What can turn a natural hazard into a natural disaster?

Answers

Answer 1

Answer: A hazard is a condition that has the potential to cause harm.

A natural hazard is a potentially harmful situation, where a person places himself in a naturally unsafe zone.

A natural disaster is a large scale destruction of life and properties by the forces of nature.

A natural hazard can become a natural disaster in some cases where the natural harmful situation a person places himself in, is acted upon by the forces of nature on a large scale.


Related Questions

Gas A has molecules with small mass. Gas B has molecules with larger mass. They are at the same temperature.
How do the gases compare with respect to the average translational kinetic energy?
a)A has a larger average kinetic energy.b)B has a larger average kinetic energy.c)The gases have the same average kinetic energy.

Answers

Answer:

c)The gases have the same average kinetic energy.

Explanation:

As we know that the kinetic energy of gas is given as

[tex]K = \frac{1}{2}mv^2[/tex]

here we know that

[tex]v = \sqrt{\frac{3RT}{M}}[/tex]

so we have

[tex]K = \frac{1}{2}m (\frac{3RT}{M})[/tex]

now we have

[tex]K = \frac{3}{2}n RT[/tex]

now mean kinetic energy per molecule is given as

[tex]K_{avg} = \frac{3}{2}KT[/tex]

so this is independent of the mass of the gas

so average kinetic energy will remain same for both the gas molecules

A steel sphere with radius 1.0010 cm at 41.0°C must slip through a brass ring that has an internal radius of 1.0000 cm at the same temperature. To what temperature must the brass ring be heated so that the sphere, still at 41.0°C, can just slip through? Coefficient of linear expansion α for brass is 19.0 × 10−6 K−1.

Answers

Answer:

[tex]\Delta T = 52.6 ^o C[/tex]

Explanation:

As we know that radius of the brass ring is given as

[tex]R_{brass} = 1.0000 cm[/tex]

radius of the sphere is given as

[tex]R_{sphere} = 1.0010 cm[/tex]

now by thermal expansion formula we know that

[tex]L = L_o(1 + \alpha \Delta T)[/tex]

so we will have

[tex]1.0010 = 1.0000(1 + (19\times 10^{-6})\Delta T)[/tex]

so we have

[tex]\Delta T = 52.6 ^o C[/tex]

The first confirmed detections of extrasolar planets occurred in ____________. The first confirmed detections of extrasolar planets occurred in ____________. the mid-17th century the mid-20th century the 1990s 2009

Answers

Final answer:

The first confirmed detections of extrasolar planets were made in the 1990s, with the first planet discovered orbiting a main-sequence star similar to our Sun detected in 1995.

Explanation:

The first confirmed detections of extrasolar planets, or planets outside our own solar system, occurred in the 1990s. Before this time, the existence of such planets was believed, but had yet to be confirmed. The breakthrough came in 1992 when two planets were detected orbiting a pulsar, a type of neutron star. However, the first confirmed extrasolar planet orbiting a main-sequence star similar to our Sun, was discovered in 1995. This marked a significant event in the field of astronomy and has led to the discovery of thousands more extrasolar planets since.

Learn more about extrasolar planets here:

https://brainly.com/question/33536794

#SPJ6

Final answer:

The first confirmed detections of extrasolar planets happened in the 1990s. The major breakthrough came in 1995, when astronomers discovered a planet orbiting the regular star 51 Pegasi, heralding a new era in the search for planets outside of our solar system.

Explanation:

The first confirmed detections of extrasolar planets, or planets outside of our own solar system, occurred in the 1990s. Before this, while many astronomers and theorists speculated about the existence of planets around other stars, none had indeed been confirmed. This changed dramatically when in 1995, Didier Queloz and Michel Mayor of the Geneva Observatory discovered a planet around a regular star, 51 Pegasi. This pioneering discovery proved that our solar system was not alone in the universe, leading to the detection of thousands of extrasolar planets in the following decades. The detection techniques they proposed, specifically the Doppler and transit techniques, have enabled astronomers to observe the effects of planets on the stars they orbit without directly seeing the planets themselves.

Learn more about Detection of Extrasolar Planets here:

https://brainly.com/question/33456477

#SPJ6

As electrons are passed through the system of electron carriers associated with photosystem ii

Answers

The answer is “it is used to establish and maintain a proton gradient.”

A disk-shaped merry-go-round of radius 2.13 m and mass 175 kg rotates freely with an angular speed of 0.651 rev/s. A 55.4 kg person running tangentially to the rim of the merry-go-round at 3.51 m/s jumps onto its rim and holds on. Before jumping on the merry-go-round, the person was moving in the same direction as the merry-go-round's rim.
Calculate the final kinetic energy for this system.

Answers

Answer:

Explanation:

To find out the angular velocity of merry-go-round after person jumps on it , we shall apply law of conservation of ANGULAR momentum

I₁ ω₁ + I₂ ω₂ = ( I₁  + I₂ ) ω

I₁ is moment of inertia of disk , I₂ moment of inertia of running person , I is the moment of inertia of disk -man system , ω₁ and ω₂ are angular velocity of disc and man .

I₁ = 1/2 mr²

= .5 x 175 x 2.13²

= 396.97 kgm²

I₂ = m r²

= 55.4 x 2.13²

= 251.34 mgm²

ω₁ = .651 rev /s

= .651 x 2π rad /s

ω₂ = tangential velocity of man / radius of disc

= 3.51 / 2.13

= 1.65 rad/s

I₁ ω₁ + I₂ ω₂ = ( I₁  + I₂ ) ω

396.97 x  .651 x 2π + 251.34 x 1.65 = ( 396.97 + 251.34 ) ω

ω = 3.14 rad /s

kinetic energy = 1/2 I ω²

= 3196 J

A bobsled, moving at 32 m/s, decelerates to 22 m/s at a rate of 4.8 m/s2. Determine the distance traveled by the bobsled during this time.

Answers

Answer:

56.25 m

Explanation:

Cinematics describes the variables involved in movement without dealing with its causes. There are four main concepts in cinematics: Velocity (or its scalar equivalent, the speed), acceleration, time and displacement (or its scalar equivalent, distance).

We know the bobsled starts at 32m/s and ends at 22m/s with acceleration [tex]-4.8m/sec^2[/tex]. The acceleration is negative because the bobsled is breaking of losing speed

The formula relating these three variables is

[tex]v_f^2=v_o^2+2ax[/tex]

Solving for x

[tex]x=\frac{v_f^2-v_o^2}{2a}[/tex]

[tex]x=-\frac{22^2-32^2}{2(-4.8)}[/tex]

[tex]x=\frac{540}{9.6}[/tex]

[tex]x=56.25\ m[/tex]

Steel train rails are laid in 12.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is −9.0∘C. (a) How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 33.0∘C? (b) If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 33.0∘C?

