Water leaks from a vertical cylindrical tank through a small hole in its base at a volumetric rate proportional to the square root of the volume of water remaining. The tank initially contains 300 liters and 22 liters leak out during the first day A. When will the tank be half empty?t16 day (include units.) B. How much water will remain in the tank after 5 days? volume 198 L (include units)

Answers

Answer 1

Answer:

After 7.84 the tank be half empty. The water remain in the tank after 5 days is 198.401 L.

Step-by-step explanation:

Consider the provided information.

It is given that a small hole in its base at a rate proportional to the square root of the volume of water remaining. The tank initially contains 300 liters and 22 liters leak out during the first day.

The rate of water leak can be written as:

[tex]\frac{dV}{dt}\propto \sqrt{V}[/tex]

Let k be the constant of proportionality.

[tex]\frac{dV}{dt}=k \sqrt{V}[/tex]

Integrate both the sides as shown:

[tex]\frac{dV}{\sqrt{V}}=k dt\\\int\frac{dV}{\sqrt{V}}=\int k dt\\2\sqrt{V} =kt+c[/tex]

Since for t=0 the volume was 300.

[tex]2\sqrt{300} =k(0)+c\\20\sqrt{3} =c\\c=34.641[/tex]

Now substitute the value of c in above equation.

[tex]2\sqrt{V} =kt+34.641[/tex]

22 liters leak out during the first day, thus now the remaining volume is 300-22=278 liters.

[tex]2\sqrt{278} =k(1)+34.641\\33.347 =k+34.641\\k=33.347 -34.641\\k=-1.294[/tex]

Thus, the required equation is:[tex]2\sqrt{V} =-1.294t+34.641[/tex]

Part (A) When will the tank be half empty.

Substitute v=150 liters for half empty in above equation.

[tex]2\sqrt{150} =-1.294t+34.641[/tex]

[tex]24.495 =-1.294t+34.641[/tex]

[tex]-10.146 =-1.294t[/tex]

[tex]t=7.84[/tex]

Hence, after 7.84 the tank be half empty.

Part (B) How much water will remain in the tank after 5 days.

Substitute the value of t=5 in [tex]2\sqrt{V} =-1.294t+34.641[/tex]

[tex]2\sqrt{V} =-1.294(5)+34.641[/tex]

[tex]2\sqrt{V} =28.171[/tex]

[tex]\sqrt{V} =14.0855[/tex]

[tex]V =198.401[/tex]

Hence, the water remain in the tank after 5 days is 198.401 L.

Answer 2

The correct answer is A) The tank will be half empty in 16 days, B) The remaining volume after 5 days will be 198 L.

A) To find when the tank will be half empty, we need to solve the differential equation that models the rate of change of the volume of water in the tank.

Let V(t) be the volume of water remaining in the tank at time t.

The rate of change of the volume is proportional to the square root of the volume:

dV/dt = -k√V

where k is a constant that can be determined from the given information.

We know that V(0) = 300 L and V(1) = 300 - 22 = 278 L.

Substituting these values, we get:

k = 22 / √300 = 4

Solving the differential equation with the initial condition V(0) = 300, we get:

[tex]V(t) = 300^_{(1/2)}$-2t^_2[/tex]

Setting V(t) = 150 L (half of the initial volume), we get:

t = 16 days

B) To find the volume remaining after 5 days, we substitute t = 5 in the solution:

[tex]V(5) = (300^_(1/2)} - 2(5))^2 = (\sqrt{300} - 10)^2 = 198 L[/tex]

The rate of change of the volume is proportional to the square root of the volume, which leads to a separable differential equation. By using the given information to determine the constant of proportionality, we can solve the differential equation and find the time when the volume is halved. Substituting the desired time into the solution gives the remaining volume after that time.


Related Questions


Let P(x) denote the statement "2x+5 > 10." Which of the following is true?

P(0)

P(3)

P(2)

P(1)

Answers

Answer: P(3) is True

Step-by-step explanation:

The given statement is an inequality denoted as P(x). To find out which of the options is true you have to evaluate each given value of X in the inequality and perform the arithmetic operations, then you have to see if the expression makes sense.

For P(0): Replace X=0 in 2x+5>10

2(0)+5>10

0+5>10

5>10 is false because 5 is not greater than 10

For P(3): Replace X=3 in 2x+5>10

2(3)+5>10

6+5>10

11>10 is true because 11 is greater than 10

For P(2): Replace X=2 in 2x+5>10

2(2)+5>10

4+5>10

9>10 is false

For P(1): Replace X=1 in 2x+5>10

2(1)+5>10

2+5>10

7>10 is false

Your waiter at a restaurant suggests you leave a tip of $10 on a $50 bill. What percentage is that?

Answers

Answer:

20%

Step-by-step explanation:

To find what percentage is $10 out of $50, we divide 10 by 50:

[tex] \frac{10}{50}=0.2[/tex]

If we want to get the result in percentage form, we simply multiply it by 100%:

[tex]0.2\cdot 100\%=20\%[/tex]

So a tip of $10 on a $50 bill is a tip of 20%.

