

This is what the setup looks like. You can see it in the problem you were given.

The first step is to just copy the leftmost coefficient straight down to below the line.

      ___________________

4   |       -6    22    3    15    20

      ___________________

             -6

Now multiply b, which is 4, by -6 and write it above and to the right.

     ___________________

4   |       -6    22    3    15    20

                    -24

      ___________________

            -6

Add 22 and -24 and write it next to -6.

     ___________________

4   |       -6    22    3    15    20

                    -24

      ___________________

             -6     -2

Multiply 4 by -2 and write it above and to the right. Add vertically.

     ___________________

4   |       -6    22     3    15    20

                    -24   -8

      ___________________

             -6     -2    -5

Multiply 4 by -5 and write it above and to the right. Add vertically.

     ___________________

4  |       -6    22     3    15    20

                    -24   -8   -10

      ___________________

             -6     -2    -5   -5

Multiply 4 by -5 and write it above and to the right. Add vertically.

     ___________________

4   |       -6    22     3    15    20

                    -24   -8   -10   -20

      ___________________

             -6     -2    -5   -5      0

The 4 numbers in the second line are the coefficients of the quotient.

The quotient is 1 degree less than the original polynomial.

The quotient is: -24x^3 - 8x^2 - 10x - 20

The last number on the third line is the remainder. Since here the reminder is zero, that means that this division has no remainder. The remainder is 0/(x - 4)

Fill in the boxes with:

-24, -8, -10, -20

-6, -2, -5, -5, 0

-24x^3 - 8x^2 - 10x - 20

0

The lengths of pregnancies are normally distributed with a mean of 267 days and a standard deviation of 15 days. a. Find the probability of a pregnancy lasting 309 days or longer. b. If the length of pregnancy is in the lowest 4​%, then the baby is premature. Find the length that separates premature babies from those who are not premature.

Answers

Answer:

We have a normal distribution with a mean of 267 days and a standard deviation of 15 days. To solve this proble we're going to need the help of a calculator.

a. The probability of a pregnancy lasting 309 days or longer is:

P(z>309) = 0.0026 or 0.26%

b. The lowest 4% is separeted by the 240.74 days. The probability of pregnancy lasting 240.74 days is 4%.

Answer:

a) 0.26% probability of a pregnancy lasting 309 days or longer.

b) A pregnancy length of 241 days separates premature babies from those who are not premature.

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

[tex]\mu = 267, \sigma = 15[/tex]

a. Find the probability of a pregnancy lasting 309 days or longer.

This is 1 subtracted by the pvalue of Z when X = 309. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{309 - 267}{15}[/tex]

[tex]Z = 2.8[/tex]

[tex]Z = 2.8[/tex] has a pvalue of 0.9974

So there is a 1-0.9974 = 0.0026 = 0.26% probability of a pregnancy lasting 309 days or longer.

b. If the length of pregnancy is in the lowest 4​%, then the baby is premature. Find the length that separates premature babies from those who are not premature.

This is the value of X when Z has a pvalue of 0.04. So X when Z = -1.75

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]-1.75 = \frac{X - 267}{15}[/tex]

[tex]X - 267 = -1.75*15[/tex]

[tex]X = 240.75[/tex]

A pregnancy length of 241 days separates premature babies from those who are not premature.

a pizza parlor offers a choice of 12 different toppings. how many 3-topping pizzas are possible? (no double orders of toppings are allowed)

Answers

4 pizzas with 3 toppings each

only 12 toppings and 3 toppings per pizza

You have to do 12/3=4

Compound Interest Application

Compound interest is given by the formula A = P ( 1 + r ) t . Where A is the balance of the account after t years, and P is the starting principal invested at an annual percentage rate of r , expressed as a decimal.

Wyatt is investing money into a savings account that pays 2% interest compounded annually, and plans to leave it there for 15 years. Determine what Wyatt needs to deposit now in order to have a balance of $40,000 in his savings account after 15 years.

Wyatt will have to invest $___________ now in order to have a balance of $40,000 in his savings account after 15 years. Round your answer UP to the nearest dollar.

Answers

Answer:

$29,721

Step-by-step explanation:

We have been given that Wyatt is investing money into a savings account that pays 2% interest compounded annually, and plans to leave it there for 15 years. We are asked to find the amount deposited by Wyatt in order to have a balance of $40,000 in his savings account after 15 years.

We will use compound interest formula to solve our given problem.