Answers

Answer:

a) Space = [tex] 6.05 x 10^{-3} m = 0.605 cm [/tex]

b) Stress= [tex] -100.8 x 10^{6} Pa [/tex]

Explanation:

1) Data Given

[tex] L = 12 m , T_i = -9 C \degree, T_f = 33 C \degree [/tex]

2) Calculate the space using Linear thermal expansion formula

We need to use Linear thermal expansion formula since the space created would be a change on 1 dimension, the increase of the temperature will increase the length of the steel.  The formula is given by:

[tex] \Delta L = L_i \alpha_{steel} \Delta T [/tex]

We have everything except the [tex] \alpha_{steel} [/tex] , so we look for this on a book and we find that [tex] \alpha_{steel} = 1.2 x 10^{-5} C^{-1} [/tex], so we can replace.

[tex] \Delta L = 12 m (1.2 x 10^{-5} C^{-1}) (33 C \degree -(-9 C \degree)) = 12 m (1.2 x 10^{-5} C^{-1}) 42 C \degree =6.048 x 10^{-3} m = 0.6048cm [/tex]

3) Calculate the stress of the steel

The Stress is the ratio of applied force F to a cross section area - defined as

[tex] \sigma = \frac{F_n}{A} [/tex]

Since we don't have the force and the Area, we need to look for another way to find the stress.

For this we can use the concept called Young's Modulus, defined as : "the mechanical property that measures the stiffness of a solid material", and the formula for this is given by:

[tex] Y =\frac{F L}{A \Delta L} [/tex] (1)

Solving [tex] \frac{F}{A} [/tex] from the previous formula we have this:

[tex] \frac{F}{A} [/tex]  = (Y  Δ L)/L  (2)

From the Linear thermal expansion formula we can solve like this

[tex] \frac{\Delta L}{L} [/tex] =  α  ΔT  (3)

And replacing equation (3) into equation (2) we have:

[tex] \frac{F}{A} [/tex]  = Y α ΔT (4)

We have that the Young's Modulus for the steel is 20x10^{10} Pa, so replacing into equation (4)

[tex] \frac{F}{A} [/tex] = [tex] 20x10^{10} [/tex] Pa (1.2x10^-5 C^-1) (42C) = [tex] 100.8 *10^{6} [/tex] Pa  

That represent the absolute value for the Stress, the sign on this case would be negative since there is a compression.

Final answer:

The rail segment's length change due to thermal expansion can be calculated using the formula ∆L = αL0∆T, which gives the space to be left between rails. When the rails are constrained, thermal stress can be determined using the formula σ= Eα∆T, demonstrating the stress in the steel rails during the summer.

Explanation:Calculating the expansion of steel train tracks

To solve this physics problem, one must first calculate the change in length of the steel rails due to thermal expansion, which introduces the concept of thermal stress—a stress created through thermal expansion or contraction of materials. The formula used is ∆L = αL0∆T, where ∆L is the change in length, α is the coefficient of linear expansion for steel (around 12 × 10⁻⁶ °C⁻¹), L0 is the initial length of the steel rails (12 meters), and ∆T is the change in temperature (33 - (-9) = 42 degrees Celsius). The calculation will yield the amount of space to be left between the rails, providing the answer to the first part of the question.

Next, to determine the stress in the rails when no gap is left for expansion (assuming they are constrained), the formula is σ= Eα∆T, where E represents Young's modulus (200 × 10⁹ N/m² for steel), and the other variables remain as earlier defined. After calculation, the result will exhibit the thermal stress exerted on the steel rails during the summer. Here, Young's modulus reflects the relationship between stress and strain in the material, indicating how much deformation will happen within the steel rails due to thermal stress.

Learn more about Thermal Stress here:

https://brainly.com/question/37888084

#SPJ11

A player passes a 0.600-kg basketball down court for a fast break. The ball leaves the player's hands with a speed of 8.70 m/s and slows down to 7.10 m/s at its highest point. Part A Ignoring air resistance, how high above the release point is the ball when it is at its maximum height?B) How would doubling the ball's mass affect the result in part (a)?

Answers

Answer:

1.29 m

Explanation:

mass of ball = 0.6 kg

initial velocity, u = 8.7 m/s

final velocity, v = 7.1 m/s

acceleration due to gravity, g = - 9.8 m/s^2

(a) Let the ball reaches to a height of h.

Use third equation of motion

[tex]v^{2}=u^{2}+2as[/tex]

[tex]7.1^{2}=8.7^{2}- 2 \times 9.8 \times h[/tex]

h = 1.29 m

Thus, the maximum height attained by the ball is 1.29 m.

By applying the principle of conservation of energy, the maximum height of the ball above its release point is calculated to be approximately 1.29 meters. Doubling the ball's mass would not affect this result because the height is independent of mass when air resistance is ignored.

Part A: Calculating Maximum Height

To find the height reached, we will use the principle of conservation of energy. The mechanical energy at the release point equals the mechanical energy at the highest point.

Step-by-Step Explanation:

Calculate the initial kinetic energy:
[tex]KE_{initial[/tex] = 0.5 * mass * (initial speed)²
[tex]KE_{initial[/tex] = 0.5 * 0.600 kg * (8.70 m/s)²
[tex]KE_{initial[/tex] = 22.686 J

Calculate the kinetic energy at the highest point:
[tex]KE_{highest[/tex] = 0.5 * mass * (speed at highest point)²
[tex]KE_{highest[/tex] = 0.5 * 0.600 kg * (7.10 m/s)²
[tex]KE_{highest[/tex] = 15.099 J

Determine the change in kinetic energy:
ΔKE = [tex]KE_{initial[/tex] - [tex]KE_{highest[/tex]
ΔKE = 22.686 J - 15.099 J = 7.587 J

Set this equal to the gravitational potential energy gained (since potential energy gained equals kinetic energy lost):
ΔKE = PE
m * g * h = 7.587 J
0.600 kg * 9.8 m/s² * h = 7.587 J
h = 7.587 J / (0.600 kg * 9.8 m/s²)
h ≈ 1.29 m

The ball reaches approximately 1.29 meters above the release point at its maximum height.

Part B: Effect of Doubling the Mass

In the absence of air resistance, the height reached by the ball is independent of its mass. This is because both the kinetic energy and gravitational potential energy are directly proportional to mass, and it cancels out in the equations. Therefore, doubling the ball's mass would not affect the result in part (a).

The wooden block is removed from the water bath and placed in an unknown liquid. In this liquid, only one-third of the wooden block is submerged. Is the unknown liquid more or less dense than water?

Answers

Final answer:

A wooden block that floats in an unknown liquid with only one-third submerged indicates that the unknown liquid is more dense than water.

Explanation:

When the wooden block is placed in an unknown liquid and only one-third of it is submerged, it suggests that the block is less dense than the unknown liquid. This is due to the principle of buoyancy, which states that an object will displace a volume of fluid that is equal to its own weight. Since the wooden block floats higher in the unknown liquid compared to how it floats in water, where it must submerge more to displace enough water to equal its weight, we can conclude that the unknown liquid is more dense than water.

