Water flows steadily through a fire hose and nozzle. The hose is 75 mm inside diameter, and the nozzle tip is 25 mm inside diameter; water gage pressure in the hose is 510 kPa, and the stream leaving the nozzle is uniform. The exit speed 32 m/s and pressure is atmospheric. Determine the force transmitted by the coupling between the nozzle and hose. (25 points)

Answers

Answer 1

Answer:

R = 1804 N

Explanation:

Given:-

- The density of water, ρ = 997 kg/m^3

- The inside diameter of the hose, dh = 75 mm

- The gauge pressure of water in the hose, P1 = 510 KPa

- The exit speed of the water, V2 = 32 m/s

- The inside diameter of the nozzle tip, dn = 25 mm

- The atmospheric pressure (gauge), P2 = 0 KPa ... P = 1 atm (Absolute).

Find:-

Determine the force transmitted by the coupling between the nozzle and hose.

Solution:-

- We will first develop a control surface at the hose-nozzle interface.

- Assuming steady and one dimensional flow - (x-direction).

- Since there are no fictitious unbalanced forces acting on the fluid flow due to roughness of hose any any losses of energy from the fluid are negligible.

- The use of conservation of momentum of fluid flow is valid for an isolated system, where the flow of fluid into the control volume is denoted by (-) and the flow of fluid going out of the control volume is denoted by (+):

- The principle of conservation of momentum, the pair of equal force (Newton's third law) act on the control volume at (nozzle-hose) interface:

                  R = ρ*Q*(V2 - V1) + (P2*A2 - P1*A1)

Where,        Q: Flow rate

                   V1: The velocity of fluid in hose

                   A1: Cross sectional area of the hose

                   A2: Cross sectional area of the nozzle exit

- We see that the reaction force (R) that acts on nozzle-hose interface is due to changes in dynamic and hydrostatic pressures.

- Compute the required quantities Q, A1 and A2 and V1 using the given data:

- The flow rate Q for any flow in the hose can be given, where the cross sectional area of hose (A1)is:  

              [tex]A1 =\pi\frac{d_h^2}{4} = \pi\frac{0.075^2}{4} \\\\A1 = 0.00441 m^2\\\\\\[/tex]

- The cross sectional area of the nozzle tip with diameter dn = 25 mm is:

                [tex]A2 =\pi\frac{d_n^2}{4} = \pi\frac{0.025^2}{4} \\\\A2 = 0.00049 m^2\\\\\\[/tex]

- The flow rate (Q) can now be calculated:

                 [tex]Q = A2*V2\\\\Q = (0.00049)*(32)\\\\Q = 0.01570 \frac{m^3}{s}[/tex]  

- Since, the density of the water does not vary along the direction of flow, the flow rate (Q) remains constant throughout. So from continuity equation we have:

                 [tex]Q = A2*V2 = A1*V1\\\\V1 = \frac{Q}{A1} = \frac{0.0157}{0.00441} \\\\V1 = 3.56189 \frac{m}{s}[/tex]  

- Now use the calculated quantities and compute the pair of reaction force at the nozzle-hose interface:

                 R = ρ*Q*(V2 - V1) + (P2*A2 - P1*A1)

                 R = (997)*(0.01570)*(32-3.56189) + (0 - 510*0.00441)*1000

                 R = 445.13889 - 2,249.1

                R = - 1803.961 ≈ -1,804 N

- Here the negative sign denotes the direction of in which the force (R) is exerted. Since, (-) denotes into the control volume it acts opposite to the flow of water.

Answer 2

The coupling between the nozzle and hose is -1.81N

This question relates to flow rate of a liquid

Data given:

The density of water = 997kg/m^3

The inside diameter of the hose = 75mm = 0.0075m

The gauge pressure of water in the hose = 510kPa

The exit speed of the water = 32m/s

The inside diameter of the nozzle tip = 25mm = 0.0025m

The atmospheric pressure = 0kPa or 1atm

Let's calculate the inlet velocity

[tex]v_1=v_2=A_2/A_1\\v_1=V_2(\frac{d_2}{d_1})^2\\v_1=32(\frac{25}{75})^2\\v_1=3.50m/s[/tex]

Calculating the force transmitted by coupling between the nozzle and hose

[tex]R_x+p_1gA_1=v_1[-|pv_1A_1|]+v_2[|pv_2A_2|]\\[/tex]

μ[tex]_1[/tex]=[tex]v_1[/tex] and μ[tex]_2[/tex] =[tex]v_2[/tex]

[tex]R_x=-p_1gA_1-v_1pv_1A_1+v_2pv_2A_2\\R_x=-p_1gA+pv_2A_2(v_2-v_1)\\R_x=-510*10^3N/m^3*\frac{\pi }{4}(0.075m)^2+997kg/m^3*32m/s*\frac{\pi }{4} (0.025m)^2(32-3.50)=-1805=-1.81kN[/tex]

The force between the nozzle and hose is -1.81

Learn more about flow rate;

https://brainly.com/question/17151453


Related Questions

The brakes on a vehicle work OK for a while, then the vehicle slows because the brakes self- applied. Technician A says that an overfilled master cylinder could be the cause. Technician B says that a blocked vent port (compensating port) could be the cause. Which technician is correct?


A. Technician A only

B. Technician B only

C. Both technician A and B

D/ Neither technician A nor B

Answers

Answer:

C. Both technician A and B

Explanation:

If the master cylinder is overfilled it will not allow enough room for the brake fluid to expand due to heat expansion. This blocks the vent port.  If a vent port is not open, brake fluid pressure will increase as brakes heat up.  This will cause the brakes to self apply, cause more heat in the brake fluid and the vehicle will slow down.

There, we can conclude that Both technician A and B are correct.

Answer:

C. Both technician A and B

Explanation:

The event that made both cylinders to be over filled especially the master cylinder and the blocking of the vent port, this will cause the vehicle brake to apply itself after just a little motion of the vehicle.

Therefore both technicians are correct from the information given above.

Hence, we can boldly say the correct answer is C. ie Both technician A and B

The y and z keys swapping position is messing with your touch typing. You decide to write out your email as if the keys were in the correct position and then use Python to swap all ys and zs. Your task here is to write a function called fix_yz. This function takes a single argument which will be a string. Your function needs to return this string with all of the ys and zs swapped, and all of the Ys and Zs swapped. Here are some example calls to your function:

s = fix_yz('What did zou saz?')print(s)What did you say?s = fix_yz('Zour tip about the yoo was a great one!')print(s)Your tip about the zoo was a great one!s = fix_yz('We onlz have one week left')print(s)We only have one week left :(HintThe auto-marker is expecting you to submit only your fix_yz function definition. You should not include any calls to your function.