[tex]A=P(1+\frac{r}{n})^{nT}[/tex], where,

A = Final amount after T years,

P = Principal amount,

r = Annual interest rate in decimal form,

n = Number of times interest is compounded per year,

T = Time in years.

Let us convert our given interest rate in decimal form.

[tex]2\%=\frac{2}{100}=0.02[/tex]

Upon substituting our given values in compound interest formula, we will get:

[tex]\$40,000=P(1+\frac{0.02}{1})^{1*15}[/tex]

[tex]\$40,000=P(1+0.02)^{15}[/tex]

[tex]\$40,000=P(1.02)^{15}[/tex]

[tex]\$40,000=P\times 1.3458683383241296[/tex]

Switch sides:

[tex]P\times 1.3458683383241296=\$40,000[/tex]

[tex]\frac{P\times 1.3458683383241296}{ 1.3458683383241296}=\frac{\$40,000}{1.3458683383241296}[/tex]

[tex]P=\$29,720.5891995[/tex]

Upon rounding our answer to nearest dollar, we will get:

[tex]P\approx \$29,721[/tex]

Therefore, Wyatt will have to invest $29,721 now in order to have a balance of $40,000 in his savings account after 15 years.

4 Permutations 1. Let a "small block cipher be a function f which maps 8-bit plaintexts m E (0,1)8 to 8-bit ciphertexts c E (0,1)8. However, function f must be 1-1 or otherwise it would be impossible to invert a block cipher, i.e. compute (using the block cipher key) the plaintext f(c) given ciphertext c. How many "small" block ciphers are there? students if each student must have a computer and computers cannot be shared? capital letters but with no repeated characters? 2. There are 10 computers and 5 students. In how many ways can computers be assigned to 3. Recall problem 1. How many 8-character passwords are there made of either lower-case or . How many 10-digit decimal strings are there in which there is no repeated digits? 5. How many 10-digit decimal strings are there in which there is no repeated digits and where 5" occurs before "6"? (By "before" I mean "anywhere before" and not "mmediately before", e.g. string (5,0, 1, 2, 3, 4, 7, 8, 9, 6) is included.) 6. How many 10-digit decimal strings are there in which there is no repeated digits and where "5" and "6" are next to each other?

Answers

Listen to Kid cudi that’s the answer

Clabber Company has bonds outstanding with a par value of $121,000 and a carrying value of $109,900. If the company calls these bonds at a price of $105,500, the gain or loss on retirement is:

Answers

There is a loss of $4,400 on retirement. So option (b) is correct.

To calculate the gain or loss on retirement of the bonds, we need to compare the carrying value of the bonds with the price at which they are being called.

Given:

Par value of the bonds = [tex]$121,000$[/tex]

Carrying value of the bonds = [tex]$109,900$[/tex]

Call price = [tex]$105,500$[/tex]

The gain or loss on retirement is calculated as the difference between the carrying value and the call price.

Loss on retirement = Carrying value - Call price

Substitute the given values:

Loss on retirement = $109,900 - $105,500

Loss on retirement = $4,400

However, since the call price is lower than the carrying value, the loss is incurred by the company. Thus, the correct answer is a [tex]$\$4,400$[/tex] loss.

So, the correct option is: (b) $4,400 loss.

Clabber Company has bonds outstanding with a par value of [tex]$\$ 121,000$[/tex] and a carrying value of [tex]$\$ 109,900$[/tex]. If the company calls these bonds at a price of [tex]$\$ 105,500$[/tex], the gain or loss on retirement is:

Multiple Choice

(a) [tex]$\$ 15,500$[/tex] loss.

(b) [tex]$\$ 4,400$[/tex] loss.

(c) [tex]$\$ 11,100$[/tex] loss.

(d) [tex]$\$ 4,400$[/tex] gain.

The gain on retirement is $15,500.

To calculate the gain or loss on retirement of the bonds, we first need to understand the definitions involved:

1. Par value: This is the face value of the bonds, which is $121,000 in this case.

2. Carrying value: This is the book value of the bonds on the company's balance sheet, which is $109,900.

3. Call price: This is the price at which the company is redeeming (calling) the bonds, which is $105,500.

Now, let's calculate the gain or loss:

- Gain/Loss = Par Value - Call Price

If the call price is less than the carrying value, it results in a gain. If the call price is greater than the carrying value, it results in a loss.

Given:

- Par value = $121,000

- Carrying value = $109,900

- Call price = $105,500

[tex]\[ \text{Gain/Loss} = \text{Par Value} - \text{Call Price} \]\[ \text{Gain/Loss} = \$121,000 - \$105,500 \]\[ \text{Gain/Loss} = \$15,500 \][/tex]

Since the call price is less than the carrying value, it results in a gain.