A sled having a certain initial speed on a horizontal surface comes to rest after traveling 10 m. If the coefficient of kinetic friction between the object and the surface is 0.20, what was the initial speed of the object

Answers

Answer:

the initial speed of the object is 6.26 m/s

Explanation:

given information:

distance, s = 10 m

the coefficient of kinetic friction, μ = 0.2

we use the equation where the kinetic energy is equal to the friction force.

kinetic energy, KE = [tex]\frac{1}{2} mv^{2}[/tex]

friction work,  W = F(friction) s

KE = W

[tex]\frac{1}{2} mv^{2}[/tex] = F(friction) s

where, F(friction) = μ N, N is normal force (N = m g)

                            = μ m g

so,

[tex]\frac{1}{2} mv^{2}[/tex] = μ m g s

[tex]\frac{1}{2} v^{2}[/tex] = μ g s

[tex]v^{2}[/tex] = 2 μ g s

  = 2 (0.2) (9.8) (10)

  = 39.2

hence,

v = [tex]\sqrt{3.92}[/tex]

  = 6.26 m/s

The initial speed [tex]\( v_i \)[/tex] of the sled was approximately[tex]\( 6.26 \, \text{m/s} \).[/tex]

The initial speed of the object can be found using the work-energy principle, which states that the work done by friction will be equal to the change in kinetic energy of the sled.

First, let's calculate the work done by friction. The force of friction [tex]\( F_{\text{friction}} \)[/tex] is given by the product of the normal force \( N \) and the coefficient of kinetic friction [tex]\( \mu_k \):[/tex]

[tex]\[ F_{\text{friction}} = \mu_k N \][/tex]

[tex]\[ W = F_{\text{friction}} d = \mu_k m g d \][/tex]

[tex]\[ \Delta KE = 0 - \frac{1}{2} m v_i^2 = -\frac{1}{2} m v_i^2 \][/tex]

 According to the work-energy principle, the work done by friction is equal to the change in kinetic energy:

[tex]\[ \mu_k m g d = -\frac{1}{2} m v_i^2 \][/tex]

Solving for \( v_i \), we get:

[tex]\[ v_i^2 = -2 \mu_k g d \][/tex]

[tex]\[ v_i = \sqrt{-2 \mu_k g d} \][/tex]

 Given that [tex]\( \mu_k = 0.20 \), \( g = 9.81 \, \text{m/s}^2 \), and \( d = 10 \, \text{m} \),[/tex] we can plug in these values:

[tex]\[ v_i = \sqrt{-2 \times 0.20 \times 9.81 \times 10} \][/tex]

[tex]\[ v_i = \sqrt{39.24} \][/tex]

[tex]\[ v_i \approx 6.26 \, \text{m/s} \][/tex]

Therefore, the initial speed \( v_i \) of the sled was approximately[tex]\( 6.26 \, \text{m/s} \).[/tex]

The answer is: [tex]6.26 \, \text{m/s}.[/tex]

When a man stands on a bathroom scale here on Earth, it reads 640 N . Assume each planet to be a perfect sphere with the following parameters.
Planet Mass, kg Radius, m
Mars 6.419×1023 3.396×106
Venus 4.869×1024 6.052×106
Saturn 5.685×1026 6.027×107
Part A: What would his mass be on Mars, Venus, and Saturn?
Part B: What is the magnitude of the gravitational force Mars would exert on the man if he stood on its surface?
Part C: What is the magnitude of the gravitational force Venus would exert on the man if he stood on its surface?
Part D: What is the magnitude of the gravitational force Saturn would exert on the man if he stood on its surface?

Answers

Part A: Mass on Mars, Venus, and Saturn: ≈65.21kg

Part B: Gravitational Force on Mars: ≈246.5N

Part C: Gravitational Force on Venus: ≈610.9N

Part D: Gravitational Force on Saturn: ≈572.5N.

Part A: Mass on Different Planets

The weight of an object (the reading on a scale) is given by the formula:

Weight = Mass × Acceleration due to gravity

The acceleration due to gravity on a planet can be calculated using the formula:

Acceleration due to gravity = G × (Planet Mass) / (Planet Radius)²

Where G is the universal gravitational constant.

Given that the weight on Earth is 640 N, we can rearrange the weight formula to solve for mass:

Mass = Weight / Acceleration due to gravity on Earth

The acceleration due to gravity on Earth is approximately 9.81 m/s², and the universal gravitational constant is approximately

6.674 × [tex]10^{-11[/tex] N(m/kg)².

Now we can calculate the mass on different planets:

Mars:

Acceleration due to gravity on Mars = (6.674 × [tex]10^{-11[/tex]) × (6.419 × [tex]10^{23[/tex]) / (3.396 × [tex]10^6[/tex])²

Mass on Mars = 640 N / Acceleration due to gravity on Mars

Venus:

Acceleration due to gravity on Venus = (6.674 × [tex]10^{-11[/tex]) × (4.869 × [tex]10^{24[/tex]) / (6.052 × [tex]10^6[/tex])²

Mass on Venus = 640 N / Acceleration due to gravity on Venus

Saturn:

Acceleration due to gravity on Saturn = (6.674 × [tex]10^{-11[/tex]) × (5.685 × [tex]10^{26[/tex]) / (6.027 × [tex]10^7[/tex])²

Mass on Saturn = 640 N / Acceleration due to gravity on Saturn

So, we get, Mass on Mars, Venus, and Saturn: ≈65.21kg.

Part B: Gravitational Force on Mars

The magnitude of the gravitational force between two objects can be calculated using the formula:

Gravitational Force = (G × Mass of the man × Mass of Mars) / (Radius of Mars)²

Gravitational Force on Mars: ≈246.5N.

Part C: Gravitational Force on Venus

Similar to Part B, use the formula:

Gravitational Force = (G × Mass of the man × Mass of Venus) / (Radius of Venus)²

Gravitational Force on Venus: ≈610.9N.

Part D: Gravitational Force on Saturn

Similar to Parts B and C, use the formula:

Gravitational Force = (G × Mass of the man × Mass of Saturn) / (Radius of Saturn)²

Gravitational Force on Saturn: ≈572.5N.

Learn more about gravitational force here:

brainly.com/question/32609171

#SPJ12

The mass of the man on Mars is 171.77 kg, on Venus is72.19 kg, and on Saturn is 61.30 kg. The magnitude of the gravitational force on Mars is 639.78 N, on Venus is 640.52 N, and on Saturn is 640.77 N.

Part A: The mass of the man on Mars can be calculated using the formula:

Weight on Mars = mass on Mars × acceleration due to gravity on Mars

Mass on Mars = Weight on Mars ÷ acceleration due to gravity on Mars

Using the given parameters, we can calculate the mass of the man on Mars, Venus, and Saturn.

Mass on Mars = 640 N ÷ 3.726 m/s^2 = 171.77 kg

Mass on Venus = 640 N ÷ 8.87 m/s^2 = 72.19 kg

Mass on Saturn = 640 N ÷ 10.44 m/s^2 = 61.30 kg

Part B: The magnitude of the gravitational force on Mars can be calculated using the formula:

Gravitational force = Mass of the man × acceleration due to gravity on Mars

Using the calculated mass on Mars from Part A and the gravitational constant of Mars, we can calculate the magnitude of the gravitational force on Mars.