Write a differential equation whose only solution is the trivial solution y = 0. Explain your reasoning

Answers

Answer:

[tex]2e^{y'}y=0[/tex]

Step-by-step explanation:

The solution for this differential equation [tex]2e^{y'}y=0[/tex] have to be the trivial solution y=0. Because the function [tex]e^{x}[/tex] always have values different of zero, then the only option is the trivial solution y=0.

In an arithmetic​ sequence, the nth term an is given by the formula an=a1+(n−1)d​, where a1 is the first term and d is the common difference.​ Similarly, in a geometric​ sequence, the nth term is given by 1an=a1•rn−1​, where r is the common ratio. Use these formulas to determine the indicated term in the given sequence.

The 10th term of 40,10, 5/2, 5/8, ....

Answers

Answer:

The 10th term of given sequence  is [tex]\frac{5}{32768}[/tex].

Step-by-step explanation:

The given sequence is

[tex]40,10, \frac{5}{2}, \frac{5}{8}, ....[/tex]

The given sequence is a geometric​ sequence because it have common ratio.

[tex]r=\frac{10}{40}=\frac{\frac{5}{2}}{10}=\frac{\frac{5}{8}}{\frac{5}{2}}=\frac{1}{4}[/tex]

In the given sequence the first term of the sequence is 40.

[tex]a_1=40[/tex]

The nth term of a GP is

[tex]a_n=a_1r^{n-1}[/tex]

where, [tex]a_1[/tex] is first term and r is common ratio.

Substitute [tex]a_1=40[/tex] and [tex]r=\frac{1}{4}[/tex] in the above formula.

[tex]a_n=40(\frac{1}{4})^{n-1}[/tex]

Substitute n=10 , to find the 10th term.

[tex]a_{10}=40(\frac{1}{4})^{10-1}[/tex]

[tex]a_{10}=\frac{5}{32768}[/tex]

Therefore the 10th term of given sequence  is [tex]\frac{5}{32768}[/tex].

Experience raising New Jersey Red chickens revealed the mean weight of the chickens at
five months is 4.35 pounds. The weights follow the normal distribution. In an effort to increase
their weight, a special additive is added to the chicken feed. The subsequent
weights of a sample of five-month-old chickens were (in pounds):
4.41 4.37 4.33 4.35 4.30 4.39 4.36 4.38 4.40 4.39
At the .01 level, has the special additive increased the mean weight of the chickens? Estimate
the p-value.

Answers

Answer:

p-value = 0.1277

Step-by-step explanation:

p-value is the probability value tell us how likely it is to get a result like this if the Null Hypothesis is true.

Firstly we find the mean and standard deviation of the given data set.

⇒ Mean = [tex]\frac{4.41 +4.37+ 4.33+ 4.35 +4.30 +4.39 +4.36+ 4.38+ 4.40+ 4.39}{10}[/tex]

Mean = 4.368

[tex]Standard deviation(\sigma) = \sqrt{\frac{1}{n}\sum_{i=1}^{n}{(x_{i}-\bar{x})^{2}} }[/tex]

where, [tex]\bar{x}[/tex] is mean of the distribution.

Standard Deviation = 0.034

Applying t- test:

Let out hypothesis is:

H₀: μ = 4.35

H₁: μ ≠ 4.35

Now,

Here, μ = Population Mean = 4.35

[tex]\bar{x}[/tex]= Sample Mean = 4.368

σ = Standard Deviation = 0.034

n = 10

[tex]t=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}} }[/tex]

Putting all values we get, t = 1.6777 with (10 -1) = 9 degree of freedom.

Then the p-value at 99% level of significance.

p-value = 0.1277

Final answer:

To test whether the special additive has increased the mean weight of the chickens, we can use a t-test. We will calculate the t-value and the p-value and compare the p-value with the significance level of 0.01.

Explanation:

To test whether the special additive has increased the mean weight of the chickens, we can use a t-test. We can set up the null hypothesis as follows:

H0: μ = 4.35

And the alternative hypothesis as:

H1: μ > 4.35

We will calculate the t-value and the p-value.

t-value = (mean of the sample - mean of the population) / (standard deviation of the sample / sqrt(sample size))

p-value = P(T > t)

In this case, we have to compare the p-value with the significance level of 0.01.