The population of a town with a 2016 population of 66,000 grows at a rate of 2.5% per year a. Find the rate constant k and use it to devise an exponential growth function that fits the given data b. In what year will the population reach 176.000? Book a. Find the rate constant k k= (Type an exact answer) tents ccess Library Resources

Answers

Final answer:

The rate constant, k, can be found using the formula k = ln(1 + r), where r is the growth rate. In this case, the growth rate is 2.5%. The rate constant is approximately 0.0253. The exponential growth function is P(t) = 66,000 * e^(0.0253t). To find in what year the population will reach 176,000, we solve the equation 176,000 = 66,000 * e^(0.0253t) and find that it will take approximately 42 years.

Explanation:

To find the rate constant, we can use the formula:

k = ln(1 + r)

where k is the rate constant and r is the growth rate as a decimal.

In this case, the growth rate is 2.5%, which is equivalent to 0.025 as a decimal.

Using the formula, we have:

k = ln(1 + 0.025) = ln(1.025) ≈ 0.0253

Therefore, the rate constant k is approximately 0.0253.

To devise an exponential growth function, we can use the formula:

P(t) = P0 * ekt

where P(t) is the population at time t, P0 is the initial population, k is the rate constant, and t is the time in years.

In this case, the initial population P0 is 66,000 and we already found that the rate constant k is 0.0253.

So, the exponential growth function is:

P(t) = 66,000 * e0.0253t

To find in what year the population will reach 176,000, we can set up the following equation:

176,000 = 66,000 * e0.0253t

Divide both sides by 66,000:

176,000 / 66,000 = e0.0253t

Simplify:

2.6667 = e0.0253t

To solve for t, we can take the natural logarithm of both sides:

ln(2.6667) = 0.0253t

Divide both sides by 0.0253:

t = ln(2.6667) / 0.0253 ≈ 41.71

Therefore, the population will reach 176,000 in approximately 41.71 years, which can be rounded to 42 years.

A researcher wishes to estimate the proportion of adults who have​ high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.05 with 95​% confidence if ​(a) she uses a previous estimate of 0.32​? ​(b) she does not use any prior​ estimates?

Answers

Answer: a) 8359  b) 384

Step-by-step explanation:

Given : Significance level : [tex]\alpha=1-0.95=0.05[/tex]

Critical value : [tex]z_{\alpha/2}}=\pm1.96[/tex]

Margin of error : [tex]E=0.01[/tex]

a) If previous estimate of proportion : [tex]p=0.32[/tex]

Formula to calculate the sample size needed for interval estimate of population proportion :-

[tex]n=p(1-p)(\frac{z_{\alpha/2}}{E})^2[/tex]

[tex]\Rightarrow\ n=0.32(1-0.32)(\frac{1.96}{0.01})^2=8359.3216\approx 8359[/tex]

Hence, the required sample size would be 8359 .

b) If she does not use any prior estimate , then the formula to calculate sample size will be :-

[tex]n=0.25\times(\frac{z_{\alpha/2}}{E})^2\\\\\Rightarrow\ n=0.25\times(\frac{1.96}{0.05})^2=384.16\approx384[/tex]

Hence, the required sample size would be 384 .

Use the definition to find an expression for the area under the curve y = x3 from 0 to 1 as a limit. lim n→∞ n i = 1 R (b) The following formula for the sum of the cubes of the first n integers is proved in Appendix E. Use it to evaluate the limit in part (a). 13 + 23 + 33 + + n3 = n(n + 1) 2 2

Answers

The summand (R?) is missing, but we can always come up with another one.

Divide the interval [0, 1] into [tex]n[/tex] subintervals of equal length [tex]\dfrac{1-0}n=\dfrac1n[/tex]:

[tex][0,1]=\left[0,\dfrac1n\right]\cup\left[\dfrac1n,\dfrac2n\right]\cup\cdots\cup\left[1-\dfrac1n,1\right][/tex]

Let's consider a left-endpoint sum, so that we take values of [tex]f(\ell_i)={\ell_i}^3[/tex] where [tex]\ell_i[/tex] is given by the sequence

[tex]\ell_i=\dfrac{i-1}n[/tex]

with [tex]1\le i\le n[/tex]. Then the definite integral is equal to the Riemann sum