Gravitational force on Mars = 171.77 kg × 3.726 m/s^2 = 639.78 N

Part C: The magnitude of the gravitational force on Venus can be calculated using the same formula as in Part B:

Gravitational force on Venus = 72.19 kg × 8.87 m/s^2 = 640.52 N

Part D: The magnitude of the gravitational force on Saturn can also be calculated using the same formula:

Gravitational force on Saturn = 61.30 kg × 10.44 m/s^2 = 640.77 N

Learn more about Gravitational forces here:

https://brainly.com/question/32609171

#SPJ6

A helicopter lifts a 60 kg astronaut 17 m vertically from the ocean by means of a cable. The acceleration of the astronaut is g/10. (a) How much work is done on the astronaut by the force from the helicopter? J (b) How much work is done on the astronaut by her weight? J (c) What is the kinetic energy? J (d) What is the speed of the astronaut just before she reaches the helicopter?

Answers

Answer:

a) W = 10995.6 J

b) W = - 9996 J

c) Kf = 999.6 J

d) v = 5.77 m/s

Explanation:

Given

m = 60 Kg

h = 17 m

a = g/10

g = 9.8 m/s²

a) We can apply Newton's 2nd Law as follows

∑Fy = m*a     ⇒     T - m*g = m*a     ⇒    T = (g + a)*m

where T is the force exerted by the cable

⇒    T = (g + (g/10))*m = (11/10)*g*m = (11/10)*(9.8 m/s²)*(60 Kg)

⇒    T = 646.8 N

then we use the equation

W = F*d = T*h = (646.8 N)*(17 m)

W = 10995.6 J

b) We use the formula

W = m*g*h     ⇒    W = (60 Kg)(9.8 m/s²)(-17 m)

⇒    W = - 9996 J

c) We have to obtain Wnet as follows

Wnet = W₁ + W₂ = 10995.6 J - 9996 J

⇒    Wnet = 999.6 J

then we apply the equation

Wnet = ΔK = Kf - Ki = Kf - 0 = Kf    

⇒  Kf = 999.6 J

d) Knowing that

K = 0.5*m*v²    ⇒    v = √(2*Kf / m)

⇒    v = √(2*999.6 J / 60 Kg)

⇒    v = 5.77 m/s

Answer:

Explanation:

mass =60kg d = 17m  a=g/10

(a) work done on the astronaut by the force from the helicopter = fd

but f =m(g+a)

 w= m( g+g/10)d

wt = 11/10 mgd

w =11/10 * 60 *9.8 * 17 = 10995.6J  = 1IKJ

(b) workdone  by her weight = -mgh

   = 60*9.8* 17 = -9996J

(C) Kinetic energy = wt + w

                             = (10995.6 - 9996)J = 999.6J

(d) Kinetic energy =1/2m[tex]v^{2}[/tex]

hence velocity = [tex]\sqrt{2ke/m}[/tex] = 5.777m/s

The zone of earthquakes and volcanoes surrounding the pacific ocean is called

Answers

Answer:

The Ring of Fire

Explanation:

The ring of fire is also called the Circum-Pacific Belt, it is a path along the pacific ocean consisting of active volcanoes and frequent earthquakes.

It has a length of approximately 40,000 kilometers. It lies on the edge of tectonic plates where the in-earth vibrations and geothermal energies are prone to erupt out.

Ring of fire inhibits about 75% o the earth's volcanoes and 95% of earthquakes occur in this region.

Help meeeeeeeeeeeeee! please show work! In a collision, Kara Less who was traveling at 11 m/s while texting in her 1300 kg car, is struck by another vehicle and finds herself and her phone suddenly moving 2.5 m/s in the opposite direction. What impulse does she experience?

Answer choices


-12,000

-14,000

-16,000

-18,000

Answers

The impulse experienced is -18,000 kg m/s

Explanation:

The impulse exerted on an object is equal to the change in momentum of the object. Mathematically:

[tex]I=\Delta p = m(v-u)[/tex]

where

m is the mass of the object

v is the final velocity of the object

u is the initial velocity

[tex]\Delta p[/tex] is the change in momentum

I is the impulse

In the collision in this problem,

m = 1300 kg is the mass of the car

u = 11 m/s is the initial velocity

v = -2.5 m/s is the final velocity (negative, since it is in the opposite direction)

Substituting, we find

[tex]I=(1300)(-2.5-11)=-17,550 kg m/s[/tex]

So the closest choice is

-18,000 kg m/s

Learn more about impulse and change in momentum:

brainly.com/question/9484203

#LearnwithBrainly

A ledge on a building is 20 m above the ground. A taut rope attached to a 4.0 kg can of paint sitting on the ledge passes up over a pulley and straight down to a 3.0 kg can of nails on the ground. If the can of paint is accidently knocked off the ledge, what time interval does a carpenter have to catch the can before it smashes on the floor?

Answers

Answer:

 t = 5.4 s

Explanation:

from the question we are given :

height (s) = 20 m

mass of paint (Mp) = 4 kg

mass of nails (Mn) = 3 kg

acceleration due to gravity (g) = 9.8 m/s^{2}

The net force accelerating the can of paint should be equal to the difference in weight of the can of paint and the can of nails.

            weight of nails = mass of nails x g = 3 x 9.8 = 29.4 N

            weight of paint = mass nails x g = 4 x 9.8 = 39.2 N

             net force = 39.2 - 29.4 = 9.8 N

net force = total mass x acceleration

             9.8 = (3 +4) x a

              a = 1.4 m/s^{2}

from S = Ut + 0.5at^{2}  we can get  the time the carpenter has to catch the nails

          where U is the initial velocity and is 0 since the can was initially at            

            rest

           20 = (0 x t) + (0.5 x 1.4 x t^{2})

            20 = 0.7 x t^{2}

             t^{2} = 28.6

             t = 5.4 s

                   

         

A neutral group of atoms held together by covalent bonds is a

Answers

Answer:

Molecule

Explanation:

A molecule is a particle made up of two or more atoms held together by chemical bonds. A molecule is different from an ion because it does not carries a charge. Molecules are chemically bonded together by either covalent bonding or ionic bonding. A covalent bond involves the sharing of electron pairs between atoms. Examples of molecule with covalent bonding include H₂ and NH₃ . Therefore, a neutral group of atoms held together by covalent bonds is a molecule.

Final answer:

A neutral group of atoms held together by covalent bonds is called a molecule. This can involve same elements, as in the molecule H2, or different elements, as in chemical compounds like H2O or CH4. These molecules or compounds form when atoms share electrons via covalent bonds, creating a stable and typically less reactive group.

Explanation:

A neutral group of atoms held together by covalent bonds is referred to as a molecule. Covalent bonds form when atoms share electrons rather than transfer them. This electrical attraction holds the atoms together, creating a stable group typically less reactive than its component atoms when separated. For instance, a single molecule of hydrogen gas, represented as H2, consists of two hydrogen atoms bonded covalently.

Molecules may comprise atoms of the same element, as in H2, or different elements, as in a chemical compound like water (H2O) or methane (CH4). In such compounds, more than two atoms are held together by covalent bonds. These compounds are discrete, neutral, and often exist as gases, low-boiling liquids, or low-melting solids under normal conditions, although exceptions exist.

