What are the x and y coordinates of the centroid of the area?

Answers

Answer 1

Answer:

[tex]\\X_{C.G}=\frac{\int xdA}{A}\\Y_{C.G}=\frac{\int ydA}{A}[/tex]

Explanation:

The x co-ordinate of the centroid is given by:

[tex]x_{C.G}=\frac{\int xdA}{A}[/tex]

The y co-ordinate of the centroid is given by:

[tex]Y_{C.G}=\frac{\int ydA}{A}[/tex]

where

[tex]x^{}[/tex] is the x co-ordinate of a diffrential area [tex]dA[/tex]

and [tex]y^{}[/tex]  is the x co-ordinate of a diffrential area  [tex]dA[/tex]

See attached figure

What Are The X And Y Coordinates Of The Centroid Of The Area?

Related Questions

A M14 x 2 hexagonal head bolt is used to clamp together two 15 mm steel plates. Young's modulus of the bolt and the plates can be taken as 207 GPa. (i)-Determine a suitable length for the bolt. (ii)-Determine the bolt stiffness (iii)-Determine the stiffness of the members

Answers

Answer:

(i) 50 mm

(ii) 874.62 m N/m

(iii) 3116.45 m N/m

Explanation:

Given data

hexagonal head bolt = M14 x 2

steel plate = 15 mm

Young's modulus = 207 Gpa

Solution

1st part

dia of bolt (D) = 14 mm and height (H) = 12.8 mm from table

we know grip length = thickness of this plate i.e 30 mm , i.e (15mm+15mm)

so hexagonal bolt length = grip length + H

hexagonal bolt length = 30 mm + 12.8 mm = 42.80 mm i.e = 45 mm (round off)

2nd part

bolt stiffness =  [tex]\frac{Ad*At*young modulus}{Ad*Lt*At*Ld}[/tex]

here Lt is length of thread = 2d +6mm

d is 14 so length of thread = 2*14 +6 = 34 mm

At from table 8-L i.e. = 115 mm2

Ad area of without thread part = [tex]\pi /4[/tex]×[tex]d^{2}[/tex]

Ad= [tex]\pi /4[/tex]×[tex]14^{2}[/tex] = 153.94 mm2

Ld is length of bolt without thread = length of bolt - Lt = 45 -34 = 11 mm

last Lt thread part length = length of bolt - Ld = 30-11 = 19 mm

put all these value in bolt stiffness i.e.

bolt stiffness =  [tex]\frac{153.94*115*207}{153.94*19+115*11}[/tex] = 874.62

3rd part

stiffness of member =  [tex]\frac{0.5774 \pi  Ed}{2 ln (5\frac{0.5774L +0.5d}{0.5774L +2.5d})}[/tex]

here l is 30 and d is 14

so

stiffness of member =  [tex]\frac{0.5774 \pi  (207) 14}{2 ln (5\frac{0.5774(30) +0.5(14)}{0.5774(30) +2.5(14)})}[/tex]

stiffness of member =  3116.45 m N/m

Explain the nature of defect in casting process and identify the defects through various NDT techniques.

Answers

Answer Explanation:

DEFECT IN CASTING : Defects are undisireable its not matter which type of defect we want no defect in any process casting defect are observed in the material manufacturing in metal casting process.

THESE DEFECTS ARE CLASSIFIED INTO DIFFERENT CLASS :

MOLD MATERIAL DEFECT: This defect occur when the property of mold material used is not up to the markPOURING METAL DEFECT: This defect occur due to adoption of wrong techniques for pouringSHRINKAGE DEFECT: This defect occur when the metal used is not enough to compensate the shrinkage of liquid metal METALLURGICAL DEFECT : Hot tears and hot spots are two such defects

NDT (NON DISTRUCTIVE TESTING): It is a inspection of material without distroy the material

there are different types of NDT

VISUAL INSPECTIONHYDROSTATIC PRESSURE TESTMAGNETIC PARTICAL INSPECTIONULTRASONIC INSPECTION

Answer:

Cold dies, weak metal temperature, dusty metal, lack of ventilation, and too much lubricant can cause casting defects.

Explanation:

Cold dies, weak metal temperature, dusty metal, lack of ventilation, and too much lubricant can cause casting defects. Gas permeability, shrinkage porosity, warm tears, and stream stains are other potential defects. Caused by poor gating, sharp edges or heavy lubricant, flow traces are mark left on the casting surface.

fiver techniques used to identify defects in material are shown below  

1) Liquid Penetrant Testing – Liquid penetrant screening is among the simplest approaches used to identify component defects.