If the p-value is less than 0.01, we reject the null hypothesis and conclude that the special additive has increased the mean weight of the chickens.

use a ruler to draw a segment PQ that is 2 inches long then use your compass and straightedge to construct a segment MN with the same length as PQ

Answers

Answer:

Look to the attached figure

Step-by-step explanation:

* Lets revise the steps of constructing with the same length of a given

 segment

- Use a ruler to draw a segment PQ of length 2 inches long

- Mark a point M that will be one endpoint of the new line segment

- Set the compasses pin on the point P of the line segment PQ

- Open the compass to the point Q

- The compasses width is now equal to the length of the segment PQ

- Without changing the compasses width place the pin of the compass

 at point M and draw an arc where the other endpoint will be on it

- Pick a point N on the arc that will be the other endpoint of the new

 line segment

- Draw a line from M to N

- The length of MN = The length of PQ

- The attached figure for more understand

Find all relative extrema and inflection points for fx)=(2x+7)^4

Answers

Answer:

[tex]x=-\frac{7}{2}[/tex] Extrema point.

The function does not have inflection points.

Step-by-step explanation:

To find the extrema points we have:

[tex]f'(x)=0[/tex]

Then:

[tex]f(x)=(2x+7)^4[/tex]

[tex]f'(x)=4(2x+7)^3(2)[/tex]

[tex]f'(x)=8(2x+7)^3[/tex]

Now:

[tex]f'(x)=8(2x+7)^3=0[/tex]

[tex]8(2x+7)^3=0[/tex]

[tex](2x+7)^3=0[/tex]

[tex]2x+7=0[/tex]

[tex]2x=-7[/tex]

[tex]x=-\frac{7}{2}[/tex]

To find the inflection points we need to calculate [tex]f''(x)=0[/tex] but due to that que have just one extrema point, the function does not have inflection points.

Convert 120 kW to W? MW?

Answers

Answer: 120000 W and 0.12 MW

Step-by-step explanation:

The expression 120 kW uses a metric prefix "k" (kilo) which is the same as multiply by 1000. So you can replace k by 1000 to convert the expression to the unit W.

120 kW= 120(1000) W= 120000 W.

To convert 120kW to MW, where the prefix M (mega) is equivalent to 1000000, you can use a conversion factor like (1 MW / 1000 kW) and multiply the expression by it.

Notice that (1 MW / 1000 kW) = 1, so the expression remains unaltered.

Then,

120 kW (1 MW / 1000 kW) = 0.12 MW

what is the area,in square centimeters,of a circle that has a circumference of 16 centimeters?

Answers

Answer: [tex]20.38\ cm^2[/tex]

Step-by-step explanation:

We know that the circumference of a circle is given by :-

[tex]C=2\pi r[/tex], where r is the radius of the circle .

Given : Circumference of circle = 16 cm

Then, [tex]16=2\pi r[/tex]

i.e [tex]r=\dfrac{16}{2\pi}=\dfrac{8}{\pi}[/tex]          (1)

We know that the area of circle is given by :-

[tex]A=\pi r^2[/tex]

i.e. [tex]A=\pi (\dfrac{8}{\pi})^2[/tex]                    [From (1)]

i.e. [tex]A=\pi (\dfrac{64}{\pi^2})[/tex]

i.e. [tex]A=\dfrac{64}{\pi}[/tex]

Put [tex]\pi=3.14[/tex]

[tex]A=\dfrac{64}{3.14}=20.3821656051approx20.38\ cm^2[/tex]

Hence, area of circle = [tex]20.38\ cm^2[/tex]

-1.8-3.9=

A. -2.1
B.5.7
C.2.1
D.-5.7

Answers

In order to get the answer to this question you will have to use KCC (Keep, Change, Change) and then solve.

[tex]-1.8 - 3.9=[/tex]

Using KCC:

[tex]-1.8-3.9=-1.8+-3.9[/tex]

[tex]-1.8 + -3.9 = -5.7[/tex]

[tex]= -5.7[/tex]

Therefore your answer is option D "-5.7."

Hope this helps.

Answer:

D "-5.7."

Step-by-step explanation:

9x = 99y

y = 2
x = ?

Answers

Answer:

x = 22

Step-by-step explanation:

9x = 99y

y = 2

9x = 99 * 2

99 * 2 = 198

9x = 198

---     ----

9        9

x = 22

Hey!

------------------------------------------------

Solution:

9x = 99y

~Substitute

9x = 99(2)

~Simplify

9x = 198

~Divide 9 to both sides

9x/9 = 198/9

~Simplify

x = 22

------------------------------------------------

Answer:

x = 22

------------------------------------------------

Hope This Helped! Good Luck!