Answers

Answer:

# the function fix_yz is defined

# it takes a string as parameter

def fix_yz(word):

   # new_word is to hold the new corrected string

   new_word = ""

   # loop through the string

   # and check for any instance of y or z.

   # if any instance is found, it is replaced accordingly

   for each_letter in word:

       if each_letter == 'z':

           new_word += 'y'

       elif each_letter == 'Z':

           new_word += 'Y'    

       elif each_letter == 'y':

           new_word += 'z'

       elif each_letter == 'Y':

           new_word += 'Z'        

       else:

           new_word += each_letter

   # the value of new string is returned

   return new_word        

Explanation:

The function is written in Python 3 and it is well commented. An image is attached showing the output of the given example.

The function take a string as input. It then loop through the string and check for any instance of 'y' or 'z'; if any instance is found it is swapped accordingly and then append to the new_word.

The value of bew_word is returned after the loop.

(Using Python)Part 2aNumerology is the "study of the purported mystical or special relationship between a number and observed or perceived events." It has been used throughout human history as a way to attach meaning to a name, object or event using mathematics. It is considered a "pseudoscience" by modern scientists since it has no basis in observable phenomena. With that said, it makes a great programming challenge so we're going to go with it! :)What you want to do for this project is to ask the user to type in their name. Next, you will need to use a technique called "theosophical reduction" to convert their name into a number. With this technique we assign each letter of the alphabet its own number. For example, the letter "a" is equal to the number 1. "b" = 2, "c" = 3, "z" = 26, etc. You should ignore non-alphabetic characters (i.e. numbers, spaces and special characters)Once you've gotten all of the letters converted into numbers you can add them up into one single number. This is the "numerology number" for the name that the user entered.So for the name "craig" the numerology number would be:c = 3r = 18a = 1i = 9g = 73 + 18 + 1 + 9 + 7 = 38Here's are a few sample runnings of this program:Name: craigYour 'cleaned up' name is: craigReduction: 38Name: craig kappYour 'cleaned up' name is: craigkappReduction: 82Name: rumple stil skinYour 'cleaned up' name is: rumplestilskinReduction: 198Name: !rumple!stil!skinYour 'cleaned up' name is: rumplestilskinReduction: 198Name: pikachu!pikapika!Your 'cleaned up' name is: pikachupikapikaReduction: 143Name: PIKACHUpikapikaYour 'cleaned up' name is: pikachupikapikaReduction: 143Some hints:Convert the user's name to all uppercase or all lowercase before you do anything elseRemove any spaces, numbers or special characters from the name to ensure that you are only working with the letters A-ZThe ord() function may be userful to convert each character into an ASCII index

Answers

Answer:

See explaination for python programming code

Explanation:

Python programming code below

import re

s = "abc" # enter string here

#s = "hello world! HELLOW INDIA how are you? 01234"

# Short version

print filter(lambda c: c.isalpha(), s)

# Faster version for long ASCII strings:

id_tab = "".join(map(chr, xrange(256)))

tostrip = "".join(c for c in id_tab if c.isalpha())

print s.translate(id_tab, tostrip)

# Using regular expressions

s1 = re.sub("[^A-Za-z]", "", s)

s2 = s1.lower()

print s2

import string

values = dict()

for index, letter in enumerate(string.ascii_lowercase):

values[letter] = index + 1

sum = 0

for ch2 in s2:

for ch1 in values:

if(ch2 == ch1):

sum = sum + values[ch1]

print sum

Determine the nature of the following cycle (reversible, irreversible, or impossible): a refrigeration cycle draws heat from a cold reservoir at 250 K and rejects 950 KJ to a hot reservoir at 300 K while receiving 70 kJ of work to operate. Draw a schematic of the cycle clearly indicating the hot and cold reservoir and the direction of heat and work transfers. (10 pts.)

Answers

Answer:

Impossible.

Explanation:

The ideal Coefficient of Performance is:

[tex]COP_{i} = \frac{250\,K}{300\,K-250\,K}[/tex]

[tex]COP_{i} = 5[/tex]

The real Coefficient of Performance is:

[tex]COP_{r} = \frac{950\,kJ-70\,kJ}{70\,kJ}[/tex]

[tex]COP_{r} = 12.571[/tex]

Which leads to an absurds, since the real Coefficient of Performance must be equal to or lesser than ideal Coefficient of Performance. Then, the cycle is impossible, since it violates the Second Law of Thermodynamics.

In your new role at Wayne Industries, you have been given the freedom to propose and develop your own project ideas. You have an idea for a frictionless piston-cylinder assembly. Your design requires the expansion of 0.25 m3 of air at 3.3 MPa and 280 oC to 180 kPa in a slow, isothermal process. In order to be approved for further development, you need to submit calculations for the values of the heat transferred in the process.

Answers

Answer:

461.65 KJ/Kg

Explanation:

In this question, we are asked to calculate the values of heat transferred in the process.

Please check attachment for complete solution and step by step explanation

A small vehicle is powered by a pulsejet. The available net thrust is 6000 N and the traveling speed is 200 km/hr. The gases leave the engine with an average velocity (Ve) of 360 m/s Assume pressure equilibrium exists at the outlet plane and the fuel to air ratio is 0.06.

a. Compute the mass flow rate required
b. Calculate the inlet area (assume To is 16 °C and Po is one atmosphere)
C. Calculate the thrust power
d. Calculate the propulsive efficiency

Answers

Answer:

a) The mass flow rate is 19.71 kg/s

b) The inlet area is 0.41 m²

c) The thrust power is 333.31 kW

d) The propulsive efficiency is 26.7%

Explanation:

Please look at the solution in the attached Word file.

A conical enlargement in a vertical pipeline is 5 ft long and enlarges the pipe diameter from 12 in. to 24 in. diameter. Calculate the magnitude and direction of the vertical force on this enlargement when 10 f t3/s of water flow upward through the line and the pressure at the smaller end of the enlargement is 30 psi.