2) Electromagnetic Testing – Electromagnetic testing comprises Eddy Current Testing, Rotating Current Field Quantification and Wireless Field Testing.  Above mentioned techniques can identify both surface &underground flaws.

3) Magnetic Particle Testing – Magnetic particle screening is commonly used for the ferromagnetic materials to detect ground and near-surface defects.

4) Ultrasonic testing – Ultrasonic testing makes it possible to identify large and extremely small surface defects

5) Thermal Infrared Testing –  Infrared thermography testing is used to measures and maps thermal variations on a substance's surface through thermal imaging equipment.

What are the two types of pumps in compressors?

Answers

Answer: The two different types of pumps in compressors are:

 1) Centrifugal Pumps

 2) Reciprocating Pumps

Explanation:

Compressor is defined as a mechanical device which increases the gas pressure by reducing its volume.The main action of a pump is to transport liquids and pressurize and it coverts rotational energy. As, centrifugal pumps are the most common pumps used for transfer of fluids and it works on simple mechanism.

Reciprocating Pumps is used for low volumes of flow at a high pressure. It is the positive displacement pump. As, it works on the principle of pushing of liquid which executes a reciprocating motion in a closed cylinder.  

Answer:

Centrifugal Pumps and Positive Displacement Pumps

Explanation:

The two of pumps listed above is based on the mode of operation. The centrifugal pumps works by increasing the velocity of the liquid through the machine while the displacement pumps works by alternating, filling a cavity and then displace some amount of liquid.

What is the name of the instrument that measures or senses the vibration and is commonly referred to as a pickup or sensor.

Answers

Answer Explanation :

ACCELEROMETERS:  Accelerometers are used for sensing the vibration. basically accelerometers are used for measuring high as well as low frequency. when a transducer is used in addition with another device to measure vibration is called pickups. Seismic instruments are commonly used  vibration pickups

PROXMITY PROBE: Proximity probe is used for the measurements of vibration the vibration sensitivity is highest around 8 to 16 hertz

Define the isentropic efficiency for each of the following 3. a. i. Adiabatic turbine ii. Adiabatic compressor iii. Adiabatic nozzle

Answers

Answer:

a)[tex]\eta_{st}=\dfrac{\Delta h_{actual}}{\Delta _{ideal}}[/tex]

b)[tex]\eta_{sc}=\dfrac{\Delta h_{ideal}}{\Delta _{actual}}[/tex]

c)[tex]\eta_{sn}=\dfrac{\Delta h_{actual}}{\Delta _{ideal}}[/tex]

Explanation:

a)

Adiabatic turbine

Adiabatic turbine means turbine can not reject or take heat from surrounding.

Isentropic efficiency of turbine can be define as the ratio of actual work out put to the Ideal or isentropic work out put.Ideal means when turbine will give maximum work and there is no any friction losses we can say when process is isentropic.

Isentropic efficiency of turbine=(Actual work output)/(Ideal work output)

[tex]\eta_{st}=\dfrac{\Delta h_{actual}}{\Delta _{ideal}}[/tex]

b)

Adiabatic compressor

Isentropic efficiency of compressor can be define as the ratio of ideal or isentropic work in put to the actual work  in put.

Isentropic efficiency of turbine=(Ideal work input)/(actual work input)

[tex]\eta_{sc}=\dfrac{\Delta h_{ideal}}{\Delta _{actual}}[/tex]

c)Adiabatic nozzle

We know that nozzle is device which used to accelerate the fluid.

Basically it covert pressure energy to kinetic energy.

Isentropic efficiency of nozzle can be define as the ratio of actual enthalpy drop put to the Ideal or isentropic enthalpy drop.

[tex]\eta_{sn}=\dfrac{\Delta h_{actual}}{\Delta _{ideal}}[/tex]

Typical metals show elastic-plastic behaviour in tension and shear but not in compression. a)True b)- False

Answers

Answer: True

Explanation:Typical metals have a property of ductility and malleability that is  metals can be drawn into wires or any other shape by beating or stretching the metal by putting the tensile strength or shear strength that pulls them apart . But while compression the metals are squeezed together which affects the hardness of a metal and they are not able to bear the compression force well and thus cannot show elastic-plastic behavior while compression .Therefore the statement given is true typical metals show elastic-plastic behavior in tension and shear but not in compression.

A rectangular open box, 25 ft by 10 ft in plan and 12 ft deep weighs 40 tons. Sufficient amount of stones is placed in the box and then it is placed in a large tank containing 12 ft of water so that it will sink just to the bottom of the tank. Determine the mass of stones placed in the box, in tons.