Learn more about Covalent Bonds here:

https://brainly.com/question/19382448

#SPJ3

A scientist is examining an unknown solid. Which procedure would most likely help determine a chemical property of the substance?

a. heating it to find the temperature at which it melts
b. exposing it to a flame to see if it catches on fire
c. hitting it with a hammer to determine if it breaks or bends
d. placing it in water to find out whether or not it dissolves

Answers

Answer:

b. exposing it to a flame to see if it catches on fire

Explanation:

The Procedure will most likely help to determine a chemical property of  substance is : exposing material to a flame to see if it catches on fire Chemical property is the characteristic that a substance has that differentiate it from another substance. The most common charatcteristics that most scientists wanted to know are : - It's flammability - It's radioactivity - Its toxicity By throwing the object into fire, we will easily find out these 3 characteristics

Hence the correct answer is b. exposing it to a flame to see if it catches on fire.

Answer:

Exposing it to a flame to see if it catches on fire

Explanation:

This is known as the flame test; The flame test is used to visually determine the identity of an unknown metal ions in a compound.

With the help of the flame test, the scientist can make use it as a qualitative test that guides him in making decision when trying to pinpoint the identity of the solid.

When the solid is exposed to flame, there may be a characteristic color given off that is visible to the naked eye (Note: Not all solids give flame colors).

The colors observed during the flame test result from the excitement of the electrons caused by the increased temperature. When the atoms of the electron are excited, for instance by, their electrons are able to move from their ground state to higher energy levels.

With this, the scientist can draw a valid conclusion.

A 22 kg solid door is 220 cm tall, 91 cm wide. a) What is the door's moment of inertia for rotation about a vertical axis inside the door, 15 cm from one edge? b) What is the door's moment of inertia for rotation about a vertical axis inside the door, 15 cm from one edge?

Answers

Answer

given,

mass of the solid door = 22 Kg

dimension of door = 220 cm x 91 cm

moment of inertia about the hinge

   [tex]I = \dfrac{1}{3}Mr^2[/tex]

r is the distance from the one edge which is equal to 91 cm or 0.91 m

   [tex]I = \dfrac{1}{3}\times 22 \times 0.91^2[/tex]

   [tex]I = 6.073\ kg m^2[/tex]

Moment of inertia about center for rectangular gate is equal to

   [tex]I_{CM} = \dfrac{1}{12}Mr^2[/tex]

moment of inertia for rotation about a vertical axis inside the door, 15 cm from one edge

   [tex]I = I_{CM} + MR^2[/tex]

   [tex]I = I_{CM} + M(\dfrac{91}{2}- 15)^2[/tex]

   [tex]I = \dfrac{1}{12}Mr^2+ M(0.0930)[/tex]

  [tex]I = \dfrac{1}{12}\times 22 \times 0.91^2+ 22 \times (0.093)[/tex]

  [tex]I = 3.56\ Kg m^2[/tex]

Final answer:

The question asks about the moment of inertia of a door with given dimensions, rotating about an axis 15 cm from one edge. The moment of inertia is calculated using the formula for a rectangular slab and then using the Parallel Axis Theorem, allowing for the axis to be moved from the center of mass to 15 cm from the edge.

Explanation:

The question pertains to the computation of the moment of inertia of the door about a vertical axis inside the door, 15 cm from one edge twice. The moment of inertia regarding an axis can be deduced from the moment of inertia regarding a parallel axis that passes through the center of mass. The formula for the moment of inertia of a rectangular slab about an axis through its center and perpendicular to the slab is Icm = M(H² + W²)/12, where M is the door’s mass, H is the height, and W is the width.

 

For the calculation specifically 15 cm from the one edge, the Parallel Axis Theorem will need to be applied which declares I = Icm + MD², where D is the distance from the center of mass to the new axis, which considering this scenario is W/2 + 15 cm. After the computation of Icm and replacing the necessary values in, the moment of inertia for the both asked instances are procured.

Learn more about Moment of Inertia here:

https://brainly.com/question/30051108

#SPJ12

An air bubble has a volume of 1.70 cm³ when it is released by a submarine 115 m below the surface of a lake. What is the volume of the bubble when it reaches the surface? Assume the temperature and the number of air molecules in the bubble remain constant during its ascent.

Answers

Final answer:

The volume of the air bubble when it reaches the surface is 101.7 cm³.

Explanation:

To solve this problem, we can use Boyle's Law, which states that the volume of a gas is inversely proportional to its pressure, assuming the temperature and number of gas molecules remain constant.

Given that the air bubble is released at a depth of 115 m below the surface and the volume at that depth is 1.70 cm³, we need to find the volume at the surface.

Since the pressure at the surface is 1 atm, we can set up the following equation:

P1V1 = P2V2

Where P1 is the pressure at depth, V1 is the volume at depth, P2 is the pressure at the surface, and V2 is the volume at the surface.

Substituting the given values:

(6.01 × 107 Pa) × (1.70 × 10-6 m3) = (1 atm) × V2

Simplifying and solving for V2, we find:

V2 = (6.01 × 107 Pa × 1.70 × 10-6 m3) / (1 atm)

Converting to cm³, we get:

V2 = 101.7 cm³

Therefore, the volume of the air bubble when it reaches the surface is 101.7 cm³.

A car with a mass of 1.50 X 10^3 kg starts from rest and accelerates to a speed of 18.0 m/s in 12.0 s. Assume that the force of resistance remains constant at 400.0 N during this time. what is the average power developed by the car's engine?

Answers

The average power is 20.3 kW

Explanation:

First of all, we calculate the work done on the car: the work-energy theorem states that the work done on the car is equal to the change in kinetic energy of the car, so we have

[tex]W=K_f - K_i = \frac{1}{2}mv^2-\frac{1}{2}mu^2[/tex]

where

W is the work done

[tex]K_i, K_f[/tex] are the initial and final kinetic energy of the car

[tex]m=1.50\cdot 10^3 kg = 1500 kg[/tex] is the mass of the car

u = 0 is the initial velocity

v = 18.0 m/s is the final velocity

Substituting,

[tex]W=\frac{1}{2}(1500)(18)^2=2.43\cdot 10^5 J[/tex]

Now we can find the average power developed by the car's engine, which is given by

[tex]P=\frac{W}{t}[/tex]

where

[tex]W=2.43\cdot 10^5 J[/tex] is the work done

t = 12.0 s is the time taken

Substituting,

[tex]P=\frac{2.43\cdot 10^5 J}{12.0}=20,250 W = 20.3 kW[/tex]

Learn more about power:

brainly.com/question/7956557

#LearnwithBrainly

In a laundromat, during the spin-dry cycle of a washer, the rotating tub goes from rest to its maximum angular speed of 9.2 rev/s in 7.3 s. You lift the lid of the washer and notice that the tub decelerates and comes to a stop in 12.0 s. Assuming that the tub rotates with constant angular acceleration while it is starting and stopping, determine the total number of revolutions undergone by the tub during this entire time interval.