Answers

Answer:

F_y = 151319.01N = 15.132 KN

Explanation:

From the linear momentum equation theory, since flow is steady, the y components would be;

-V1•ρ1•V1•A1 + V2•ρ2•V2•A2 = P1•A1 - P2•A2 - F_y

We are given;

Length; L = 5ft = 1.52.

Initial diameter;d1 = 12in = 0.3m

Exit diameter; d2 = 24 in = 0.6m

Volume flow rate of water; Q2 = 10 ft³/s = 0.28 m³/s

Initial pressure;p1 = 30 psi = 206843 pa

Thus,

initial Area;A1 = π•d1²/4 = π•0.3²/4 = 0.07 m²

Exit area;A2 = π•d2²/4 = π•0.6²/4 = 0.28m²

Now, we know that volume flow rate of water is given by; Q = A•V

Thus,

At exit, Q2 = A2•V2

So, 0.28 = 0.28•V2

So,V2 = 1 m/s

When flow is incompressible, we often say that ;

Initial mass flow rate = exit mass flow rate.

Thus,

ρ1 = ρ2 = 1000 kg/m³

Density of water is 1000 kg/m³

And A1•V1 = A2•V2

So, V1 = A2•V2/A1

So, V1 = 0.28 x 1/0.07

V1 = 4 m/s

So, from initial equation of y components;

-V1•ρ1•V1•A1 + V2•ρ2•V2•A2 = P1•A1 - P2•A2 - F_y

Where F_y is vertical force of enlargement pressure and P2 = 0

Thus, making F_y the subject;

F_y = P1•A1 + V1•ρ1•V1•A1 - V2•ρ2•V2•A2

Plugging in the relevant values to get;

F_y = (206843 x 0.07) + (1² x 1000 x 0.07) - (4² x 1000 x 0.28)

F_y = 151319.01N = 15.132 KN

2.) For a 20‐mm‐diameter tube with either water or unused engine oil flowing through it, find: a.)The mean velocity, hydrodynamic entry length, and thermal entry length for each of the fluids with a temperature of 300 K if the mass flow rate is 0.01 kg/s. b.)The mass flow rate, hydrodynamic entry length, and thermal entry length for each fluid at 400 K and a mean velocity of 0.02 m/s.

Answers

Answer:

a.) The mean velocity = 0.0318 m/s

    The  hydrodynamic entry length = 0.636 m

     The  thermal entry length = 0.004 m

(b) The mass flow rate = 0.0051 kg/s

    The hydrodynamic entry length = 0.028 m

     The  thermal entry length = 1.419 m

Explanation:

See the attached files for the calculation.

Two concentric helical compression springs made of steel and having the same length when loaded and when unloaded are used to support a static load of 3 kN. The outer spring has D = 50 mm, d = 9 mm, and N = 5; the inner spring D = 30 mm, d = 5 mm, and N = 10. Determine the deflection and the maximum stress in each spring.

Answers

Answer:

see explaination for all the answers and full working.

Explanation:

deflection=8P*DN/Gd^4

G(for steel)=70Gpa=70*10^9N/m^2=70KN/mm^2

for outer spring,

deflection=8*3*50^3*5/(70*9^4)=32.66mm

for inner spring

deflection=8*3*30^3*10/(70*5^4)=148.11mm

max stress=k*8*P*C/(3.14*d^2)

for outer spring

c=50/9=5.55

k=(4c-1/4c-4)+.615/c=1.2768

max stress=1.2768*8*3*5.55/(3.14*9^2=.66KN.mm^2

for inner spring

c=6

k=1.2525

max stress=2.29KN/mm^2

Explanation:

Data

Load = 3kn = 3000N

Modulus of rigidity = 80Gpa= 80000mpa

Outer spring diameter = 50mm

d. = 9mm

N = 5

Inner spring diameter = 30mm

d = 5mm

N = 10

Fo = outer force

Fi = inner force

Ki = stiffness of inner spring

Ko = stiffness of outer spring

Ks = stress factor

Determine the angle φ at which the applied force P should act on the pipe so that the magnitude of P is as small as possible for pulling the pipe up the incline. What is the corresponding value of P? The pipe weighs W and the slope α is known. Express the answer in terms of the angle of static friction, θ = tan-1 μs.

Answers

Answer:

∅=Ф  

P = W sin([tex]\alpha[/tex] + Ф)

Explanation:

First, we'll isolate and draw the free-body diagram of the pipe  

Note that since the pipe is moving, the friction force is equal to the product of normal reaction force and the kinetic coefficient of friction  

F = F_max = u_kN  

Also note that the weight makes with the y-axis angle a because the x-axis makes the same angle with the horizontal  

The expression for angle of friction is:

B = tan-1 (u_k)

From here we can express the coefficient of friction as:

u_k = tan(Ф)

Replace u_s by tan(Ф) in the expression for the friction force

F = N tan(Ф)  

diagram is attached

By equating sum of forces in y-direction to zero, we can write the expression for the normal reaction force  

ΣF_y = 0

N — W cos[tex]\alpha[/tex]- P sin Ф= 0

From here we can express N as:

N = W cos[tex]\alpha[/tex] -— P sin Ф

Replace N by the expression above in the expression for friction force F(written in step 1)  

F = (W cos[tex]\alpha[/tex]  — P sin  Ф) tan( Ф)                                 (1)  

Now, we'll equate sum of forces in x-direction to zero  

ΣF_x = 0

-F - W cos[tex]\alpha[/tex]  + P sin  Ф =0

Replace F by expression (1)  

— (W cos[tex]\alpha[/tex]  — P sin Ф) tan(Ф) — W sin[tex]\alpha[/tex]+pcosФ=0

-W cos [tex]\alpha[/tex] tan(Ф) + P sin Ф tan(Ф) — W sin[tex]\alpha[/tex] +pcosФ=0

P(sin Ф tan(Ф) + cosФ) — W(cos [tex]\alpha[/tex] tan(Ф) + sin [tex]\alpha[/tex])

From here we can express the force P needed to pull the pipe as:

P = W(cos[tex]\alpha[/tex]  tan(Ф) + sin[tex]\alpha[/tex])/sinФ*tansФ+cosФ                    (2)

All we have to do now is to simplify the expression (2). We'll start by sin replacing tan(Ф) with sinФ/cosФ

P = W(cos *sinФ/cosФ + sin)/sinФ*sinФ/cosФ+cosФ *cosФ/cosФ

We can multiply the right side of equation by cosФ/cosФ

P = W(cos[tex]\alpha[/tex] *sinФ + sin[tex]\alpha[/tex]cosФ)/sin∅*sinФ+cos∅cosФ *cosФ/cosФ