Answers

Answer:

44.95 tonnes

Explanation:

According to principle of buoyancy the object will just sink when it's weight is more than the weight of the liquid it displaces

It is given that empty weight of box = 40 tons

Let the mass of the stones to be placed be = M tonnes

Thus the combined mass of box and stones = (40+M) tonnes..........(i)

Since the box will displace water equal to it's volume V we have [tex]volume of box = 25ft*10ft*12ft= 3000ft^{3}[/tex]

[tex]Volume= 84.95m^{3}[/tex]

[tex]Since 1ft^{3} =0.028m^{3}[/tex]

Now the weight of water displaced = [tex]Weight =\rho \times Volumewhererho[/tex] is density of water = 1000kg/[tex]m^{3}[/tex]

Thus weight of liquid displaced = [tex]\frac{84.95X1000}{1000}tonnes=84.95 tonnes[/tex]..................(ii)

Equating i and ii we get

40 + M = 84.95

thus Mass of stones = 44.95 tonnes

For all substances, Cp>C. Why is that?

Answers

The specific heats of gases are given as Cp and Cv at constant pressure and constant volume respectively while solids and liquids are having only single value for specific heat.

Citations must be contested within_____working days of the notice of proposed penalty. a)-15 b)-10 c)-30 d)-7

Answers

Answer:

30

Explanation:

Legally that's when you have to respond

The larger the Bi number, the more accurate the lumped system analysis. a)-True b)- False

Answers

Answer:

b). False

Explanation:

Lumped body analysis :

Lumped body analysis states that some bodies during heat transfer process remains uniform at all times. The temperature of these bodies is a function of temperature only. Therefor the heat transfer analysis based on such idea is called lumped body analysis.

                      Biot number is a dimensionless number which governs the heat transfer rate for a lumped body. Biot number is defined as the ratio of the convection transfer at the surface of the body to the conduction inside the body. the temperature difference will be uniform only when the Biot number is nearly equal to zero.  

                      The lumped body analysis assumes that there exists a uniform temperature distribution within the body. This means that the  conduction heat resistance should be zero. Thus the lumped body analysis is exact when biot number is zero.

In general it is assume that for a lumped body analysis, Biot number [tex]\leq[/tex] 0.1

Therefore, the smaller the Biot number, the more exact is the lumped system analysis.

For a 4-bar linkage with ri =7-in, r2 =3-in, r3= 9-in, and r =8-in, determi the minimum and maximum transmission angles.

Answers

Answer:

    [tex]\mu_{min}[/tex]=[tex]26.38^{\circ}[/tex]

   [tex]\mu_{max}[/tex]=[tex]71.79^{\circ}[/tex]    

Explanation:

[tex]r_{1}[/tex]=7 in, [tex]r_{2}[/tex]=3 in,  [tex]r_{3}[/tex]=9in

       ,[tex]r_{4}[/tex]=8 in

  Transmission angle (μ ):

                   It is the acute angle between coupler and the output (follower) link.

Here we consider link [tex]r_{1}[/tex] as fixed link ,[tex]r_{2}[/tex] as input link ,link [tex]r_{3}[/tex] as coupler and link  [tex]r_{4}[/tex] as output link.

As we know that

[tex]\cos\mu_{max}=\frac{r_{4}^2+r_{3}^2-r_{1}^2-r_{2}^2}{2r_{3}r_{4}}-\frac{r_{1}r_{2}}{{r_{3}r_{4}}}[/tex]

[tex]\cos\mu_{min}=\frac{r_{4}^2+r_{3}^2-r_{1}^2-r_{2}^2}{2r_{3}r_{4}}+\frac{r_{1}r_{2}}{{r_{3}r_{4}}}[/tex]

When link [tex]r_{2}[/tex] will be horizontal in left side direction then transmission angle will be minimum and when link [tex]r_{2}[/tex] will be horizontal in right side direction then transmission angle will be maximum.

Now by putting the values we will find

[tex]\cos\mu_{max}=\frac{r_{4}^2+r_{3}^2-r_{1}^2-r_{2}^2}{2r_{3}r_{4}}-\frac{r_{1}r_{2}}{{r_{3}r_{4}}}[/tex]

[tex]\cos\mu_{max}=0.3125[/tex]

[tex]\mu_{max}=71.79^\circ[/tex]

[tex]\cos\mu_{min}=\frac{r_{4}^2+r_{3}^2-r_{1}^2-r_{2}^2}{2r_{3}r_{4}}+\frac{r_{1}r_{2}}{{r_{3}r_{4}}}[/tex]

[tex]\cos\mu_{min}=0.8958[/tex]

[tex]\mu_{min}=26.38^\circ[/tex]

Hence, The minimum and maximum angle of transmission angle is 26.38° and 71.79° respectively.