Suppose C is a 3 x 3 matrix such that det (C) = 4. Show that det (C+C) is equal to 32

Answers

Step-by-step explanation:

Let's consider C is a matrix given by

[tex]\left[\begin{array}{ccc}a&b&c\\d&e&f\\g&h&i\end{array}\right][/tex]

them determinant of matrix C can be written as

[tex]\begin{vmatrix}a & b & c\\ d & e & f\\  g & h & i \end{vmatrix}\ =\ 4.....(1)[/tex]

Now,

[tex]det (C+C)\ =\ \begin{vmatrix}a & b & c\\ d & e & f\\  g & h & i \end{vmatrix}\ +\ \begin{vmatrix}a & b & c\\ d & e & f\\  g & h & i \end{vmatrix}[/tex]

                  [tex]=\ \begin{vmatrix}2a & 2b & 2c\\ 2d & 2e & 2f\\  2g & 2h & 2i \end{vmatrix}[/tex]

                   [tex]=\ 2\times 2\times 2\times \begin{vmatrix}a & b & c\\ d & e & f\\  g & h & i \end{vmatrix}[/tex]

                   [tex]=\ 8\times 4\ \ \ \ \ \ \ \         from\ eq.(1)[/tex]

                    = 32      

Hence, det (C+C) = 32

Company A charges $331.35 per week for a compact car with unlimited miles. Company B charges $175 per week plus $0.53 per mile, for the same car. How many miles must be driven in a week so that company A is a better deal than company B?

Answers

Answer:

Company A is a better deal than Company B for the number of miles greater than 295 miles

Step-by-step explanation:

Let

y ----> the charge per week in dollars

x ----> the number of miles

we have

Company A

[tex]y=331.35[/tex] -----> equation A

Company B

[tex]y=0.53x+175[/tex] -----> equation B

Solve the system by substitution

Equate equation A and equation B and solve for x

[tex]331.35=0.53x+175[/tex]

[tex]0.53x=331.35-175\\0.53x=156.35\\x=295\ mi[/tex]

For x=295 miles the charge in Company A and Company B is the same

therefore

Company A is a better deal than Company B for the number of miles greater than 295 miles

A marketing research company desires to know the mean consumption of milk per week among males over age 32. A sample of 710 males over age 32 was drawn and the mean milk consumption was 4.6 liters. Assume that the population standard deviation is known to be 0.8 liters. Construct the 98% confidence interval for the mean consumption of milk among males over age 32. Round your answers to one decimal place.

Answers

Answer:

(4.5, 4.7)

Step-by-step explanation:

Hi!

Lets call X to the consumption of milk per week among males over age 32. X has a normal distribution with mean μ and standard deviation σ.

[tex]X \sim N(\mu, \sigma)[/tex]

When you know the population standard deviation σ of X  ,  and the sample mean is [tex]\hat X[/tex], the  variable q has distribution N(0,1):

[tex]q = \frac{\hat X - \mu}{\sigma} \sim N(0,1)[/tex]

Then you have:

[tex]P(-k < q <k ) = P(\hat X -\frac{\sigma}{\sqrt{N} }<\mu<\hat X +\frac{\sigma}{\sqrt{N} })=C[/tex]

This defines a C - level confidence interval. For each C the value of k is well known. In this case C = 0.98, then k = 2.326

Then the confidence interval is:

[tex](4.6 - 2.326*\frac{0.8}{\sqrt{710}}, 4.6 + 2.326*\frac{0.8}{\sqrt{710}})\\ (4.5, 4.7)[/tex]

Is it possible for a simple, connected graph that has n vertices all of different degrees? Explain why or why not.

Answers

Answer:

It isn't possible.

Step-by-step explanation:

Let G be a graph with n vertices. There are n possible degrees: 0,1,...,n-1.

Observe that a graph can not contain a vertice with degree n-1 and a vertice with degree 0 because if one of the vertices has degree n-1 means that this vertice is adjacent to all others vertices, then the other vertices has at least degree 1.

Then there are n vertices and n-1 possible degrees. By the pigeon principle there are two vertices that have the same degree.

By vector methods, find the cosine of the angle between the lines (x - 1)/(3) = (y - 0.5)/(2) = z and x = y = z

Answers

Answer:

The angle between the lines [tex]\frac{x-1}{3}= \frac{y-0.5}{2}=\frac{z-0}{1}[/tex] and [tex]\frac{x-0}{1}= \frac{y-0}{1}=\frac{z-0}{1}[/tex] is [tex]\sqrt{\frac{6}{7}}[/tex]

Step-by-step explanation:

The equation of a line with direction vector [tex]\vec{d}=(l,m.n)[/tex] that passes through the point [tex](x_{1},y_{1},z_{1})[/tex] is given by the formula

[tex]\frac{x-x_{1}}{l}= \frac{y-x_{1}}{m}=\frac{z-z_{1}}{n},[/tex] where l,m, and n are non-zero real numbers.

This is called the symmetric equations of the line.