Finally, we'll replace (cos[tex]\alpha[/tex] *sinФ + sin[tex]\alpha[/tex]cosФ) by sin([tex]\alpha[/tex] + Ф) and (sin∅ sinФ + cos∅ cos Ф) by cos( ∅— Ф)

P wsin([tex]\alpha[/tex] + Ф) /cos(∅ — Ф)                                              (3)  

Since the first derivative of the function is actually tangens of the angle which tangent makes with the x-axis, we'll find it by equating the first derivative by zero(this means that the tangent of the function is horizontal, i.e. that the function is at its maximum or minimum)  

Note that the variable in the expression (3) is 0, since both B and a are known  

dP/d∅ =d/d∅ [sin(Ф+)/cos(∅-Ф) ]

Note that sin(Ф+[tex]\alpha[/tex]) is constant since both Ф and a are known  

dP/d∅ = sin(Ф+[tex]\alpha[/tex]) d/dФ [1/cos(∅-Ф) ]  

Next, we'll apply the reciprocal rule  

= -dP/d∅[cos(∅-Ф)]/cos^2(∅-Ф)*sin(Ф+[tex]\alpha[/tex])

Next, we'll apply the differentiation rule  

=(-sin(∅-Ф))*d/d∅[∅-Ф]*sin(Ф+[tex]\alpha[/tex])/cos^2(∅-Ф)

=(d/d∅[∅]+d/d∅[-∅])*sin(Ф+[tex]\alpha[/tex])sin(∅-Ф)/cos^2(∅-Ф)

dP/d∅ =sin(Ф+[tex]\alpha[/tex])*sin(∅-Ф)/cos^2(∅-Ф)                       (4)

Next step will be to equate the expression (4) to zero, to determine the value of # when the function is minimum  

sin(Ф+[tex]\alpha[/tex])*sin(∅-Ф)/cos^2(∅-Ф) =0  

Note that sin(Ф+[tex]\alpha[/tex]) is constant, so in order for the equation above to be correct, sin(∅-Ф) needs to be equal to zero  

sin(∅-Ф)  = 0

Since sin 0° = sin 180° = 0, two possible solutions for ∅ are:

∅-Ф=0                           Ф=∅  

or  

∅-Ф = 180°                    ∅ = 180° +  Ф

Since the function for P is only good over the range 0 <  ∅ < 90°, since when > 90° the friction force will change its direction, we can conclude that the minimum force P is required to move the pipe at angle:  

∅=Ф  

Finally, replace # by 8 in expression (3) to determine the minimum force P required to move the pipe

P = W sin([tex]\alpha[/tex] + Ф ) / cos ∅ —  ∅)  

P = W sin([tex]\alpha[/tex] + Ф)

The entire population of a given community is examined, and all who are judged to be free from bowel cancer are questioned extensively about their diets. These people then are followed for several years to see whether or not their eating habits will predict their risk of developing bowel cancer.

a. Cross-sectional study
b. Case-control study
c. Prospective cohort study
d. Historical prospective cohort study
e. Clinical trial
f. Community trial

Answers

Answer:

type of study design is Prospective cohort study

Explanation:

This study follows overtime in a group of similar people who differ from some of the factors in the study to determine how factors may affect the outcome rate. Tests may vary depending on the hypothesis given by Cretin patients who are cigarette patients, who are most likely to be smokers, then most likely to be over 20 years of age, with a high rate of lung cancer. The effective cause of the disease is determined by the method of screening of the individuals below.

You are provided the following information about a municipal wastewater treatment plant. This plant uses the traditional activated-sludge process.

Assume the microorganisms are 55 percent efficient at converting food to biomass, the organisms have a first-order death rate constant of 0.05/day, and the microbes reach half of their maximum growth rate when the BOD5 concentration is 10 mg/L. There are 150,000 people in the community (their wastewater production is 225 L/day-capita, 0.1 kg BOD5/capita-day). The effluent standard is BOD5 = 20 mg/L and TSS = 20 mg/L.

Suspended solids were measured as 4,300 mg/L in a wastewater sample obtained from the biological reactor, 15,000 mg/L in the secondary sludge, 200 mg/L in the plant influent, and 100 mg/L in the primary clarifier effluent. SRT is equal to 4 days.

(a) What is the design volume of the aeration basin (m3)?

(b) What is the plant

Answers

Answer:

Explanation:

Attached is the solution

Neglecting the presence of friction, air drag, and other inefficiencies, how much gasoline is consumed when a 1300 kg automobile accelerates from rest to 80 km/h. Assume the density and enthalpy of gasoline are 680 kg/m3 and 45 MJ/kg respectively. Express your answer in the units of mL. Show all work and use SI units for full credit. Box your final answer(s)

Answers

Answer:

Explanation:

Given that, .

Mass of car is

M = 1300kg

Velocity of car

V = 80km/h = 80 × 1000/3600

V = 22.22m/s

Calculate the kinetic energy of the vehicle as follows:

K.E = ½ MV²

K.E = ½ × 1300 × 22.22²

K.E = 320,987.65 J

Given that,

Enthalpy is 45MJ / kg

h = 45MJ / kg

Then, enthalpy is given as.

Enthalpy = Energy / mass

h = E / m

45 × 10^6 = 320,987.65 / m

m = 320,987.65 / 45 × 10^6

m = 7.133 × 10^-3 kg

m = 7.133 mg

Also, given that, density is 680kg/m³

Density is given as

Density = mass / Volume

ρ = m / v

Then, v = m / ρ

v = 7.133 × 10^-3 / 680

v = 1.049 × 10^-5 m³

We know that

1mL = 10^-6 m³

Therefore,

v = 1.049 × 10^-5 m³ × 1mL / 10^-6m³

v = 10.49 mL

A powerplant is emitting 80 g/s NO and has an effective stack height of 100 m. The windspeed is measured to be 4 m/s at a height of 10 m. It is a clear summer day and the sun is located directly overhead. Find: a. Ground-level NO concentration 2 km directly downwind of the powerplant. b. Maximum NO concentration at the ground-level. c. Ground-level NO concentration 2 km downwind and 0.1 km off the downwind axis.

Answers

Answer:

Explanation:

The step by step solution is in the attached file.