Answers

Answer:

90 revolutions

Explanation:

t = Time taken

[tex]\omega_f[/tex] = Final angular velocity

[tex]\omega_i[/tex] = Initial angular velocity

[tex]\alpha[/tex] = Angular acceleration

[tex]\theta[/tex] = Number of rotation

Equation of rotational motion

[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{9.2-0}{7.3}\\\Rightarrow a=1.26027\ rev/s^2[/tex]

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}\\\Rightarrow \theta=\frac{9.2^2-0^2}{2\times 1.26027}\\\Rightarrow \theta=33.5801\ rev[/tex]

Number of revolutions in the 7.3 seconds is 33.5801

[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\frac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\frac{0-9.2}{12}\\\Rightarrow a=-0.76\ rev/s^2[/tex]

[tex]\omega_f^2-\omega_i^2=2\alpha \theta\\\Rightarrow \theta=\frac{\omega_f^2-\omega_i^2}{2\alpha}\\\Rightarrow \theta=\frac{0^2-9.2^2}{2\times -0.76}\\\Rightarrow \theta=55.68421\ rev[/tex]

Number of revolutions in the 12 seconds is 55.68421

Total total number of revolutions is 33.5801+55.68421 = 89.26431 = 90 revolutions

Final answer:

The washer undergoes an equivalent of approximately 75.36 revolutions during its start-stop cycle, assuming constant angular acceleration.

Explanation:

The problem involves the concepts of angular speed and acceleration in physics. Firstly, convert the angular speed from rev/s to rad/s. 1 rev = 2π rad, so 9.2 rev/s = 57.96 rad/s. The angular acceleration for the washer starting is the change in angular speed over time, so (57.96 rad/s - 0 rad/s) / 7.3 s = 7.94 rad/s².

For the washer stopping, the acceleration is (0 rad/s - 57.96 rad/s) / 12.0 s = -4.83 rad/s².

To find total revolutions we use the equation θ = θ0 + ω0t + 0.5αt². θ0 and ω0 are zero since washer starts at rest. The total revolutions for the starting process: 0.5 * 7.94 rad/s² * (7.3 s)² = 212.45 rad = 33.79 rev. For the stopping process with similar computations get 41.57 rev. Hence, total revolutions = 33.79 rev + 41.57 rev = 75.36 rev.

Learn more about Angular Speed and Acceleration here:

https://brainly.com/question/30238727

#SPJ11

An astronaut on the Venus attaches a small brass ball to a 1.00-m length of string and makes a simple pendulum. She times 20 complete swings in a time of 42.1 seconds. From this measurement she calculates the acceleration due to gravity on the Venus.
Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

8.91 [tex]\frac{m}{sec^{2} }[/tex]

Explanation:

Given

length of pendulum=1mit takes 42.1 secs to complete 20 swings,⇒1 swing takes, T[tex]=\frac{42.1}{20}=2.105sec[/tex]

We know the formula

[tex]g=4\times(pie)^{2}\times \frac{L}{T^{2} }[/tex]

Where

g is the gravitational force experienced by the pendulumT is the time period for on oscillationL length of pendulum

[tex]g=4\times(pie)^{2} \times \frac{L}{T^{2}}[/tex]

[tex]g= 39.47842\times \frac{1}{2.105^{2} }[/tex]

[tex]g=8.91 \frac{m}{sec^{2} }sec[/tex]

Final answer:

The acceleration due to gravity on Venus is 0.6 m/s².

Explanation:

To calculate the acceleration due to gravity on Venus, we can use the formula for the period of a simple pendulum:

T = 2π√(L/g)

Where T is the period of the pendulum, L is the length of the string, and g is the acceleration due to gravity.

Given that the period is 42.1 seconds and the length is 1.00 meter,To calculate the acceleration due to gravity on Venus, we can use the formula for the period of a simple pendulum: we can rearrange the formula to solve for g:

g = (4π²L)/T²

Plugging in the values, we get:

g = (4π²*1.00)/(42.1)² = 0.6 m/s²

Therefore, the acceleration due to gravity on Venus is 0.6 m/s².

Even though ____ welding is slower and requires a higher skill level as compared to other manual welding processes, it is still in demand because it can be used to make extremely high-quality welds in applications where weld integrity is critical.​
a-OAWb-SMAWc-GMAWd-GTAW

Answers

Even though GTAW welding is slower and requires a higher skill level as compared to other manual welding processes, it is still in demand because it can be used to make extremely high-quality welds in applications where weld integrity is critical.​

Answer: Option D

Explanation:

Among the various sorts of welding forms accessible today, gas tungsten bend welding, or GTAW is commonly viewed as the most moving welding technique to ace. In spite of the fact that it is additional challenging than other welding strategies, in any event, when drilled with the consideration of a specialist, the improved quality and nature of welds created with GTAW.

It can offer a pragmatic option in contrast to less complex welding techniques, especially for restricted segments of hardened steel and non-ferrous metals, for example, copper, aluminium, and magnesium combinations.

One of the principal modern applications for GTAW welding started inside the aeronautic trade. Current fields where GTAW abilities are most sought after incorporate the ship fitting exchange, as aluminium welding assumes a significant job in the development of a ship's superstructure, and the assembling and fix of bikes.

Two kids create a makeshift seesaw by setting a 4-m long uniform plank on a saw horse. The saw horse is 0.5 m to the left of the center of mass of the plank. The child of mass m1 = 48 kg sits at the left end of the plank. The child of mass m2 = 35 kg sits 1 m to the right of the center of mass of the plank. What is the mass of the plank?

Answers

Answer:

39kg

Explanation:

As this system is balanced on the saw horse, the total net torque by the children and plank gravity must be 0

Since child 2 and the plank center of mass are both on the right of the saw horse, their torque is in opposite direction, so so are their signs:

[tex]T_1 - T_p - T_2 = 0[/tex]

[tex]m_1gL_1 - m_pgL_p - m_2gL_2 = 0[/tex]

[tex]m_1L_1 - m_pL_p - m_2L_2 = 0[/tex]

where m1 = 48 kg is the mass of the first child on the left at L1 = 1.5 m

           mp is the mass of the plank on the right of the saw horse Lp = 0.5 m

           m2 = 35 kg is the mass of the 2nd child on the right at L2 = 1.5 m

Substitute all the parameters above and we get

[tex]48*1.5 - m_p0.5 -35*1.5 = 0[/tex]

[tex]72 - 52.5 = 0.5m_p[/tex]

[tex]19.5 = 0.5m_p[/tex]

[tex]m_p = 39 kg[/tex]

Suppose a certain jet plane creates an intensity level of 124 dB at a distance of 5.01 m. What intensity level does it create on the ground directly underneath it when flying at an altitude of 2.25 km?