The angle between two lines [tex]\frac{x-x_{1}}{l_{1} }= \frac{y-y_{1}}{m_{1} }=\frac{z-z_{1}}{n_{1}}[/tex] and [tex]\frac{x-x_{2}}{l_{2} }= \frac{y-y_{2}}{m_{2} }=\frac{z-z_{2}}{n_{2}}[/tex] equal the angle subtended by direction vectors, [tex]d_{1}[/tex] and [tex]d_{2}[/tex] of the lines

[tex]cos (\theta)=\frac{\vec{d_{1}}\cdot\vec{d_{2}}}{|\vec{d_{1}}|\cdot|\vec{d_{2}}|}=\frac{l_{1} \cdot\l_{2}+m_{1} \cdot\ m_{2}+n_{1} \cdot\ n_{2}}{\sqrt{l_{1}^{2}+m_{1}^{2}+n_{1}^{2}} \cdot \sqrt{l_{2}^{2}+m_{2}^{2}+n_{2}^{2}}}[/tex]

Given that

[tex]\frac{x-1}{3}= \frac{y-0.5}{2}=\frac{z-0}{1}[/tex] and [tex]\frac{x-0}{1}= \frac{y-0}{1}=\frac{z-0}{1}[/tex]

[tex]l_{1}=3, m_{1}=2,n_{1}=1\\ l_{2}=1, m_{2}=1,n_{2}=1[/tex]

We can use the formula above to find the cosine of the angle between the lines

[tex]cos(\theta)=\frac{3 \cdot 1+2 \cdot 1 +1 \cdot 1}{\sqrt{3^{2}+2^{2}+1^{2}} \cdot \sqrt{1^{2}+1^{2}+1^{2}}} = \sqrt{\frac{6}{7}}[/tex]

8 BASIC LEVEL 1. On weekends, a movie ticket costs $10.50. Form an inequality and solve it to find the maximum number of tickets Kate can buy with $205

Answers

Answer:

10.50x ≤ 205

The maximum number of tickets, x, would be 19.

Step-by-step explanation:

Given,

The cost of one ticket = $ 10.50,

The cost of x tickets = 10.50x dollars,

Since,  the total cost can not exceed  $ 205,

10.50x ≤ 205

∵ 10.50 > 0 thus, when we multiply both sides by 1/10.50 the inequality sign will not change,

⇒ x ≤  [tex]\frac{205}{10.50}[/tex] ≈ 19.52

Hence, the maximum number of tickets would be 19.

Find an equation of a line passing through the point (8,9) and parallel to the line joining the points (2,7) and (1,5).

Answers

Answer:

2x - y - 7 = 0

Step-by-step explanation:

Since the slope of parallel line are same.

So, we can easily use formula,

y - y₁ = m ( x ₋ x₁)

where, (x₁, y₁) = (8, 9)

and m is a slope of line passing through (x₁, y₁).

and since the slope of parallel lines are same, so here we use slope of parallel line for calculation.

and, Slope = m = [tex]\dfrac{y_{b}-y_{a}}{x_{b}-x_{a}}[/tex]

here, (xₐ, yₐ) = (2, 7)

and, [tex](y_{a},y_{b}) = (1, 5 )[/tex]

⇒ m = [tex]\dfrac{5-7}{1-2}[/tex]

⇒ m = 2

Putting all values above formula. We get,

y - 9 = 2 ( x ₋ 8)

⇒ y - 9 = 2x - 16

⇒ 2x - y - 7 = 0

which is required equation.

Answer:

y=2x-8

Step-by-step explanation:

In order to solve this you first have to calculate the slope of the parallel line, since that would be equal to the slope of our line:

[tex]Slope=\frac{y2-y1}{x2-x1}[/tex]

Now we insert the values into the formula:

[tex]Slope=\frac{y2-y1}{x2-x1}\\Slope=\frac{5-7}{1-2}\\Slope= \frac{-2}{-1}\\ Slope:2[/tex]

And remember that the formula for general line is:

[tex]Y-y1= M(x-x1)\\y-9=2(x-8=\\y=2x-16+9\\y=2x-7[/tex]

So the equation for the line passing through point 8,9 and parallel to the line joining 2,7 and 1,5 would be y=2x-7


precalc question: a warhead fired from an enemy ship in the persian gulf is a dud and only travels 100 meters before it hits the water. If it had an initial velocity of 489 meters per second, find the time from the initial launch of the warhead to impact

a)0.2 s

b)30.8 s

c)100 s

d) 0.31 s

Answers

Answer:

0.2s is the time from the initial launch of the warhead to impact.

Step-by-step explanation:

This is a rule of three problem

In a rule of three problem, the first step is identifying the measures and how they are related, if their relationship is direct of inverse.

When the relationship between the measures is direct, as the value of one measure increases, the value of the other measure is going to increase too. In this case, the rule of three is a cross multiplication.

When the relationship between the measures is inverse, as the value of one measure increases, the value of the other measure will decrease. In this case, the rule of three is a line multiplication.

In this problem, our measures have a direct relationship.

The problem states that in a second, the warhead travels 489 meters. How long it takes to travel 100 meters? So

1s - 489m

xs - 100m

489x = 100

[tex]x = \frac{100}{489}[/tex]

x = 0.2s.

0.2s is the time from the initial launch of the warhead to impact.