Five hundred gallons of 89-octane gasoline is obtained by mixing 87-octane gasoline with 92-octane gasoline. (a) Write a system of equations in which one equation represents the total amount of final mixture required and the other represents the amounts of 87- and 92-octane gasoline in the final mixture. Let x and y represent the numbers of gallons of 87- and 92-octane gasoline, respectively. (b) Use a graphing utility to graph the two equations in part (a) in the same viewing window. As the amount of 87-octane gasoline increases, how does the amount of 92-octane gasoline change? (c) How much of each type of gasoline is required to obtain the 500 gallons of 89-octane gasoline?

Answers

Explanation:

a) The total volume equals the sum of the volumes.

500 = x + y

The total octane amount equals the sum of the octane amounts.

89(500) = 87x + 92y

44500 = 87x + 92y

b) desmos.com/calculator/ekegkzllqx

As x increases, y decreases.

c) Use substitution or elimination to solve the system of equations.

44500 = 87x + 92(500−x)

44500 = 87x + 46000 − 92x

5x = 1500

x = 300

y = 200

The required volumes are 300 gallons of 87 gasoline and 200 gallons of 92 gasoline.

- if `check_1` and `check_2` variables are both True, it should set the value of a variable `outcome` to the string 'BOTH' - elif `check_1` is True and `check_2` is False, it should set the value of a variable `outcome` to the string 'ONE' - elif `check_1` is False and `check_2` is True, it should set the value of a variable `outcome` to the string 'TWO' - else (meaning both must be False), it should set the value of a variable `outcome` to the string 'NEITHER'

Answers

Answer:

See Explaination

Explanation:

if(check1 and check2):

outcome = "BOTH"

elif(check1):

outcome = "ONE"

elif(check2):

outcome = "TWO"

else:

outcome = "NEITHER"

Ethanol is produced in a one-liter batch fermenter by Saccharomyces cerevisiae (yeast). To begin the batch process, glucose and ammonia are added to the reactor, which has been inoculated by the yeast. The reaction produces glycerol and cell mass, in addition to ethanol, carbon dioxide, and water according to the (unbalanced) reaction below. Note that that the mass ratio of glycerol produced to glucose consumed is 0.2556. Also note that the mass ratio of H.O produced to NH, consumed is 1.058 Glucose + Ammonia → Glycerol + Ethanol + Yeast Cell Mass + Carbon Dioxide + Water a CH (8) + b NH(g)}p CH 0 (1) + (CHO) +ỊCH K04 Nụ (8) + $ 0 g) + t H (1) Balance the equation and fill out the table below. (1 point cach, 6 total) a- 1 b = 115 g of NH, are added to the reactor. At the end of the batch, 640 g of ethanol has been produced. How much glucose was added (assume complete conversion of the limiting reactant). mlar B 16 points) BONUS QUESTION USING CHAPTER 4 CONCEPTS: The standard heat of combustion (AHC) for the yeast is-22.1 kJ/mol. In order to maintain a constant temperature, how much heat must be added or removed from the reactor? Both the sign and magnitude of your answer will be graded J 3 points)

Answers

Answer:

Check the explanation

Explanation:

The process of Alcoholic fermentation involves the converting a single mole of glucose into two moles of carbon dioxide and two moles of ethanol, and in the process producing two moles of ATP. The total chemical formula for alcoholic fermentation is: C6H12O6 → 2 C2H5OH + 2 CO. Sucrose is a dimer of fructose and glucose molecules.

Kindly check the attached image below to see the full step by step explanation to the question above.

The Atbash Cipher encrypts messages by reversing lowercase letters, so ‘a’ becomes ‘z’, ‘b’ becomes ‘y’, ‘c’ becomes ‘x’, etc... Also, any space or punctuation mark gets repeated. For example, hello human! encrypts to svool sfnzm!! Encrypt msg and save the answer to a variable called encrypted (you don’t have to display anything). Note: msg will only have lowercase letters, punctuation and spaces. msg = input('Enter secret message: ', 's');

Answers

Answer:

See Explanation Below

Explanation:

// Program is written in C++ Programming Language

// Comments are used for explanatory purpose

// Program starts here

#include<iostream>

#include <bits/stdc++.h>

using namespace std;

int main()

{

// Declare 2 string variables to store the secret message and to store the encrypted text

string message, result;

// Prompt user to enter a secret message

cout<<"Enter a secret message: ";

cin>message;

// Convert the input string to char array

int n = message.length();

char char_array[n + 1];

strcpy(char_array, message.c_str());

// Initialise result

result = "";

// Declare an array of all possible alphabets a-z

char possible[26] = { 'a','b','c','d','e','f','g,','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v',w','x','y','z'};

// Generate output string

// Start by getting string position

int count = 0;

while(count<n)

{

// If current character is blank or !

if(char_array[count] = '!' || char_array[count] = ' ')

{

result+=char_array[count];

}

else

{

for(int I = 0; I<26; I++)

{

if(char_array[count] = possible[I])

{

result+=possible[25-I];

}

}

}

count++;

}

// No output required; the program stops here

return 0;

}

// End of program

The function below takes a single string parameter called sentence. Your function should return True if the sentence contains at least one copy of each of the following vowels: a, e, i, o, and u. Otherwise, return False. The vowels can be either upper case or lower case.

student.py
Bef contains_all_values (sentence): 1 w

Answers

Final answer:

The question asks for a function to check if a sentence contains all five vowels at least once, regardless of case sensitivity. A solution involves creating a set of vowels and comparing it to a set of found vowels in the sentence, returning true if all vowels are present.

Explanation:

The question relates to determining whether a given sentence contains all five vowels (a, e, i, o, u) at least once, ignoring case sensitivity. This problem is typically solved using a function that iterates through each character in the sentence, checks if it is a vowel, and then keeps track of whether all vowels have been encountered. The essential steps involve converting the sentence to lowercase (to ignore case sensitivity), then checking for the presence of each vowel. A simple approach is to use a set to keep track of the vowels found, and once the set contains all five vowels, the function can return True. Otherwise, it returns False after checking the entire sentence.

An example implementation could be:

def contains_all_vowels(sentence):
   vowels = set('aeiou')
   found = set(c.lower() for c in sentence if c.lower() in vowels)
   return found == vowels

This code creates a set of vowels and then iterates over the sentence, adding each encountered vowel to another set. If, by the end of the sentence, the second set is equal to the set of all vowels, the function returns True; otherwise, it returns False.