Which of the following quenching materials is LEAST severe in its quenching action (slowest cooling)? a. Air b. Brine c. Oil d. Water

Answers

Answer:

(a) air

Explanation:

in the following given quenching materials air is the least serve quenching action quenching is a process of heating the material and then rapidly cooling it. Quenching freezes the structure of the material including stresses. Oil has the most sever in its quenching action the commonly used used oil for quenching process is peanut and canola oil  

What is the maximum thermal efficiency possible for a power cycle operating between 600P'c and 110°C? a). 47% b). 56% c). 63% d). 74%

Answers

Answer:

(b) 56%

Explanation:

the maximum thermal efficiency is possible only when power cycle is reversible in nature and when power cycle is reversible in nature the thermal efficiency depends on the temperature

here we have given T₁ (Higher temperature)= 600+273=873

lower temperature T₂=110+273=383

Efficiency of power cycle is given by =1-[tex]\frac{T2}{T1}[/tex]

=1-[tex]\frac{383}{873}[/tex]

=1-0.43871

=.56

=56%

Explain why different types of equipment are required for proper conditioning of air

Answers

Answer:

 Different types of equipment are required for proper conditioning of air because every air conditional space faces some geometrical and environmental issues or problems. There are some different types of equipment used for conditioning of air that are air system, water system and air-water system. In many cases the air conditioning of the system varies with size of the equipment.  

An example of Ferrous alloy is Brass a)-True b)-False

Answers

Answer: False

Explanation: No, brass is not a ferrous alloy.  

      Ferrous alloys are those alloy which contain iron like cast iron, steel, strain-less steel, high carbon steel. Brass on the other hand does not contain any composition. of iron hence it can not be considered as a ferrous alloy. Brass comes under the category of non- ferrous made with a composition of copper and zinc, however their proportion is not strict and we can add other elements like aluminium or lead to alter its durability or corrosiveness.  

If you know that the change in entropy of a system where heat was added is 12 J/K, and that the temperature of the system is 250 K, what is the amount of heat added to the system? a)-5J b)-125J c)- 600 J d)-5000 J e)-8000 J

Answers

Solution:

Given:

Change in entropy of the system, ΔS = 12J/K

Temperature of the system, [tex]T_{o}[/tex] = 250K

Now, we know that the change in entropy of a system is given by the formula:

ΔS = [tex]\frac{\Delta Q}{T_{o}}[/tex]

Amount of heat added, ΔQ = [tex]\Delta S\times T_{o}[/tex]

ΔQ = 3000J

Quantity of erystallization centres in crystallization may increase a) insert imitation of crystallization b) use mechanical mixing: c) change cooling rate; d) all of the above are correct.

Answers

Answer: d) All of the above

Explanation: Crystallization is the process in which a solid crystalline structured material is obtained from the liquid substance. the quantity of crystallization center in crystal may increase due to several reasons like changing the cooling rate or mechanical mixing of the substances or imitation of crystals etc.

These processes end up adding mineral atoms to get attached to the center of crystal and hence increasing the size. Thus, the correct option is option (d).

Work done by a system during a process can be considered as a property of the system. a)True b) False

Answers

Answer:

b) False

Explanation:

Work done by a system is not a property because it doesn't define the system's state. Work is mechanical energy exchanged across the system's boundaries.

A particle moves along a straight line such that its acceleration is a=(4t^2-2) m/s, where t is in seconds. When t = 0, the particle is located 2 m to the left of the origin, and when t = 2, it is 20 m to the left of the origin. Determine the position of the particle when t=4s.

Answers

Answer with Explanations:

We are given:

a(t)=4*t^2-2............................(1)

where t= time in seconds, and a(t) = acceleration as a function of time.

and

x(0)=-2 .................................(2)

x(2) = -20 ............................(3)

where x(t) = distance travelled as a function of time.

Need to find x(4).

Solution:

From (1), we express x(t) by integrating, twice.

velocity = v(t) = integral of (1) with respect to t

v(t) = 4t^3/3 - 2t + k1     ................(4)

where k1 is a constant, to be determined.