[tex]\displaystyle\int_0^1x^3\,\mathrm dx=\lim_{n\to\infty}\sum_{i=1}^n\left(\frac{i-1}n\right)^3\frac{1-0}n[/tex]

[tex]=\displaystyle\lim_{n\to\infty}\frac1{n^4}\sum_{i=1}^n(i-1)^3[/tex]

[tex]=\displaystyle\lim_{n\to\infty}\frac1{n^4}\sum_{i=0}^{n-1}i^3[/tex]

[tex]=\displaystyle\lim_{n\to\infty}\frac{n^2(n-1)^2}{4n^4}=\boxed{\frac14}[/tex]

The limit  expression for the area under the curve y = x³ as n approaches infinity is; ¹/₄

What is the integral limit?

The given definition is area A of the region S that lies under the graph of the continuous function which is the limit of the sum of the areas of approximating rectangles.

The expression for the area under the curve y = x³ from 0 to 1 as a limit is;

[tex]\lim_{n \to \infty} \Sigma^{n} _{i = 1} (\frac{i}{n})^{3} * \frac{1}{n} }[/tex]

From the expression above, when we factor out 1/n⁴, we will get;

[tex]\lim_{n \to \infty} \frac{1}{n^{4} } \Sigma^{n} _{i = 1} \frac{i}{n} }[/tex]

This is further broken down to get;

[tex]\lim_{n \to \infty} \frac{1}{n^{4} } (\frac{n(n + 1)}{2} )^{2} } }[/tex]

This will be simplified to;

[tex]\lim_{n \to \infty} \frac{1}{n^{4} } \frac{(n^{4} + 2n^{3} + n^{2}) }{2}[/tex]

This would be simplified to;

[tex]\lim_{n \to \infty} \frac{1}{4} + \frac{1}{2n} + \frac{1}{4n^{2} }[/tex]

At limit of n approaches ∞, we have;

Limit = ¹/₄

Read more about integral limits at; https://brainly.com/question/14388434

find the integral of ((x^(2)-1))/(x^(2)+3x) using integration by partial fractions

Answers

Answer:

[tex]x+\frac{-1}{3} \ln|x|+\frac{-8}{3}\ln|x+3|+C[/tex]

Step-by-step explanation:

To use partial fractions, I'm going to first do long division because the degree of the top is more than or equal to that of the bottom.

After I have that the degree of the bottom is more than the degree of the top, I will factor my bottom to figure out what kinds of partial fractions I'm going to have.

Let's begin with the long division:

The bottom goes outside.

The top goes inside.

                                      1

                                  -----------------

                    x^2+3x|    x^2          -1

                                  -(x^2+3x)

                              -----------------------------

                                          -3x       -1

We can not going any further since the divisor is more in degree than the left over part.

So we have so for that the integrand given equals:

[tex]\frac{x^2-1}{x^2+3x}=1+\frac{-3x-1}{x^2+3x}[/tex]

The 1 will of course not need partial fraction.

So we know our answer is x +  something   + C

Since the derivative of (x+c)=(1+0)=1.

Let's focus now on:

[tex]\frac{-3x-1}{x^2+3x}[/tex]

The bottom is not too bad too factor because it is binomial quadratic containing terms with a common factor of x:

[tex]x^2+3x=x(x+3)[/tex]

Since both factors our linear and there are two factors, then we will have two partial fractions where the numerators are both constants.

So we are looking to make this true:

[tex]\frac{-3x-1}{x^2+3x}=\frac{A}{x}+\frac{B}{x+3}[/tex]

Some people like to combine the fractions on the left and then regroup the terms and then compare coefficients.

Some people also prefer a method called heaviside method.

So I'm actually going to do this last way and I will explain it as I got.

We are going to clear the fractions by multiplying both sides by [tex]x(x+3)[/tex] giving me:

[tex]-3x-1=A(x+3)+Bx[/tex]

I know x+3 will be 0 when x=-3  so entering in -3 for x gives:

[tex]-3(-3)-1=A(-3+3)+B(-3)[/tex]

[tex]9-1=A(0)-3B[/tex]

[tex]8=-3B[/tex]

Divide both sides by -3:

[tex]\frac{8}{-3}=B[/tex]

[tex]B=\frac{-8}{3}[/tex]/

Now let's find A. If I replace x with 0 then Bx becomes 0 giving me:

[tex]-3(0)-1=A(0+3)+B(0)[/tex]

[tex]-1=A(3)+0[/tex]

[tex]-1=3A[/tex]

Divide both sides by 3:

[tex]\frac{1}{-3}=A[/tex]

[tex]\frac{-1}{3}=A[/tex]

Okay let me also who you other method of just comparing coefficients.