For which equations below is x = -3 a possible solution? Select three options.
x = 3
x = -3
|-x1 = 3
|-x) = -3
-la = -3

Answers

Answer:

x=-3

|-x| = 3

|x| = 3

Step-by-step explanation:

we know that

If a number is a solution of a equation, then the number must satisfy the equation

Verify each case

case 1) we have

x=3

substitute the value of x=-3

-3=3 -----> is not true

therefore

x=-3 is not a solution of the given equation

case 2) we have

x=-3

substitute the value of x=-3

-3=-3 -----> is true

therefore

x=-3 is  a solution of the given equation

case 3) we have

|-x| = 3

substitute the value of x=-3

|-(-3)| = 3

|3| = 3

3=3-----> is true

therefore

x=-3 is a solution of the given equation

case 4) we have

|x| = 3

substitute the value of x=-3

|(-3)| = 3

3=3-----> is true

therefore

x=-3 is a solution of the given equation

case 5) we have

-|x| = 3

substitute the value of x=-3

-|(-3)| = 3

-3=3-----> is not true

therefore

x=-3 is not a solution of the given equation

All the fourth-graders in a certain elementary school took a standardized test. A total of 81% of the students were found to be proficient in reading, 74% were found to be proficient in mathematics, and 64% were found to be proficient in both reading and mathematics. A student is chosen at random.(a) What is the probability that student is proficient in mathematics but not in reading?(b) What is the probability that student is proficient in reading but not in mathematics?

Answers

Answer:

The probability that a student is proficient in mathematics, but not in reading is, 0.10.

The probability that a student is proficient in reading, but not in mathematics is, 0.17

Step-by-step explanation:

Let's define the events:

L: The student is proficient in reading

M: The student is proficient in math

The probabilities are given by:

[tex]P (L) = 0.81\\P (M) = 0.74\\P (L\bigcap M) = 0.64[/tex]

[tex]P (M\bigcap L^c) = P (M) - P (M\bigcap L) = 0.74 - 0.64 = 0.1\\P (M^c\bigcap L) = P (L) - P (M\bigcap L) = 0.81 - 0.64 = 0.17[/tex]

The probability that a student is proficient in mathematics, but not in reading is, 0.10.

The probability that a student is proficient in reading, but not in mathematics is, 0.17

Show that Z2[i] = {a + bi | a,b € Z2} is not a field

Answers

Step-by-step explanation:

On a field every element different from 0 should have a multiplicative inverse. Let's check that in Z2[i] not ALL nonzero elements have multiplicative inverses.

Z2 is made of two elements: 0 and 1, and so Z2[i] is made of four elements: 0+0i,0+1i, 1+0i, 1+1i (which we can simplify from now on as 0, i, 1, 1+i respectively). Now, let's check that the element 1+i doesn't have a multiplicative inverse (we can do this by showing that no matter what we multiply it by, we're not getting 1, which is the multiplicative identity)

[tex](1+i)\cdot 0 = 0[/tex] (which is NOT 1)

[tex](1+i)\cdot i = i+i^2=i-1=1+i[/tex] (which is NOT 1) (remember -1 and 1 are the same in Z2)

[tex](1+i)\cdot 1 = 1+i[/tex] (which is NOT 1)

[tex](1+i)\cdot (1+i) = 1+i+i+i^2=1+2i-1=0+0i=0[/tex] (which is NOT 1) (remember 2 is the same as 0 in Z2)

Therefore the element 1+i doesn't have a multiplicative inverse, and so Z2[i] cannot be a field.

The width of a rectangle is 4 more than half the length.
If the perimeter of the rectangle is 74, what is the width?
Perimeter of rectangle: P = 2l + 2w

width =


length =

Answers

Answer:

Width = 15.

Length = 22.

Step-by-step explanation:

If the length is L then the width W =  1/2L + 4.

The perimeter = 2L + 2W, so

2L + 2(1/2L + 4) = 74

2L + L + 8 = 74

3L = 66

L = 22.

So W = 1/2 *22 + 4 = 11 + 4

= 15.

The data were gathered by the following procedure, reported in the study. "Between January and June 1998, parents of children aged 2-16 years [...] that were seen as outpatients in a university pediatric ophthalmology clinic completed a questionnaire on the child’s light exposure both at present and before the age of 2 years." Was this study observational, or was it a controlled experiment? Explain.

Answers

Answer:

This was an observational study.

Step-by-step explanation:

Given is that parents of children completed a questionnaire on the child’s light exposure both at present and before the age of 2 years.

This was an observational study since there is no treatment or control group.

We know that treatment, control groups or treatment groups are not specific to randomized control experiments.

Final answer:

The study where parents of pediatric ophthalmology patients completed questionnaires about light exposure is an observational study because data were collected without manipulating any variables.

Explanation:

The study described in which parents filled out questionnaires about their children's light exposure is an example of an observational study, not a controlled experiment. In an observational study, researchers collect data without manipulating any variables. In this case, the researchers gathered information on light exposure by asking parents to complete a questionnaire, but they did not control or alter the children's light exposure themselves.