Integrate (4) to find the displacement x(t) = integral of (4).

x(t) = integral of v(t) with respect to t

= (t^4)/3 - t^2 + (k1)t + k2  .............(5)   where k2 is another constant to be determined.

from (2) and (3)

we set up a system of two equations, with k1 and k2 as unknowns.

x(0) = 0 - 0 + 0 + k2 = -2  => k2 = 2   ......................(6)

substitute (6) in (3)

x(2) = (2^4)/3 - (2^2) + k1(2) -2  = -20

16/3 -4 + 2k1 -2 = -20

2k1 = -20-16/3 +4 +2 = -58/3

=>

k1 = -29/3  ....................................(7)

Thus substituting (6) and (7) in (5), we get

x(t) = (t^4)/3 - t^2 - 29t/3 + 2   ..............(8)

which, by putting t=4 in (8)

x(4) = (4^4)/3 - (4^2 - 29*4/3 +2

= 86/3, or

= 28 2/3, or

= 28.67 (to two places of decimal)

The answer is "28.87 m" and the further calculation can be defined as follows:

Given:

[tex]\to a=(4t^2-2)\ \frac{m}{s}\\\\ [/tex]

When

[tex] \to t=0 \ \ \ \ \ \ \ v= 2\ m\\\\ \to t=2 \ \ \ \ \ \ \ v= 20\ m\\\\ \to t=4\ \ \ \ \ \ \ v=?[/tex]

To find:

value=?

Solution:

[tex]V(t)=\int a(t)\ dt=\int (4t^2-2)\ dt=\frac{4}{3}t^3-2t+C_1\\\\ x(t)=\int V(t)\ dt =\int (\frac{4}{3}t^3-2t+C_1)\ dt=\frac{1}{3}t^4-t^2+C_1t+C_2\\\\ x(0)=-2=\frac{1}{3} 0^4-0^2+C_1(0)+C_2\to C_2=-2\ m\\\\ x(2)=-20=\frac{1}{3} 2^4-2^2+C_1(2)-2\to C_1=-\frac{29}{3}\ \frac{m}{s}\\\\ x(4) = \frac{1}{3}4^4-4^2 -\frac{29}{3}4-2 = 28.87 \ m \\\\[/tex]

The particle will be at 28.87 m at the right of the origin.

Learn more about velocity:

brainly.com/question/24376522

Define the work Envelope for a Robot

Answers

A robot's work envelope is its range of movement. It is the shape created when a manipulator reaches forward, backward, up and down. These distances are determined by the length of a robot's arm and the design of its axes. ... A robot can only perform within the confines of this work envelope.

Convert 10.25 degrees into radians; and π, π/2 and π/3 radians into degrees.

Answers

Answer:

0.1788 ,180°,90°,60°

Explanation:

CONVERSION FROM DEGREE TO RADIANS: For converting degree to radian we have to multiply with [tex]\frac{\pi}{180}[/tex]

using this concept 10.25°=10.25×[tex]\frac{\pi}{180}[/tex]=0.1788

CONVERSION FROM RADIAN TO DEGREE: For converting radian to degree we have to multiply with[tex]\frac{180}{\pi}[/tex]

using this concept π=π×[tex]\frac{180}{\pi}[/tex]

                                  =180°

  [tex]\frac{\pi}{2}[/tex]= [tex]\frac{\pi}{2}[/tex×[tex]\frac{180}{\pi}[/tex]

                                    =90°

  [tex]\frac{\pi}{3}[/tex]= [tex]\frac{\pi}{3}[/tex]×[tex]\frac{180}{\pi}[/tex]

                                    =60°

Answer:

10.25° = 0.1790 radians

π radians = 180°

π/2 radians = 90°

π/3 radians = 60°

Explanation:

The conversion of degree into radians is shown below:

1° = π/180 radians

So,

10.25° = (π/180)*10.25 radians

Also, π = 22/7

So,

[tex]10.25^0=\frac{22\times10.25}{7\times180}radians[/tex]

Solving it we get,

10.25° = 0.1790 radians

The conversion of radians into degree is shown below:

1 radian = 180/π°

(a)

π radians = (180/π)*π°

Thus,

π radians = 180°

(b)

π/2 radians = (180/π)*(π/2)°

[tex]\frac {\pi }{2} radians=\frac{180}{\not {\pi }} \times \frac{\not {\pi }}{2}^0[/tex]

π/2 radians = 90°

(c)

π/3 radians = (180/π)*(π/3)°

[tex]\frac {\pi }{3} radians=\frac{180}{\not {\pi }} \times \frac{\not {\pi }}{3}^0[/tex]

π/3 radians = 60°

How does the thermal efficiency of an ideal cycle, in general, compare to that of a Carnot cycle operating between the same temperature limits?

Answers

Answer:

Rankine cycle less efficient as compare to Carnot cycle operating betwwen same temperature limit.

Explanation:

We know that Carnot's cycle is an ideal cycle for all heat engine which operating between same temperature.It is a reversible cycle which have all process reversible that is why it have maximum efficiency.