Answers

Answer:71 dB

Explanation:

Given

sound Level [tex]\beta _1=124 dB[/tex]

distance [tex]r_1=5.01 m[/tex]

From sound Intensity

[tex]\beta =10dB\log (\frac{I_1}{I_0})[/tex]

[tex]124=10dB\log (\frac{I_1}{I_0})[/tex]

[tex]12.4=\log (\frac{I_1}{I_0})[/tex]

[tex]I_1=(1\times 10^{-12})\times 10^{12.4}[/tex]

[tex]I_1=2.51 W/m^2[/tex]

we know Intensity [tex]I\propto ^\frac{1}{r^2}[/tex]

[tex]I_1r_1^2=I_2r_2^2[/tex]

[tex]I_2=I_1(\frac{r_1}{r_2})^2[/tex]

[tex]I_2=2.51\cdot (\frac{5.01}{2.25\times 10^3})^2[/tex]

[tex]I_2=1.24\times 10^{-5} W/m^2[/tex]

Sound level corresponding to [tex]I_2[/tex]

[tex]\beta _2=10\log (\frac{I_2}{I_0})[/tex]

[tex]\beta _2=10\log (\frac{1.24\times 10^{-5}}{1\times 10^{-12}})[/tex]

[tex]\beta _2=70.93\approx 71 dB[/tex]

Russell drags his suitcase 15.0 M from the door of his house to the car at a constant speed with a horizontal force of 95.0 N. How much work does Russell do to overcome the force of

Answers

The work done is 1425 J

Explanation:

The work done by a force to move an object is given by

[tex]W=Fd cos \theta[/tex]

where

F is the magnitude of the force

d is the displacement

[tex]\theta[/tex] is the angle between the direction of the force and of the displacement

For the suitcase in this problem, we have:

F = 95.0 N is the force applied

d = 15.0 m is the displacement

[tex]\theta=0[/tex], since the force is parallel to the displacement

Substituting, we find

[tex]W=(95.0)(15.0)(cos 0)=1425 J[/tex]

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

Write an expression for a harmonic wave with an amplitude of 0.19 m, a wavelength of 2.6 m, and a period of 1.2 s. The wave is transverse, travels to the right, and has a displacement of 0.19 m at t = 0 and x = 0.

Answers

Answer:

[tex]y = 0.19 sin(5.23 t - 2.42x + \frac{\pi}{2})[/tex]

Explanation:

As we know that the wave equation is given as

[tex]y = A sin(\omega t - k x + \phi_0)[/tex]

now we have

[tex]A = 0.19 m[/tex]

[tex]\lambda = 2.6 m[/tex]

so we have

[tex]k = \frac{2\pi}{\lambda}[/tex]

[tex]k = \frac{2\pi}{2.6}[/tex]

[tex]k = 2.42  per m[/tex]

also we have

[tex]T = 1.2 s[/tex]

so we have

[tex]\omega = \frac{2\pi}{T}[/tex]

[tex]\omega = \frac{2\pi}{1.2}[/tex]

[tex]\omega = 5.23 rad/s[/tex]

now we know that at t = 0 and x = 0 wave is at y = 0.19 m

so we have

[tex]\phi_0 = \frac{\pi}{2}[/tex]

so we have

[tex]y = 0.19 sin(5.23 t - 2.42x + \frac{\pi}{2})[/tex]

When a car drives along a "washboard" road, the regular bumps cause the wheels to oscillate on the springs. (What actually oscillates is each axle assembly, comprising the axle and its two wheels.) Find the speed of my car at which this oscillation resonates, given the following information:

(a) When four 80-kg men climb into my car, the body sinks by a couple of centimeters. Use this to estimate the spring constant k of each of the four springs.
(b) If an axle assembly (axle plus two wheels) has total mass 50 kg, what is the natural frequency of the assembly oscillating on its two springs?
(c) If the bumps on a road are 80 cm apart, at about what speed would these oscillations go into resonance?

Answers

Answer:

a) 40,000 N/m

b) f = 6.37 Hz

c) v = 4,8 m/s

Explanation:

part a)

First in order to estimate the spring constant k, we need to know the expression or formula to use in this case:

k = ΔF / Δx

Where:

ΔF: force that the men puts in the car, in this case, the weight.

Δx: the sinking of the car, which is 2 cm or 0.02 m.

With this data, and knowing that there are four mens, replace the data in the above formula:

W = 80 * 10 = 800 N

This is the weight for 1 man, so the 4 men together would be:

W = 800 * 4 = 3200 N

So, replacing this data in the formula:

k = 3200 / 0.02 = 160,000 N/m

This means that one spring will be:

k' = 160,000 / 4 = 40,000 N/m

b) An axle and two wheels has a mass of 50 kg, so we can assume they have a parallel connection to the car. If this is true, then:

k^n = 2k

To get the frequency, we need to know the angular speed of the car with the following expression:

wo = √k^n / M

M: mass of the wheel and axle, which is 50 kg

k = 40,000 N/m

Replacing the data:

wo = √2 * 40,000 / 50 = 40 rad/s

And the frequency:

f = wo/2π

f = 40 / 2π = 6.37 Hz

c) finally for the speed, we have the time and the distance, so:

V = x * t

The only way to hit bumps at this frequency, is covering the gaps of bumping, about 6 times per second so:

x: distance of 80 cm or 0.8 m

V = 0.8 * 6 =

V = 4.8 m/s

Final answer:

The speed at which these oscillations go into resonance is approximately 12.6 m/s.

Explanation:

(a) To estimate the spring constant k of each of the four springs, we can use Hooke's Law, which states that the force exerted by a spring is proportional to the displacement from its equilibrium position. Mathematically, this can be expressed as:

F = -k * x

where F is the force exerted by the spring, k is the spring constant, and x is the displacement from the equilibrium position.

When four 80-kg men climb into the car, the body sinks by a couple of centimeters. Let's assume this displacement is 2 cm (0.02 m). The force exerted by each spring can be calculated using the weight of the men and Hooke's Law:

F = -k * x

mg = -k * x

k = -mg / x

Substituting the given values, we get:

k = -(80 kg * 9.8 m/s^2) / 0.02 m

k ≈ -39200 N/m

Since the spring constant k is a positive value, we can take the magnitude of the spring constant as:

|k| = 39200 N/m

(b) The natural frequency of the axle assembly oscillating on its two springs can be calculated using the formula for the natural frequency of a simple harmonic oscillator:

f = (1 / (2 * pi)) * sqrt(k / m)

where f is the natural frequency, k is the spring constant, and m is the mass of the axle assembly.

Substituting the given values, we get:

f = (1 / (2 * pi)) * sqrt(39200 N/m / 50 kg)

f ≈ 7.89 Hz

(c) The speed at which these oscillations go into resonance can be calculated using the formula for the resonance frequency of a simple harmonic oscillator:

f_resonance = v / (2 * L)

where f_resonance is the resonance frequency, v is the speed of the car, and L is the distance between the bumps on the road.

Substituting the given values, we get:

7.89 Hz = v / (2 * 0.8 m)

v ≈ 12.6 m/s

So, the speed at which these oscillations go into resonance is approximately 12.6 m/s.

In caring for a 27-year-old male who has a large laceration on his anterior forearm, you have noticed that your pressure dressing has become
saturated with blood. Which of the following should you do next?

a.Remove the saturated dressings and apply a large trauma dressing.
b.Apply an ice pack over the original dressing.
c.Apply a tourniquet.
d.Apply additional dressing material over the top of the original dressing and bandage it in place.

Answers

Answer:

d.Apply additional dressing material over the top of the original dressing and bandage it in place.

Explanation:

Given that a man is having a major wound on his body that is why lot of blood is coming from his body that is why we have to cover that major wound by using some extra dressing material and have to bound that wound .

Attach extra dressing material and bandage it in place over the top of the original dressing.