[tex]-3x-1=A(x+3)+Bx[/tex]

Distribute on the right:

[tex]-3x-1=Ax+3A+Bx[/tex]

Regroup terms on right so like terms are together:

[tex]-3x-1=(A+B)x+3A[/tex]

Now if this is to be true then we need:

-3=A+B        and         -1=3A

The second equation can be solved by dividing both sides by 3 giving us:

-3=A+B        and        -1/3=A

Now we are going to plug that second equation into the first:

-3=A+B  with A=-1/3

-3=(-1/3)+B

Add 1/3 on both sides:

-3+(-1/3)=B

-8/3=B

So either way you should get the same A and B if no mistake is made of course.

So this is the integral we are looking at now (I'm going to go ahead and include the 1 from earlier):

[tex]\int (1+\frac{\frac{-1}{3}}{x}+\frac{\frac{-8}{3}}{x+3})dx[/tex]

[tex]x+\frac{-1}{3} \ln|x|+\frac{-8}{3}\ln|x+3|+C[/tex]

Why I did choose natural log for both of those 2 terms' antiderivatives?

Because they are a constant over a linear expression. Luckily both of those linear expressions had a leading coefficient of 1.

Also recall the derivative of ln(x) is (x)'/x=1/x and

the derivative of ln(x+3) is (x+3)'/(x+3)=(1+0)/(x+3)=1/(x+3).

Let's check our answer:

To do that we need to differentiate what we have for the integral and see if we wind up with the integrand.

[tex]\frac{d}{dx}(x+\frac{-1}{3} \ln|x|+\frac{-8}{3}\ln|x+3|+C)[/tex]

[tex]1+\frac{-1}{3} \frac{1}{x}+\frac{-8}{3}\frac{1}{x+3}+0[/tex]

We are going to find a common denominator which would be the least common multiple of the denominators which is x(x+3):

[tex]\frac{x(x+3)+\frac{-1}{3}(x+3)+\frac{-8}{3}(x)}{x(x+3)}[/tex]

Now distribute property:

[tex]\frac{x^2+3x+\frac{-1}{3}x-1+\frac{-8}{3}x}{x^2+3x}[/tex]

Combine like terms:

[tex]\frac{x^2+3x+\frac{-9}{3}x-1}{x^2+3x}[/tex]

[tex]\frac{x^2+3x-3x-1}{x^2+3x}[/tex]

[tex]\frac{x^2-1}{x^2+3x}[/tex]

So that is the same integrand we started with so our answer has been confirmed.


I need the answer to this question.

1) Divide 1197 hours 48 minutes by 53.

Need hours and minutes

Round to the nearest hundredth as necessary.

Answers

1197 hours, 48 minutes

is equal to

1197 + 48/60 hours

Dividing by 53 gives

1197/53 + 48/3180 hours

Since

1197 = 22*53 + 31

we get

22 + 31/53 + 48/3180 hours

22 + (1860 + 48)/3180 hours

22 + 3/5 hours

22 + 36/60 hours

22 hours, 36 minutes

One serving of soybeans contains 14 grams of protein and 8 grams of fat. One serving of rice contains 4 grams of protein and 1/2 gram of fat. Calculate the number of servings of each that need to be combined, in order to end up with precisely 30 grams of protein and 15 grams of fat. How many servings of rice will be needed?

Answers

Answer: 1.8 servings of soybean and 1.2 servings rice will be needed.

Step-by-step explanation:

Let x be the number of soybeans and y be the number of rice.

Then , According to the question , we have

[tex]14x+4y=30\\\Rightarrow\ 7x+2y=15..................................(1)\\\\ 8x+\frac{1}{2}y = 15\\\Rightarrow\ 16x+y=30.............................(2)[/tex]

Multiply 2 on both the sides of equation (2), we get

[tex]32x+2y=60................................(3)[/tex]

Subtract equation (2) from equation (3), we get

[tex]25x=45\\\\\Rightarrow\ x=1.8[/tex]

Put x = 1.8 in equation (2), we get

[tex]16x+y=30\\\\\Rightarrow\ y=30-16x\\=30-16(1.8)=1.2[/tex]

Hence, 1.8 servings of soybean and 1.2 servings rice will be needed.