On the other hand Rankine cycle is a practical working cycle so it is impossible to make all process reversible .In practical there will be always loss due to this any process can not make 100 % reversible.That is why Rankine cycle have low efficiency as compare to Carnot cycle operating between same temperature limits.

A system that is not influence anyway by the surroundings is called a)- control mass system b)- Isothermal system c)-- isolated system d)- open system

Answers

Answer:

Isolated system

Explanation:

By definition of a closed system it means that a system that does not interact with it's surroundings in any manner

The other options are explained as under:

Isothermal system : It is a system that does not allow it's temperature to change

Control Mass system : It is a system whose mass remains conserved which means the mass entering the system equals the mass leaving the system

Open system: It is a system that allows transfer of mass and energy across it's boundary without any opposition i.e freely.

A mass of 2 kg is suspended from a vertical spring of stiffness 15 kN/m and subject to viscous damping of 5 Ns/m. What is the amplitude of the forced oscillations produced when a periodic force of amplitude 25 N and angular frequency 100 rad/s acts on the mass? What is the maximum force transmitted to the support of the spring?

Answers

Answer:

Amplitude of A is 4.975 mm and total force is 94.3 N

Explanation:

given data in question

mass (m) = 2 kg

stiffness (k) = 15 kN/m

viscous damping (c) = 5Ns/m

amplitude (F) = 25 N

angular frequency (ω) = 100 rad/s

to find out

amplitude of the forced  and maximum force transmitted

Solution

static force for transmitted is mg i.e 2 × 9.81 = 19.6 N .............. 1

we know the amplitude formula i.e.

Amplitude of A = amplitude /   [tex]\sqrt{c^{2}\omega^{2} + (k - m \omega^{2})^{2}[/tex]

now put the value c k m and ω and we find amplitude

Amplitude of A = 25 /   [tex]\sqrt{5^{2} * 100^{2} + (15000 - 2 * 100^{2})^{2}[/tex]

Amplitude of A = 4.975 mm

now in next part we know the maximum force value when amplitude is equal displacement i.e.

maximum force = amplitude of A [tex]\sqrt{k^{2}+c^{2}\omega^{2}}[/tex]

now put all these value c , ω k and amplitude and we get

maximum force = 4.975 [tex]\sqrt{15000^{2}+5^{2} * 100^{2}}[/tex]

maximum force = 74.7 N                          .......................2

total force is combine equation 1 and 2 we get

total force 19.6 + 74.7 = 94.3 N

Why the velocity potential Φ(x,y,z,t) exists only for irrotational flow

Answers

Answer:

[tex]\omega_y,\omega_x,\omega_Z[/tex]  all are zero.

Explanation:

We know that if flow is possible then it will satisfy the below equation

[tex]\dfrac{\partial u}{\partial x}+\dfrac{\partial v}{\partial y}+\dfrac{\partial w}{\partial z}=0[/tex]

Where u is the velocity of flow in the x-direction ,v is the velocity of flow in the y-direction and w is the velocity of flow in z-direction.

And velocity potential function [tex]\phi[/tex] given as follows

 [tex]u=-\frac{\partial \phi }{\partial x},v=-\frac{\partial \phi }{\partial y},w=-\frac{\partial \phi }{\partial z}[/tex]

Rotationality of fluid is given by [tex]\omega[/tex]

[tex]\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=\omega_Z[/tex]

[tex]\frac{\partial v}{\partial z}-\frac{\partial w}{\partial y}=\omega_x[/tex]

[tex]\frac{\partial w}{\partial x}-\frac{\partial u}{\partial z}=\omega_y[/tex]

So now putting value in the above equations ,we will find

[tex]\omega =\frac{\partial \phi }{\partial x},u=\frac{\partial \phi }{\partial x},[/tex]

[tex]\omega_y=\dfrac{\partial^2 \phi }{\partial z\partial x}-\dfrac{\partial^2 \phi }{\partial z\partial x}[/tex]

So [tex]\omega_y[/tex]=0

Like this all [tex]\omega_y,\omega_x,\omega_Z[/tex] all are zero.

That is why  velocity potential flow is irroational flow.

An inventor claims to have invented a heat engine that operates between the temperatures of 627°C and 27°C with a thermal efficiency of 70%. Comment on the validity of this claim.