The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. The differential height between the water columns connected to the two outlets of the probe is 0.126 m.Take the density of water to be 1000 kg/m3. The gas constant of air is R = 0.287 kPa-m3/kg-K.The air temperature and pressure in the duct are 352 K and 98 kPa, respectively.

Answers

Answer:

Flow velocity

50.48m/s

Pressure change at probe tip

1236.06Pa

Explanation:

Question is incomplete

The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to the flow. If the differential height between the water columns connected to the two outlets of the probe is 0.126m, determine (a) the flow velocity and (b) the pressure rise at the tip of the probe. The air temperature and pressure in the duct are 352k and 98 kPa, respectively

solution

In this question, we are asked to calculate the flow velocity and the pressure rise at the tip of probe

please check attachment for complete solution and step by step explanation

Specifically, the following methods must be implemented in the LinkedList class: (You should utilize listIterator() method already defined in the LinkedList class to obtain its LinkedListIterator object, and use the methods in the LinkedListIterator class to traverse from the first element to the last element of the linked list to define the following methods.)

Answers

Answer:

Attached to this solution is a Seventeen pages of code. Cheers!

Explanation:

The ice on the rear window of an automobile is defrosted by attaching a thin, transparent, film type heating element to its inner surface. By electrically heating this element, a uniform heat flux may be established at the inner surface. The inside air temperature and convection heat transfer coefficient are T,i = 25°C and hi = 25 W/(m2 -K), while the outside air temperature is T,o = -10°C. For 4-mm thick window glass, determine (a) the electric power required per unit window area to maintain an inner surface temperature of 15°C and (b) the thermal conductivity of the windshield.

Answers

Answer:

A)Q = 1208.33 W/m²

B)K = 0.138 W/m.K

Explanation:

We are given;

inside air temperature;T_∞,i =25 °C = 25 + 273 = 298K

outside air temperature;T_∞,o = -10°C = - 10 + 273 = 263K

Inner surface temperature;T_s,i = 15 °C = 15 + 273 = 288K

Thickness, L = 4mm = 0.004m

convection heat transfer coefficient ; hi = 25 W/(m².K)

A) From an energy balance at the inner surface and the thermal circuit, the electric power required per unit window area is given as;

Q = [(T_s,i - T_∞,o)/((L/k) + (1/hi))] - [(T_∞,o - T_s,i)/(1/hi)]

Plugging in the relevant values with k for glass as 1.4 W/m.k, we have;

Q = [(288 - 263)/((0.004/1.4) + (1/25))] - [(263 - 288)/(1/25)]

Q = 583.33 + 625

Q = 1208.33 W/m²

B) The formula for thermal conductivity is;

K = (QL)/(AΔT)

Where;

K is the thermal conductivity in W/m.K

Q is the amount of heat transferred through the material

L is the distance between the two isothermal planes

A is the area of the surface in square meters

ΔT is the difference in temperature in Kelvin

ΔT = 298K - 263K = 35K

Now, since we have value of heat per unit area to be Q = 1208.33 W/m², let's rearrange the equation to reflect that; Thus ;

k = (Q/A) x (L/ΔT)

K = 1208.33 x (0.004/35)

K = 0.138 W/m.K

Jasper and Gemma are going to play on a teeter totter. Gemma gets on first. When Jasper gets on, Gemma moves into the air, but she does not move to the top. Which statement could correctly explain the forces acting on the teeter totter? assume that Jasper and Gemma are the same distance from one another.

Answers

Answer:

A) the forces are balanced because Jasper weighs the same as Gemma

Explanation:

Answer:

A. The forces are balanced because Jasper weighs the same as Gemma.

Explanation:

Took the test

The arrival rate at a parking lot is 6 veh.min. Vehicles start arriving at 6:00PM and when the queue reaches 36 vehicles, service begins. If company policy is that total vehicle delay should be equal to 500 veh-min, what is the departure rate?

Answers

Answer:

Departure rate = 7.65 vehicle/min

Explanation:

See the attached file for the calculation.

Utilizing the charge neutrality equation and the mass-action law derive an expression for the concentration of electrons and holes present inside a p-type compensated semiconductor material. How can the resulting expression be modified for practical cases where (????????AA − ????????DD) ≫ 2nn�

Answers

Answer:

The expression for the concentration of electrons is P = NA - ND

Explanation:

Please look at the solution in the attached Word file

Consider airflow over a plate surface maintained at a temperature of 220°C. The temperature profile of the airflow is given as fluid ()()expsV TyTTTy     The airflow at 1 atm has a free stream velocity and temperature of 0.08 m/s and 20°C, respectively. Determine the heat flux on the plate surface and the convection heat transfer coefficient of the airflow.

Answers

Consider airflow over a plate surface maintained at a temperature of 220°C. The temperature profile of the airflow is given as T(y) = T∞ − (T∞−Ts)exp((−V/α_fluid)y).

The airflow at 1 atm has a free stream velocity and temperature of 0.08 m/s and 20°C, respectively. Determine the heat flux on the plate surface and the convection heat transfer coefficient of the airflow

Answer:

A) heat flux on the plate is;q_o = 11737.34 W/m²

B) convection heat transfer coefficient of the airflow is;h = 58.67 W/m².k

Explanation:

The temperature profile of the airflow is given as;

T(y) = T∞ − (T∞−Ts)exp((−V/α_fluid)y)

Let's differentiate with respect to y;

dT/dy = [[(T∞−Ts)V]/α](e^(-vy/α)

Where;

T∞ = 20°C

Ts = 220°C

V = 0.08 m/s

α is thermal diffusivity of air and from the table i attached at a temperature of 220°C, by interpolation it has a value of;

α = 5.33 x 10^(-5) m²/s

Thus, at y =0;

dT/dy = [[(20 − 220)0.08]/(5.33 x 10^(-5))](e^(0))

dT/dy = -300187.62 °C/m

A) Now, heat flux at y = 0 would be given by;

q_o = -k(dT/dy)

Where k is thermal conductivity

from the table attached at 220°C and by interpolation, the thermal conductivity k = 0.0391 W/m.k

Thus,

q_o = -0.0391(-300187.62)

q_o = 11737.34 W/m²

B) the convection heat transfer coefficient of the airflow is gotten from;

q_o = h(Ts - T∞).