Which type of validity has become the overriding objective in validity? a. construct validity b. discriminant validity c. predictive validity d. construct validity

Answers

Answer:

Construct validity

Step-by-step explanation:

Construct validity is the most important and outmost validity that is used in scientific methods. Construct validity tells us how an experiment or a test is performed well and how well is the outcome of the experiment, How can the experiments can be measured upto its claims. Construct validity is not concerned about the simple question or the factual question that if an experiment measures an attribute. Construct validity is thus an evaluation of the quality of the experiment.

Answer:

a. construct validity

Step-by-step explanation:

Construct validity refers to whether a particular test actually measures what it claims to be measuring. This is one of the main types of validity evidence. It has become the overriding objective in validity, subsuming all other types of validity evidence. Construct validity answers whether a particular measure behaves in the way that the theory says a measure of that construct should behave.

Simplify the following: 3(-3 + 5x) -1 (4 - 4x)

Answers

3(-3 + 5x) -1 (4 - 4x)

Simplify each term by first using the distributive property with each set of parenthesis:

3*-3 + 3*5x - 1*4 -1* -4x

Now do the multiplications:

-9 + 15x -4 + 4x

Combine like terms

15x +4x - 9 -4

19x - 13

6) Let A = ℤ and R be the relation on A where a R b if and only if a + b is a multiple of 4. Determine whether R is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. For each property, either explain why R has that property or give an example showing why it does not.

Answers

reflexive

NO -  e.g. 1+1=2 which is not a multiple of 4

irreflexive

NO - e.g. 2+2=4 which is multiple of 4

symmetric

YES - If [tex]a+b[/tex] is a multiple of 4, then [tex]b+a[/tex] is all multiple of 4, because addition is commutative.

antysymmetric

NO, because it's symmetric.

transitive

NO - e.g. 1+3=4 , 3+5=8 , 1+5=6 and 6 is not a multiple of 4.

In the diagram, how many pairs of vertical angles are shown? ​

Answers

I see 4 pairs of vertical angles and they are:

7/9

8/10

11/13

12/14

Answer:

4 pairs

Step-by-step explanation:

vertical angles are opposite angles formed by two intersecting lines.

please thank if you learned from this answer.

Which of the formulas below could be a polynomial with all of the following properties: its only zeros are x = -6, -2, 2, it has y-intercept y = 4, and its long-run behavior is y rightarrow - infinity as x plusminus infinity? Select every formula that has all of these properties. A. y = -4/144 (x + 6)^2 (x + 2)(x - 2) B. y = -4/192 (x + 6)(x + 2)^4 (x - 2) C. y = -4x (x + 6)(x + 2)(x - 2) D. y = -4/24 (x + 6)(x + 2)(x - 2) E. y = -4/48 (x + 6) (x + 2)^2 (x - 2) F. y = -4/48 (x + 6)(x + 2)(x - 2)^2 G. y = 4/48 (x + 6)(x + 2) (x - 2)^2

Answers

Answer:

A, B, and E

if I read your functions right.

Step-by-step explanation:

It's zeros are x=-6,-2, and 2.

This means we want the factors (x+6) and (x+2) and (x-2) in the numerator.

It has a y-intercept of 4.  This means we want to get 4 when we plug in 0 for x.

And it's long-run behavior is y approaches - infinity as x approaches either infinity.  This means the degree will be even and the coefficient of the leading term needs to be negative.

So let's see which functions qualify:

A) The degree is 4 because when you do x^2*x*x you get x^4.

The leading coefficient is -4/144 which is negative.

We do have the factors (x+6), (x+2), and (x-2).

What do we get when plug in 0 for x:

[tex]\frac{-4}{144}(0+6)^2(0+2)(0-2)[/tex]

Put into calculator:  4

A works!

B) The degree is 6 because when you do x*x^4*x=x^6.

The leading coefficient is -4/192 which is negative.

We do have factors (x+6), (x+2), and (x-2).

What do we get when we plug in 0 for x:

[tex]\frac{-4}{192}(0+6)(0+2)^4(x-2)[/tex]

Put into calculator: 4

B works!

C) The degree is 4 because when you do x*x*x*x=x^4.

The leading coefficient is -4 which is negative.

Oops! It has a zero at 0 because of that factor of (x) between -4 and (x+6).

So C doesn't work.

D) The degree is 3 because x*x*x=x^3.

We needed an even degree.

D doesn't work.

E) The degree is 4 because x*x^2*x=x^4.

The leading coefficient is -4/48 which is negative.

It does have the factors (x+6), (x+2), and (x-2).