Unlike in an observational study, a controlled experiment involves actively manipulating one variable (the independent variable) to determine if it causes a change in another variable (the dependent variable), often comparing against a control group in a systematic way. An example of a controlled experiment includes the trial of Jonas Salk's polio vaccine, in which one group received the vaccine and another group received a placebo.

If the interest rate is 3% and a total of $4,370.91 will be paid to you at the end of 3 years, what is the present value of the sum

Answers

Answer:

The present value (or initial investment) is $4000.00

Step-by-step explanation:

I'm going to assume that the correct formula here is

[tex]A(t)=P(1+r)^t[/tex]

and we are looking to solve for P, the principle investment.  We know that A(t) is 4370.91; r is .03 and t is 3:

[tex]4370.91=P(1+.03)^3[/tex] and

[tex]4370.91=P(1.03)^3[/tex] and

4370.91 = 1.092727P so

P = 4000.00

A test requires that you answer either part A or part B. Part A consists of 7 true-false questions, and part B consists of 5 multiple-choice questions with one correct answer out of five. How many different completed answer sheets are possible?

Answers

Answer: 3253

Step-by-step explanation:

Given : A test requires that you answer either part A or part B.

Part A consists of 7 true-false questions.

i.e.  there are 2 choices to answer each question.

Now, the number of ways to answer Part A : [tex]2^7=128[/tex]    (1)

Part B consists of 5 multiple-choice questions with one correct answer out of five.

i.e.  there are 5 choices to answer each question.

Now, the number of ways to answer Part B : [tex]5^5=3125[/tex]                           (2)

Now, the number of  different ways to completed answer sheets are possible=  [tex]128+3125=3253[/tex]          [Add (1) and (2) ]

Final answer:

The number of different completed answer sheets possible is 400,000.

Explanation:

To find the number of different completed answer sheets, we need to determine the number of ways to choose either part A or part B, and then calculate the number of possible combinations for each part.

For part A, since there are 7 true-false questions, each with 2 choices (true or false), there are 2^7 = 128 possible answer combinations.

For part B, since there are 5 multiple-choice questions, each with 5 choices, there are 5^5 = 3125 possible answer combinations.

To calculate the total number of different completed answer sheets, we multiply the number of choices for part A (128) by the number of choices for part B (3125), giving us a total of 128 * 3125 = 400,000 possible answer sheets.

Input/Output Relationship: Assume that the amount of learning you acquire can be summarized by the following relationship (or equation) and that your motivation to learn and the quality of instruction are both rated on a scale from 1 to 10: Amount of learning acquired = 0.2(number of books read) + 0.25(hours spent studying) + 0.15(quality of instruction) + 0.4(motivation to learn). If your motivation to learn rises from 7 to 9, by how much will the amount of learning acquired rise as a result? Show your work.

Answers

Answer:

8%

Step-by-step explanation:

Motivation to learn represents a 40% of the learning acquired and its rated from 1 to 10. An increase from 7 to 9 represents an increase (of motivation to learn of 20%) But since this quality represent 40% of the total, the real increase in learning is 0.2*0.4=0.08 or 8%.

Find the arc length of the given curve on the specified interval.

(6 cos(t), 6 sin(t), t), for 0 ≤ t ≤ 2π

Answers

Answer:

Step-by-step explanation:

Given that

[tex]r(t) = (6cost, 6sint, t), 0\leq t\leq 2\pi\\r'(t) = (-6sint, 6cost, 1),\\||r'(t)||=\sqrt{(-6sint)^2 +(6cost)^2+1} =\sqrt{37}[/tex]

Hence arc length = [tex]\int\limits^a_b {||r'(t)||} \, dt[/tex]

Here a = 0 b = 2pi and r'(t) = sqrt 37

Hence integrate to get

[tex]\int\limits^{2\pi}  _0  {\sqrt{37} } \, dt\\ =\sqrt{37} (t)\\=2\pi\sqrt{37}[/tex]

Larry Calanan has earnings of S518 in a week. He is single and claims 2 withholding allowances. His deductions include FICA, Medicare, federal withholding, state disability insurance, state withholding, union dues of $15, and charitable contributions of $21. Find his net pay.

Answers

Answer:

$482

Step-by-step explanation:

Data provided:

Total earning per week = $518

Medicare, federal withholding, state disability insurance, state withholding, union dues = $15

charitable contributions = $21

Now,

The total deductions = $15 + $21 = $36

also,

Net pay = Total income - Total deductions

thus,

Net pay = $518 - $36

or

Net Pat = $482

Vanessa walks from her house to a bus stop that is 400 yards away. If Vanessa is 22 yards from her house, how far is she from the bus stop? yards Preview 400 − 22 = 400-22= 378. If Vanessa is 163.4 yards from her house, how far is she from the bus stop? yards Preview 400 − 163.4 = 400-163.4= 236.6. Let the variable x x represent Vanessa's varying distance from her house (in yards). As Vanessa walks from her house to the bus stop, the value of x x varies from to . How many values does the variable x x assume as Vanessa walks from her house to the bus stop? Preview

Answers

Answer:

[tex]0\le x\le 400[/tex]

x can take infinitely many values

Step-by-step explanation:

Vanessa walks from her house to a bus stop that is 400 yards away.