Answers

Answer Explanation:

the efficiency of the the engine is given by=1-[tex]\frac{T_2}{T_1}[/tex]

where T₂= lower temperature

           T₁= Higher temperature

we have given efficiency =70%

lower temperature T₂=27°C=273+27=300K

higher temperature T₁=627°C=273+627=900K

efficiency=1-[tex]\frac{T_2}{T_1}[/tex]

                =1-[tex]\frac{300}{900}[/tex]

                 =1-0.3333

                 =0.6666

                 =66%

66% is less than 70% so so inventor claim is wrong

An hydraulic cylinder has a piston diameter of 150mm and strokes at 300mm in 10 seconds. Calculate- A) The swept volume of the actuator in liters B) The pump displacement in Liters/minute

Answers

Answer:

(a)Volume in liters=5.3 liters.

(b)Volume in liters/minute=31.8 liters/minute.

Explanation:

Given:  

   Diameter of cylinder ,D=150 mm

                         Stroke,L=300 mm

                         Time ,t=10 sec

we know that swept volume of cylinder

          [tex]V_{s}=\dfrac{\pi }{4}\times D^2\times L[/tex]

So [tex]V_{s}=\dfrac{\pi }{4}\times 0.15^2\times 0.3 m^{3}[/tex]

     [tex]V_{s}=0.0053 m^3[/tex]

(a) Volume in liters =5.3 liters         ( 1[tex]m^3[/tex]=1000 liters)

(b) When we divide swept volume  by time(in minute) we will get liters/minute.

 We know that 1 minute=60 sec

⇒10 sec=[tex]\frac{10}{60}[/tex] minute

So volume displace in liters/minute=31.8 liters/minute.

An inventor claims to have devised a cyclical power engine that operates with a fuel whose temperature is 750 °C and radiates waste heat to a sink at 0 °C. He also claims that this engine produces 3.3 kW while rejecting heat at a rate of 4.4 kW. Is this claim valid?

Answers

Answer:

Yes

Explanation:

Given Data

Temprature of source=750°c=1023k

Temprature of sink =0°c=273k

Work produced=3.3KW

Heat Rejected=4.4KW

Efficiency of heat engine(η)=[tex]\frac{Work produced}{Heat supplied}[/tex]

and

Heat Supplied [tex]{\left (Q_s\right)}=Work Produced(W)+Heat rejected\left ( Q_r \right )[/tex]

[tex]{Q_s}=3.3+4.4=7.7KW[/tex]

η=[tex]\frac{3.3}{7.7}[/tex]

η=42.85%

Also the maximum efficiency of a heat engine operating between two different Tempratures i.e. Source & Sink

η=1-[tex]\frac{T_ {sink}}{T_ {source}}[/tex]

η=1-[tex]\frac{273}{1023}[/tex]

η=73.31%

Therefore our Engine Efficiency is less than the maximum efficiency hence the given claim is valid.

A piston-cylinder device contains 2.8 kg of water initially at 400 °C and 1.2 MPa. The water is allowed to cool at constant pressure until 28% ofits mass condenses into liquid. a) Evaluate the final temperature. b) Calculate the initial and final volumes (m3) c) Calculate the enthalpy at the initial and final states (kJ)

Answers

Answer:

a).Final temperature, [tex]T_{2}[/tex] = 180°C

b).Initial Volume, [tex]V_{1}[/tex] = 0.713412 [tex]m^{3}[/tex]

   Final Volume, [tex]V_{2}[/tex] = 0.33012 [tex]m^{3}[/tex]

c). Initial enthalpy,[tex]H_{1}[/tex] =9129.68 kJ

   Final enthalpy, [tex]H_{1}[/tex] =6234.76 kJ

Explanation:

Given :

Total mass, m= 2.8 kg

Initial temperature, [tex]t_{i}[/tex] = 400°C

Initial pressure, [tex]p_{i}[/tex] = 1.2 MPa

Therefore from steam table at 400°C, we can find--

[tex]h_{1}[/tex] = 3260.6 kJ/kg

[tex]v_{1}[/tex] = 0.25479 [tex]m^{3}[/tex] / kg

Now it is mentioned that 28% of the mass is condensed into liquid.