What do we get when we plug in 0 for x:

[tex]\frac{-4}{48}(0+6)(0+2)^2(0-2)[/tex]

Put into calculator: 4

So E does work.

F) The degree is 4 because x*x*x^2=x^4.

The leading coefficient is -4/48.

It does have factors (x+6), (x+2), and (x-2).

What do we get when we plug in 0 for x:

[tex]\frac{-4}{48}(0+6)(0+2)(0-2)^2[/tex]

Put into calculator: -4

So F doesn't work.

G. I'm not going to go any further. The leading coefficient is 4/48 and that is not negative.

So G doesn't work.

Answer:

D. [tex]y=-\frac{4}{24} (x+6)(x+2)(x-2)[/tex]

Step-by-step explanation:

Notice that we have 3 zeros, which means there are only 3 roots, which are -6, -2 and 2, this indicates that our expression must be cubic with the binomials (x+6), (x+2) and (x-2).

We this analysis, possible choices are C and D.

Now, according to the problem, it has y-intercept at y = 4, so let's evaluate each expression for x = 0.

C.

[tex]y=-4x(x+6)(x+2)(x-2)\\y=-4(0)(0+6)(0+2)(0-2)\\y=0[/tex]

D.

[tex]y=-\frac{4}{24} (x+6)(x+2)(x-2)\\y=-\frac{4}{24}(0+6)(0+2)(0-2)\\y=-\frac{4}{24}(-24)\\ y=4[/tex]

Therefore, choice D is the right expression because it has all given characteristics.

Consider a drug testing company that provides a test for marijuana usage. Among 300 tested​ subjects, results from 30 subjects were wrong​ (either a false positive or a false​ negative). Use a 0.01 significance level to test the claim that less than 10 percent of the test results are wrong.

Answers

Answer:

static value come under the rejection value because it is less than critical value

Step-by-step explanation:

Given data

test = 300

wrong test = 30

significance level = 0.01

claim for wrong  = 10 %

to find out

test the claim that less than 10 percent of the test results are wrong

solution

we take test claim null hypo thesis  = 10 % = 0.10

and and alternate hypo thesis < 10% i.e. <0.10

and we know proportion of sample is = result/ test

sample proportion = 30/300 = 0.10

so the statistics of this test will  be = sample proportion - hypothesis / [tex]\sqrt{hyro(1-hypo)/test}[/tex]

so statistics of this test  = 0.10 - 0.10 / [tex]\sqrt{0.10(1-0.10)/300}[/tex]

so statistics of this test  =  0

and α = tail area critical value for  Z (0.01)  = 2.33

so here static value come under the rejection value because it is less than critical value

Final answer:

To test the claim that less than 10 percent of the test results are wrong, we'll use a hypothesis test with a 0.01 significance level. The calculated test statistic z will determine whether to reject or fail to reject the null hypothesis.

Explanation:

To test the claim that less than 10 percent of the test results are wrong, we'll use a hypothesis test with a 0.01 significance level. Let p represent the proportion of wrong test results. The null hypothesis is that p is greater than or equal to 0.10, and the alternative hypothesis is that p is less than 0.10.

We'll calculate the test statistic z = (x - np) / sqrt(np(1-p)), where x is the number of wrong test results and n is the total number of tested subjects. Using the given information, x = 30 and n = 300.

Using a z-table or calculator, we can find the z-score corresponding to a significance level of 0.01. If the calculated test statistic z is less than the z-score from the table, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

Learn more about Hypothesis testing here:

https://brainly.com/question/34171008

#SPJ11

A realtor sold a home for ​$341,100 The commission was 4​% of the sale​ price; however, the realtor receives only 60% of the commission while 40% of the commission remains with his broker. Find the amount of commission received by the realtor.

Answers

Answer:

The relator recived $8,186.4

Step-by-step explanation:

What you have to do is find the 60% of the commission. Commission is 4% of $341,100 (100%)

First do a cross multiplication to find 4% of $341,100

100% ___ $341,100

4%______x:

[tex]x=(4*341,100)/100=13,644[/tex]

So, the 4% of $341,100 is $13,466

Now you have to find the 60% of $13,466

100% ___ $13,466

60%______x:

[tex]x=(60*13,466)/100=8,186.4[/tex]