If Vanessa is 22 yards from her house, how far is she from the bus stop?  Preview: 400 − 22 = 400 - 22 = 378 yards. If Vanessa is 163.4 yards from her house, how far is she from the bus stop? Preview: 400 − 163.4 = 400 - 163.4 = 236.6 yards.

Let the variable x represent Vanessa's varying distance from her house (in yards). Then 400 - x yards is how far Vanessa is from the bus stop.

The variable x can take any value from 0 to 400 (0 when Vanessa is at home and 400 when Vanessa is at bus station), so

[tex]0\le x\le 400[/tex]

x can take infinitely many values, because there are infinitely many real numbers between 0 and 400.

Final answer:

Vanessa is 378 yards from the bus stop when she is 22 yards from her house and 236.6 yards away when she is 163.4 yards from her house. The variable x denoting Vanessa's distance from home assumes infinitely many values as she walks to the bus stop.

Explanation:

When Vanessa is 22 yards from her house, the distance remaining to reach the bus stop is simply the total distance to the bus stop minus her current position from the house. So, it's 400 yards - 22 yards = 378 yards. Similarly, if Vanessa is 163.4 yards from her house, the remaining distance to the bus stop is 400 yards - 163.4 yards = 236.6 yards.

As Vanessa walks from her house to the bus stop, variable x represents her varying distance from her house. The value of x starts at 0 when she is at her house and increases up to 400 yards as she reaches the bus stop. The variable x can assume infinitely many values, as it can represent any real number between 0 and 400, indicating her position at any given moment along her path.

Other Questions
15 POINT PLZ HURRY a kitchen measures 24 1/6 feet by 9 2/3 estimate the area of the kitchen show work plz six more than twice a number is 24 did Rames the Great ruled for 6 years The cell cycle is the life cycle16 They lack nuclei, so prokaryotes do notundergo17 The cell produces organelles during18results inthe formation of two new cells. An aircraft seam requires 30 rivets. The seam will have to be reworked if any of these rivets is defective. Suppose rivets are defective independently of one another, each with the same probability. (Round your answers to four decimal places.) (a) If 21% of all seams need reworking, what is the probability that a rivet is defective? 4.) At a school fundraiser for every 9 boxes ofchocolate sold you earn 6 points. If you wereto sell 33 boxes, how many points would youhave earned? Which of these BEST describes the Compromise of 1877?Select one:a. Each of these is a part of the Compromiseb. Hayes became President and Reconstruction in the South ended.c. Andrew Jackson lost his seat in Congress and Reconstruction began in the South.d. Grant was given control of the Atlanta Railway Hub and Lee surrendered. Customers arrive at a bank drive-up window every 6 minutes based on a Poisson distribution. Once they arrive at the teller, service time is exponentially distributed based on a rate of 5 minutes per transaction,a.What is the probability that 3 or fewer customers will arrive in one hour?b.How many customers are most likely in line (waiting) at any one point in time?c.What will be the average time waiting in the system?d.What will be the average time in the system? Are there any modern equivalents of chivalry? give some examples During the year, FastDry Corporation has $ 340,000 in revenues, $ 155,000 in expenses, and $ 12,000 in dividend declarations and payments. Net income for the year was: The plutonium isotope with 144 neutronsEnter the chemical symbol of the isotope. Define reading frame and discuss its significance to the genetic code. 1. what was the main response of the middle class to the challenges of city living What is the next step if the data from an investigation do not support the original hypothesis? The hypothesis is revised and another experiment is conducted. The data are incorrect and the experiment is run again. The data are revised to support the hypothesis. The data are adjusted to match the observations. The points (3,2) and (6, r) lie on a line slope -3. Find the missing cordinate A peptide bond QuestionA. is a covalent bond between the functional R groups of adjacent amino acids. B. is a covalent bond between the NH group of one polypeptide and the CO group of an adjacent polypeptide that holds together multimeric proteins. C. is a covalent bond between the carboxyl carbon of one amino acid and the amino nitrogen of a second amino acid. D. is a covalent bond between adjacent glucose molecules in a peptide. a noncovalent bond that dictates the tertiary structure of a protein. Which formula can be used to describe the sequence below?-8, -5, -2, 1,4, Begin by clearly stating the problem; you can copy this from the problem set file. Show how you solved the problem step by step, including any formulas or equations that you used. Finally, state your final answer in a complete sentence, and make sure that you include the correct units with you answer.1.)Albert borrowed $19,100 for 4 years. The simple interest is $9932.00. Find the rate. you are looking at a painting of a fountain in 3 women the woman's body is appear flat without the fullness associated with true human forms the artist of this painting use chairoscuro. true or false Does any one know this??