Where h is the convection heat transfer coefficient of the airflow

Thus making h the formula, we have;

h = q_o/(Ts - T∞)

h = 11737.34/(220 - 20)

h = 58.67 W/m².k

Air at a pressure of 1 atm and a temperature of 50 °C is in parallel flow over the top surface of a flat plate that is heated to a uniform temperature of 100 °C. The plate has a length of 0.20 m (in the flow direction) and a width of 0.10 m. The Reynolds number based on the plate length is 40,000.
a. What is the rate of heat transfer from the plate to the air?
b. If the free stream velocity of the air is doubled and the pressure is increased to 10 atm, what is the rate of heat transfer?

Answers

The right answer is B

It is given that :

Let the mean bulk temperature [tex]$=\frac{50+100}{2}$[/tex]

                                                    [tex]$=75^\circ C$[/tex]

From the property table at 1 bar and [tex]$75^\circ C$[/tex],

[tex]$K=0.02917 \ W/\mu K, \ Pr = 0.71055 $[/tex]

Flow is laminar as Re = 4000 for laminar.

Flow Nusselt Number is given by :

[tex]$\overline{Nu} = 0.664 (Re)^{0.5} Pr^{1/3} = \frac{hd}{K}$[/tex]

[tex]$\theta = 4 \times 0.2 \times 0.1 \times (100-50)$[/tex]

  [tex]$=17.32$[/tex]

At 10 bar and [tex]$75^\circ C$[/tex],

[tex]$\rho = 9.999 \ kg/m^3 , \ \mu =20.91 \times 10^{-6}$[/tex]

[tex]$K=30.05 \times 10^{-7} \ W/\mu K, \ Pr = 0.7092, \ C_p=1.019 \ kJ/kg K$[/tex]

[tex]$Re_2 = \frac{9.999 \times 2 \times V}{1 \times 20.9 \times 10^{-6}}$[/tex]

Initial, [tex]$Re_i = \frac{1 \times V}{1 \times 20.82 \times 10^{-6}}$[/tex]

                [tex]$=40000$[/tex]

[tex]$V=40000 \times 0.2 \times 20.82 \times 10^{-6}$[/tex]

[tex]$Re_2 = \frac{9.999 \times 2 \times 40000}{1 \times 20.9 \times 10^{-6}}$[/tex]

[tex]$Re_2=796477.01$[/tex]

Flow is turbulent.

This Nusselt number is given by :

[tex]$Nu=(0.037)(Re)^{0.8}- 8\pi Pr^{1/3}=958.75$[/tex]

[tex]$h=\frac{958.75 \times k}{0.2}$[/tex]

  [tex]$=144.05 \ W /\mu^2C$[/tex]

[tex]$\theta =144.05 \times 0.2 \times 0.1 \times (100.5)$[/tex]

  [tex]$=144.05 \ \omega$[/tex]

Learn More :

https://brainly.in/question/43296102

https://brainly.in/question/48196879

Design a Mealy machine for a 20 cent candy dispensing machine which accepts nickel (n) , dime (d) and quarter(q) . It gives candy as well change in the form of nickels only. To help you, here are the some of the elements of the machine: States: 0, 5, 10 and 15 represent the amount of money already inserted in the machine. n, d and q representing coins inserted in the machine Output: c0 (candy and no change), c1 (one nickel as change), c2(two nickels as change ), c3 (three nickels as change), and c4 (four nickels as change)

Answers

Find the answer in the attachment

To save steel-handling costs, an alternative design is proposed for the beam in Problem 1 using two No. 9 Grade 75 bars to provide approximately the same steel strength as the originally proposed four No. 7


Grade 60 bars. Check to determine if the redesigned beam is satisfactory with respect to cracking according to the ACI Code. What modification could you suggest that would minimize the number of bars to reduce cost, yet satisfy requirements of crack control?

Answers

Answer:

See the explanation for the answer

Explanation:

Check to determine the redesigned beam is satisfactory for cracking:

crack width is controlled by establishing a minimum spacing.

Steps followed to check for cracking in the beams

i) According to aci code 10.6.7 if depth of beam isgreater than 36 in then skin reinforcement has to provide.the skin reinforcement to be provided should be such that it should not be greater than the actual main tension reinforcement.

ii) In second step steel stress is determined:

steel stressfs=Ms/(As*(d-hf/2)) or fs= 0.60fy

where Ms=service load moment

As*(d-hf/2)=area of reinforcement *moment area

iii) S=540/fs-2.5Cc is less than or equal to 12*(36/fs)

here Cc = clear spacing

if S=center to center spacing is with in the limit as specified above then the cracking is with in the control if not then redesign has to done.

In the given problem the data given is :

grade of steel in desigened beam is 75 and in redesigned beam is 60 so the stress in steel is 75*0.6=45ksi and 0.6*60=36ksi respectively

now the spacing is calculated for the two design and redesigned beams

the center to center spacing is given by S=540/fs-2.5Cc

For designed beam

S=540/45-(2.5*2.25)=6.375in which is less than 12*36/fs=12*36/45=9.6in hence it is safe

For redesigned beam

S=540/36-(2.5*2.25)=9.375in and it is less than the maximum spacing which is given by 12*36/fs=12*36/36=12in

Hence, the beam is within the limits and the beam is safe against the cracking.

Modifications to reduce the number of reinforcing bars

The addition of steel does not prevent cracking due to restrained shrinkage but it limits the width of crack by causing the formation of the number of narrow cracks rather than single wide crack.

Larger size bars leads to fewer cracks but wider cracks while smaller size bars leads to number of narrow cracks hence it is advisable to provide number of smaller diameter bars of equal strength of designed bars rather than larger  bars.

A circular bar will be subjected to an axial force (P) of 2000 lbf. The bar will be made of material that has a strength (S) of 24 kpsi. After some calculation, the designer has selected a standard 1/2 in diameter (d) bar. The factor of safety (n) is ____. Round the answers to three significant digits.