The answer is: $8,186.4

Other Questions
the following table shows the distance from school as a function timetime in minutes. distance in meters x. f(x)0 363 326 289 24 12 20find and intercept the meaning of the x intercept in this scenario36,0 the distance away from the school27,0 the time it takes to reach the school36,0 the time it takes to reach the school27,0 the distance away from the school Which products result in a difference of squares? Check all that apply.(x y)(y x)(6 y)(6 y)(3 + xz)(3 + xz)(y2 xy)(y2 + xy)(25x 7y)(7y + 25x)(64y2 + x2)(x2 + 64y2) Air is entering a 4200-kW turbine that is operating at its steady state. The mass flow rate is 20 kg/s at 807 C, 5 bar and a velocity of 100 m/s. This air then expands adiabatically, through the turbine and exits at a velocity of 125 m/s. Afterwards the air then enters a diffuser where it decelerates isentropically to a velocity of 15 m/s and a pressure of 1 bar. Using the ideal gas model, determine, (a) pressure and temperature of the air at the turbine exit, in units of bar and Kelvin. (b) Entropy production rate in the turbine in units of kW/k, and (c) draw the process on a T-s Diagram. Find the density in lbs/cbf, round to nearest tenth...... please urgent request i have 30 minutes left180 pounds; 15 x 15 x 20 __________________________ lbs/cbf150 cf; 90 kg = _______________________________ lbs/cbf Given the variables fullAdmissionPrice and discountAmount (already declared and assigned values), write an expression corresponding to the price of a discount admission. (The variable discountAmount holds the actual amount discounted, not a percentage.) What is the missing side length in this right triangle? A. 15 B. 21 C. 225 D. 441 9,12? 47. When must a driver show proof of financial responsibility?A. When requested by a police officeB. To register a vehicle or renew its registrationC. To obtain a drivers education certificateD. Both A and B elect all the correct answers.Based on this synopsis of a novel, what are the two most likely purposes for writing it?The novel is a fictional account of Neil Armstrongs flight to the moon.A: to persuadeB: to entertainC: to recordD: to informE: to argue A simple random sample of 10 households, the number of TV's that each household had is as follows: 2 , 0 , 2 , 2 , 2 , 2 , 1 , 5 , 3 , 2 Assume that it is reasonable to believe that the population is approximately normal and the population standard deviation is 0.55 . What is the lower bound of the 95% confidence interval for the mean number of TV's? should students be able to criticize their school in the newspaper The ____ algorithm tries to extend a partial solution toward completionA.backtrackingB.recursiveC.backordering In a pet shop, there are 3 hamsters for every 2 guinea pigs, and there are 2 giant cloud rats for every 3 guinea pigs. If n is the total number of hamsters, guinea pigs, and giant cloud rats, and n>0, then what is the smallest possible value of n? The carbon-magnesium bond in a Grignard reagent is covalent and highly-polarized such that the carbon is negatively charged. Which of the following statements can be used to describe the Grignard carbanion? Select all that apply.-Grignard reagents are weak nucleophiles-Grignard reagents are strong nucleophiles-Grignard reagents are strong bases-Grignard reagents are weak bases The Retread Tire Company recaps tires. The fixed annual cost of the recapping operation is $65,000. The variable cost of recapping a tire is $7.5. The company charges$25 to recap a tire. a. For an annual volume of 15, 000 tire, determine the total cost, total revenue, and profit. b. Determine the annual break-even volume for the Retread Tire Company operation. What is the distance between the points (4,3) and (1,-1) on the coordinate plane? Select the correct answer.Which sentence from The Tell-Tale Heart uses the correct format for a parenthetical citation?A. If still you think me mad, you will think so no longer when I describe the wise precautions I took for the concealment of the body. (4 Poe)B. If still you think me mad, you will think so no longer when I describe the wise precautions I took for the concealment of the body. (Poe The Tell-Tale Heart)C. If still you think me mad, you will think so no longer when I describe the wise precautions I took for the concealment of the body. (The Tell-Tale Heart Poe)D. If still you think me mad, you will think so no longer when I describe the wise precautions I took for the concealment of the body. (Poe 4) Which of the following statements is CORRECT with respect to variable cost per unit? It will decrease as production decreases It will remain the same as production levels change It will increase as production decreases It will decrease as production increases Write a program that will prompt the user to input ten student scores to an array. The score value is between 0 100. The program will display the smallest and greatest of those values. It also displays the average score. HELP ME WITH THIS MATH QUESTION An object of mass 5 kg and velocity 10 m/s has a linear momentum of: (A) 5 kg-m/s, (B) 10 kg-m/s, (C) 50 kg-m/s, (D) 250 kg-m/s^2, (E) none of the above.