Therefore the answer is "d"

A time-varying horizontal force F(t) = At4 + Bt2 acts for 0.500 s on a 12.25-kg object, starting at time . In the SI system, A has the numerical value 4.50 and B has the numerical value 8.75. (a) What are the SI units of A and B? (b) What impulse does this force impart to the object? 5) (a) A: N/s4 = kg • m/s6, B: N/s2 = kg • m/s4 (b) 12.9 N • s, horizontally

Answers

Answer:

Part a)

[tex]A = \frac{N}{s^4}[/tex]

[tex]B = \frac{N}{s^2}[/tex]

PART B)

[tex]I = 0.393 Ns[/tex]

Explanation:

PART A)

As we know that the force is given as

[tex]F = At^4 + B t^2[/tex]

here we know that each term of the equation must have same dimensions

so we will have

[tex]At^4 = N[/tex]

[tex]A = \frac{N}{s^4}[/tex]

similarly for other term

[tex]Bt^2 = N[/tex]

[tex]B = \frac{N}{s^2}[/tex]

PART B)

Impulse given by the force is given as

[tex]impulse = \int Fdt[/tex]

now we have

[tex]I = \int (At^4 + Bt^2)dt[/tex]

[tex]I = \int (4.50 t^4 + 8.75 t^2) dt[/tex]

[tex]I = \frac{4.50(0.5)^5}{5} + \frac{8.75(0.5)^3}{3}[/tex]

[tex]I = 0.028 + 0.36[/tex]

[tex]I = 0.393 Ns[/tex]

The SI units of the constants A and B are kg·m/s·6 and kg·m/s·4 respectively, essential for ensuring dimensional consistency in the force equation. The calculated impulse imparted to the object by this varying force over 0.500 s is 12.9 N·s.

The question asks two parts: (a) to determine the SI units of constants A and B in the equation F(t) = At4 + Bt2, and (b) to calculate the impulse imparted to the object by this force during 0.500 s. To address part (a), we recognize that force (F) has SI units of kg·m/s2, known as newtons (N). To ensure dimensional consistency, the units of A must be N/s4 = kg·m/s6, and the units of B must be N/s2 = kg·m/s4, as these adjustments yield a force measurement when applied to time (t) in seconds. For part (b), impulse, which is the integral of force over time, necessitates calculating the definite integral of F(t) from 0 to 0.500 s. Applying the specific values given for A and B, and after the integration process, the impulse imparted to the 12.25-kg object is found to be 12.9 N·s, horizontally.

Other Questions
A box with a weight of 50 N rests on a horizontal surface. A person pulls horizontally on it with a force of 10 N and it does not move. To start it moving, a second person pulls vertically upward on the box. If the coefficient of static friction is 0.4, what is the smallest vertical force for which the box moves? On the My M&Ms website buyers can place custom orders for M&Ms. They can choose their own colors, put a personalized text message on the candies, and even upload a photo to be placed on each M&M. Which targeting strategy is M&M using for My M&Ms?A. Undifferentiated marketingB. Differentiated marketingC. Concentrated marketingD. Local marketingE. Individual marketing is (1, 3), (2, 5), (2, 7), (4, 9) a function Dell did not reveal Intel's "additional rebates" as an unusual cost reduction that might not continue in the future. A study by Dichev et al. revealed the beliefs of some 169 CFOS. CFOS believed that earnings quality is high when they are what? Predictable and accrued Sustainable and accrued Sustainable and backed by cash flow Predictable and backed by cash flow A fish tank contains tetras,guppies,and minnows. The ratio of tetras of guppies.Is 4:2.The ratio is minnows of guppies is 1:3. There are 60 fish on the fish tank. How many more tetras are there then minnows . 1.what does Christmas mean to you? 2)How do you celebrate Christmas in Australia? 3)What countries celebrate Christmas? 3)What does Christmas mean to Chinese people? 4)How do you think Chinese people celebrate Christmas? which value is equivalent to the expression 2^3 + 3^4 The concentration of ions in the chemical environment surrounding the neurons must be tightly regulated for neurons to function properly. Which of the following cells is most responsible for this?A) satellite cellsB) astrocytesC) Schwann cellsD) oligodendrocytes A local marketing company wants to estimate the proportion of consumers in the Oconee County area who would react favorably to a marketing campaign. Further, the company wants the estimate to have a margin of error of no more than 4 percent with 90 percent confidence. Of the following, which is the closest to the minimum number of consumers needed to obtain the estimate with the desired precision? A. 65 B. 93 C. 423 D. 601 +A student earned 30 out of 35points on an exam. C What percentof the total points did the studentearn? Round to the nearestpercentw A group of uniform rental companies agreed that they would not charge less than $5 per week per uniform even before the newly opened chicken plant contacted them for bids. This is an example of: price discrimination. a contrivance. collusion. business defamation. a conspiracy. Picture 1:Picture 2Examine the two environment sculptures photographed above.For each, name its title or its description, and the type of environment sculpture it is. How does each relate to its individualenvironmentSubmit In a certain state's lottery, 45 balls numbered 1 through 45 are placed in a machine and seven of them are drawn at random. If the seven numbers drawn match the numbers that a player had chosen, the player wins $1,000,000. In this lottery, the order in which the numbers are drawn does not matter. Compute the probability that you win the million-dollar prize if you purchase a single lottery ticket. Write your answer as a reduced fraction. P P (win) = A single lottery ticket costs $2. Compute the Expected Value, to the state, if 10,000 lottery tickets are sold. Round your answer to the nearest dollar. Answer: $ A single lottery ticket costs $2. Compute the Expected Value, to you, if you purchase 10,000 lottery tickets. Round your answer to the nearest dollar. Answer: $ It is important to remember that behind every hypothesis statement, there are assumptions, knowledge, and theories. When developing their hypothesis, McCarthy and her colleagues started by considering the chemical equation for photosynthesis.6CO2 + 6H2O + Energy C6H12O6 +6O2Carbon dioxide + Water + Sunlight Carbohydrate + OxygenAs photosynthesis occurs, the reactants and energy on the left are used, generating the products on the right. A plant with access to more reactants can grow more than a plant with access to fewer reactants.Suppose you are able to manipulate a plant's access to components in the photosynthesis equation. Drag each label to the appropriate bin to predict how that action will affect plant growth. For each increase or decrease, assume that every other component of the photosynthesis equation is unlimited. ______ are found in the stroma of chloroplasts small coins that provide energy. numerous mitochondrial membranes. stacks of thylakoids called grana. organelles called eukaryotes When forecasting fixed asset requirements, the projected fixed asset balance will A. always increase proportionally with sales. B. not increase proportionally if excess capacity exists. C. not increase proportionally with sales if the existing level of fixed assets is sufficient to support current sales. D. remain the same since the balance is fixed. what are 3 themes that hamlet demonstrate through out the play define token. Give examples of 5 tokens in any programming language A child is sitting on the seat of a swing with ropes 5 m long. Her father pulls the swing back until the ropes make a 30o angle with the vertical and then releases the swing. If air resistance is neglected, what is the speed of the child at the bottom of the arc of the swing when the ropes are vertical? find a polynomial of degree 3 with real cofficients and zeros of -3,-1,4 for which f(-2)=24