Answers

Answer:

[tex]n = 2.36[/tex]

Explanation:

The stress experimented by the circular bar is:

[tex]\sigma = \left[\frac{2000\, lbf}{\frac{\pi}{4}\cdot (0.5\,in)^{2}}\right]\cdot \left(\frac{1\,kpsi}{1000\,psi} \right)[/tex]

[tex]\sigma = 10.186\,kpsi[/tex]

The safety factor is:

[tex]n = \frac{24\,kpsi}{10.186\,kpsi}[/tex]

[tex]n = 2.36[/tex]

Other Questions
Look at the two equations:-3x + 6 = 21-3x + 6 During a recent lengthy strike at Morell Manufacturing Company, management replaced striking assembly line workers with office workers. The assembly line workers had been paid $18 per hour while the office workers are only paid $10 per hour. What is the most likely effect on the labor variances in the first month of this strike? Labor Rate Variance Labor Efficiency Variance A) Unfavorable No effect B) No effect Unfavorable C) Unfavorable Favorable D) Favorable Unfavorable What excuse does George from mice and men give for Lennie's slowness? What is the return on common stockholders equity based on the following: Beginning Common Stockholders Equity: $10,317,000 Ending Common Stockholders Equity: $10,662,000 Net Income: $1,429,000 Preferred Stock throughout the year: 6%, $75 par (8,000 shares authorized, issued, and outstanding).a: A bread recipe calls for 2 cups of wheat flour and 3 cups of white flour. How much flour does the recipe call foraltogether? Use the drop-down menus to determine which percentage is equal to each fraction. You are given a list of n positive integers a1, a2, . . . an and a positive integer t. Use dynamic programming to design an algorithm that examines whether a subset of these n numbers add up to exactly t, under the constraint that you use each ai at most once. If there is a solution, your program should output the subset of selected numbers. Recurrence Relation (and base cases) In the past, 35% of the students at ABC University were in the Business College, 35% of the students were in the Liberal Arts College, and 30% of the students were in the Education College. To see whether the proportions have changed, a random sample of 300 students from ABC University was selected. Ninety of the sample students are in the Business College, 120 are in the Liberal Arts College, and 90 are in the Education College. Refer to Exhibit 12-4. If the proportions are the same as they were in the past, the expected frequency for the Business College is how does xiao xuan feel about the one-child policy ? what are her reasons Nelda is making punch for her school party. Her recipe calls for 1/8 cup of apple juice for each serving punch. How many serving of punch can nelda make if she has 7 cups of apple juice Which of the following is the inverse of y = 6 Superscript x?y = log Subscript 6 Baseline xy = log Subscript x Baseline 6y = log Subscript one-sixth Baseline xy = log Subscript 6 Baseline 6 x Which of the following best demonstrates a key metric in the innovation category of a balanced scorecard? Multiple Choice Satisfying faculty and staff Approaching donors to cover current operational expenses Increasing the number of students Collaborating with a community-based college Developing new course offerings what does bone marrow produce?A. EnzymesB. InsulinC. Red and White blood cells Completa la oracin y usa por o para.______ el viernes tenemos que saber el vocabulario.A. porB. para I quite remember my first close encounter with our principal known to us as the Lion of Aye Hill, he was a most feared human being. The popular saying was that no other lion ever roared on Aye Hill on which the school was situated. So, when the senior prefect informed me the principal wanted to see me, I was particularly terrified. My friends too were concerned for few students were ever sent for unless they had committed some serious offence. Indeed, some had their dismissals or suspensions announced to them in the principal s office without the ritual of investigation and defence. As I trudged along towards the principal s office, 1 tried to remember what I had done wrong. In the process, 1 assured myself that he must have seen me stealing out of the dormitory two days before. I had crept out stealthily early in the evening to see my uncle who as my only guardian in the town always had some money for me. I had got some money from him and hurried back just before the lights out bell. It was uneventful and I had assumed that nobody saw me. But now, here I was sent for! I knocked feebly and the principal answered from within; Come in. I entered on shaky legs and greeted him. He answered without looking up from the paper on which he was writing. Without looking up still, he motioned me to sit down. This surprised me, for available reports had it that he never allowed students such a luxury. I sat down and waited for the storm to break. For long minutes, I waited.Finally, he finished the task and looked up. My boy, he said, what were you doing in town so late in the evening two days ago? I told him the truth, for 1 knew the futility of trying to tell a lie. I knew, he said calmly I am aware you ve lost your father and that your uncle is all you have in this town. You went to take some money. I knew. However, in future just come over to me and you ll have all you need. That way you ll not have to break school regulations and mar your good records. Before I could recover from the shock, he took out some currency notes and put them in my hand. Smiling calmly, he bade me good afternoon. I was speechless and hot tears rolled down my cheeks. a. Why was the boy afraid when he was told that the principal wanted to see him? b. What offence had the boy apparently committed? c. Why was he surprised when the principal told him to sit down? d. Why do you think the principal treated the boy the way he did? e. (i) Does your impression of the principal at the end of the passage agree with the impression at the beginning? (ii) Mention one point in support of your answer. F waited for the storm to break (i) What figure of speech is this expression? (ii) What does it mean as it is used in the passage? g. Before I could recover from the shock? (i) What is the grammatical name given to this expression? (ii) What is its function? h. For each of the following words. Find another word or phrase that means the same and can replace it as it is used in the passage. (i) (ii) (iii) (iv) (v) encounter; terrified; trudged; stealthily; futility;PLEASE IF U HAVE COME ACROSS THIS COMPREHENSION AND U CAN GET THE CORRECT ANSWERS TO THE QUESTIONS PLS HELP ME DEARLY. ANYTIME BUT BEFORE 5 PM TODAY BUT U CAN STILL ANSWER ANYTIME EVEN THOUGH IT WILL BE NEXT YEAR JUST PLS HELP ME. In 2002, a reproductive clinic reported 41 live births to 152 women under the age of 38, but only 4 live births for 86 clients aged 38 and older. Is there evidence of a difference in the effectiveness of the clinic's methods for older women? Complete parts a through c. Use alphaequals0.05. Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.5 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30C and exits at 60C. The ideal gas model with 1.005 kJ/kg K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of the entering steam, in C, and for the overall heat exchanger as the control volume, what is the rate of heat transfer, in kW. BRAINLIEST if right!What is the equation of the line with a y-intercept of 10 and a slope of 3? what is the most common color of the area around Dororthy's home? Gertrude is deciding which cell phone plan is the best deal for her to buy. Super Cell charges a monthlyfee of $10 and also charges $0.15 per call. She makes a note that the equation is M = $0.15C + $10.where M is the monthly charge, in dollars, and C is the number of calls placed. Global Cellular has a planwith no monthly fee but charges $0.25 per call. She makes a note that the equation is M = $0.25C, whereM is the monthly charge, in dollars, and C is the number of calls placed. Both companies offer unlimitedtext messages.Type your answer to c - which cell phone plan is a better buy for Gertrude? Be specific.