So, mass of liquid, [tex]m_{l}[/tex] = 0.28 of m

                                                        = 0.28 m

     mass of vapour, [tex]m_{v}[/tex] = 0.72 m

∴ Dryness fraction, x = [tex]\frac{m_{v}}{m_{l}+m_{v}}[/tex]

                                  = [tex]\frac{0.72 m}{0.28 m+0.72 m}[/tex]

                                  = 0.72

a). The final temperature can be evaluated from the steam table at 1.2 MPa,

     [tex]h_{2}[/tex] = 2226.7 kJ/kg

     [tex]v_{2}[/tex] = 0.1179 [tex]m^{3}[/tex] / kg

    Final temperature, [tex]T_{2}[/tex] = 180°C

b). We know [tex]v_{1}[/tex] = 0.25479 [tex]m^{3}[/tex] / kg

    ∴ Initial Volume, [tex]V_{1}[/tex] = [tex]v_{1}[/tex] x m

                                [tex]V_{1}[/tex] = 0.25479 x 2.8

                                 [tex]V_{1}[/tex] = 0.713412 [tex]m^{3}[/tex]

   We know,[tex]v_{2}[/tex] = 0.1179 [tex]m^{3}[/tex] / kg

       ∴ Final Volume, [tex]V_{2}[/tex] = [tex]v_{2}[/tex] x m

                                    [tex]V_{2}[/tex] = 0.1179 x 2.8

                                   [tex]V_{1}[/tex] = 0.33012 [tex]m^{3}[/tex]

c). We know,

[tex]h_{1}[/tex] = 3260.6 kJ/kg

∴ Initial enthalpy,[tex]H_{1}[/tex] = [tex]h_{1}[/tex] x m

                                                    = 3260.6 x 2.8

                                                     = 9129.68 kJ

[tex]h_{2}[/tex] = 2226.7 kJ/kg

∴ Final enthalpy, [tex]H_{1}[/tex] = [tex]h_{2}[/tex] x m

                                                     = 2226.7 x 2.8

                                                     = 6234.76 kJ

A rigid tank initially contains 2 kg of steam at 500 kPa and 350°C. The steam is then cooled until it is at 100°C. Determine the final pressure and the heat transferred during this process.

Answers

Answer:

299.36 kPa

Explanation:

given mass of steam =2 kg

initial pressure that is [tex]P_1=500kPa[/tex]

initial temperature that is [tex]T_1=350^{\circ} C=350+273=623 K[/tex]

final temperature that is [tex]T_2=100^{\circ} C=100+273=373 K[/tex]

it is a rigid tank so volume is constant

for constant volume process [tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex]

[tex]P_2=\frac{T_2}{T_1}\times P_1=\frac{373}{623}\times 500=299.36 kPa[/tex]

so the final pressure will be 299.36 kPa

Other Questions
Nick found his dream home that has a purchase price of $192,000. Nick earns $3,325 a month and wants to spend no more than 30% of his income on his mortgage payment. He has saved up $35,000 for a down payment. Nick is considering the following loan option: 20% down, 30 year at a fixed rate of 6.25%. What modification can be made to this loan to make it a viable option, given Nicks situation? (A) Change to a 15 year fixed loan(B) Change the interest to 6%(C) Change the down payment to 18% down(D) None. This is a viable option for Nick. QUICK I WILL MARK AS BRAINLIEST!!! PLUS 100 POINTS!!!According to the cladogram shown, which two animal species shared the most recent common ancestor? A. Primates and crocodiles B. Birds and rodents C. Sharks and birds D. Birds and crocodiles A0.350 kg iron horseshoe that is initially at 600C is dropped into a bucket containing 21.9 kg of water at 21.8C. What is the final equilibrium temperature (in C)? Neglect any heat transfer to or from the surroundings. Do not enter units. Im really really dumb lol this is hard to meh (21-25)It a lot to do so.... Please help me with this 20 points... WILL MARK AS BRAINLIEST. HELP ME PLEASEWhy is credibility important? A. Because it helps you evaluate the truth B. Because it helps you understand the reputation of the speaker C. Because it helps you gain respect for writers D. Because it is a rhetorical device What is the best selling novel of all time? Michael Jordan lleva una talla _________.correct? or Incorrect? 2. This feature of the prokaryotic cell helps the cell to stick to surfaces. Which of the following is the correct notation for the complex number What is transaction? Differentiate between pre-emptiveand non pre-emptive transactions Question 3 Laura y Virginia son ____ (bajo) y _______ (delgado). Simplify remove all the perfect squares from inside the square root 45 Calculate your weight on the International Space Station (ISS), which orbits at roughly 400 km about the surface of Earth. What is "g at the ISS? Where in a sarcomere do you find titin and tropomyosin A juggler tosses balls vertically to height H. To what height must they be tossed if they are to spend twice as much time in the air? {(1,2), (-2,3), (1,3), (-2,2)} is what type of relation? A. one-to-many B. many-to-many C. one-to-one D. many-to-one identify one human rights issue in the world today. Explain the issue and what you can do to help. Describe the major properties of the terrestrial planets addressing their composition, relative size, atmospheres, location within the solar system, and satellites, and any unique characteristics. For what value of x does 34* = 27*-3?