Answer:
22
Step-by-step explanation:
With a kite, the top 2 segments are always equal, and the bottom 2 segments are always equal. Also, if you look at the little red lines on the sides, you can see that AD and CD have 2, that means they are the same length
(Also can you please rate this answer as brainliest? I need it to level up.)
Answer:
22 units
Step-by-step explanation:
AD = CD because the two little line marks means they are equal to each other
AD = 22
Which formula gives the area of a parallelogram? (3)
Answer:
A = bh (the last one)
Step-by-step explanation:
To find the area of a parallelogram, multiply the base by the height. The formula is: A = B * H where B is the base, H is the height, and * means multiply. The base and height of a parallelogram must be perpendicular.
Answer:
A=bh
Step-by-step explanation:
Need help in number 9. Thanks for helping
Answer:
B.
Step-by-step explanation:
The range is just the list of y-coordinates while the domain is just a list of the x-coordinates when it comes to a list of points.
So anyways all your y-coordinates are -2,-1,0,1,2. So that is your range.
Answer:
B.
Step-by-step explanation:
Classify the polynomial -3x5 by degree.
cubic
quadratic
quintic
constant
Answer:
quintic
Step-by-step explanation:
I will assume you mean
-3x^5
This is to the degree 5, since it is to the 5th power
cubic 3rd power
quadratic 2nd power
quintic 5th power
constant 0th power
Answer:
Quintic polynomial is a polynomial with degree 5
Step-by-step explanation:
[tex]-3x^5[/tex]
Given polynomial has degree 5 . Its a 5th degree polynomial
Cubic polynomial has degree 3
Quadratic polynomial has degree 2
Constant is a polynomial with a number without any variable like 2 or 4 or 15
Quintic polynomial is a polynomial with degree 5. Given polynomial has degree 5 . So it is Quintic
Tracey pays $18 to enter a theme park, plus $2 for each ride. Which of the following correctly describes the slope? A. she must pay a flat rate of $18. B. Her total cost increases by $2, for each ride purchased. C. Her total cost is at least $20. D. her total cost increased by $3, for each ride purchased
Answer:
B.
Step-by-step explanation:
You pay a one time fee of 18 dollars and then 2 dollars per ride.
The expression for that is 18+2r where r represents the number of rides and the output of (18+2r) is amount you spend.
f(r)=2r+18 when compared to f(x)=mx+b where m is slope and b is y-intercept
you should see that the slope is $2 per ride.
B. is the option that says this.
Answer: Option B
Her total cost increases by $2, for each ride purchased
Step-by-step explanation:
We know that $ 18 is the cost of the ticket. We do not know exactly how many trips you will make, but we know that the cost is $ 2 for each ride.
If we call "x" the number of rides then we know that the total cost "y" is:
[tex]y = 2x + 18[/tex]
Note that the cost increases by $2 for each ride
The equation of a line has the following form
[tex]y = mx + b[/tex]
Where m is the slope of the line.
In this case we have the following equation
[tex]y = 2x + 18[/tex]
Therefore [tex]m = 2[/tex]. Then the slope is the cost of $2 for each ride
Finally the answer is the option B. Her total cost increases by $2, for each ride purchased
A square base of a pyramid has the dimensions 5 yards by 5 yards. The height of one of the triangular faces is 12 yards. How can you find the surface area of the pyramid?
Answer:
145 yards squared
Step-by-step explanation:
So the area of the base is area of a square with side length of 5 yards [tex]5*5=25[/tex]
The area of one triangular face base times height divided by two and then simply multiplied by 4 because there are 4 triangular faces.
[tex](\frac{5*12}{2} )*4 = 120[/tex]
So the total surface area is [tex]25+120=145[/tex] yards squared
Answer:
First, draw and label a net of the pyramid. The triangular faces have a base of 5 yards and a height of 12 yards. Find the area of each of the faces. The square base has an area of 25 yd2. Each of the triangular faces has an area of 30 yd2. Add the areas together to find the surface area: 25 + 30 + 30 + 30 + 30 = 145 yd2.
Step-by-step explanation:
17
Find the x-intercepts of the parabola with vertex (1,-9) and y-intercept at (0,-6).
A. (-1,0), (3,0)
B. (-0.73,0), (2.73,0)
C. (-1.48,0), (2.48,0)
D. (-4.67,0), (1.67,0)
let's firstly find the equation of the parabola, bearing in mind that x-intercepts or solutions/zeros/roots means y = 0.
[tex]\bf ~~~~~~\textit{vertical parabola vertex form} \\\\ y=a(x- h)^2+ k\qquad \begin{cases} \stackrel{vertex}{(h,k)} \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=1\\ k=-9 \end{cases}\implies y=a(x-1)^2-9 \\\\\\ \textit{we also know that } \begin{cases} x=0\\ y=-6 \end{cases}\implies -6=a(0-1)^2-9\implies 3=a(-1)^2[/tex]
[tex]\bf 3=a\qquad \qquad \textit{therefore}\qquad \qquad \boxed{y=3(x-1)^2-9} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{y}{0}=3(x-1)^2-9\implies 9=3(x-1)^2\implies \cfrac{9}{3}=(x-1)^2\implies 3=(x-1)^2 \\\\\\ \pm\sqrt{3}=x-1\implies \pm\sqrt{3}+1=x\implies x= \begin{cases} \sqrt{3}+1\\ -\sqrt{3}+1 \end{cases}\implies x\approx \begin{cases} 2.73\\ -0.73 \end{cases}[/tex]
If f = {(4, 2), (6, 1), (8, 4), (10, 2), (12,5)}, what is the range?
Range means all the y values included on the function/relation on the graph. In this case the y values/range is:
{1, 2, 4, 5}
^^^Remember to order them from smallest to largest and to a number only once if there are more then one of that number included in the range.
Hope this helped!
~Just a girl in love with Shawn Mendes
I need help ASAP please someone help me
Answer:
I know it has nothing to do with Christianity, so C and D are wrong. It's either A or B, but I'm more with the A. But I'm not sure so...
In right triangle ABC, B is the right triangle and m C = 30. If AC = 10 what is AB?
Using the law of sins:
Sin(angle) = Opposite Leg / Hypotenuse
Sin(30) = AB /10
Solve for AB:
AB = 10 * sin(30)
AB = 10 * 1/2
AB = 5
The answer is A.
There are 321 visitors at the library. Each library table seats 12 people. How many tables are needed to seat all of the visitors?
(Explain the process of how you got your answers)
Hello.
The answer is: 27
To get this answer you can divide 321 and 12. But that will give you an uneven number such as 26.75. And because you cant have 26.7 tables you will wound it up to be 27 tables.
Answer:
321÷12=26.75
answer: 27
Step-by-step explanation:
since you know that each table can only seat 12 people and there is 321 visitors you divide 321 by 12 which you get 26.75, but u cant have 26.75 tables so you round up to 27 so you can seat all the visitors because if you round down to 26, 9 people won't have a seat.
One angle in a triangle has a measure that is three times as large as the smallest angle. The measure of the third angle is 40 degrees more than that of the smallest angle. Find the measure of the LARGEST angle.
Answer:
84°
Step-by-step explanation:
smallest angle=x
3x=2nd angle
x+40=3rd angle
angles in a triangle add up to 180 degrees so
5x+40=180
5x=140
x=28
largest angle = 3x
so 3 x 28 = 84 degrees
The largest angle is 84 degrees
Answer:
Largest angle = 84°
Step-by-step explanation:
According to the given information, we are assuming the smallest angle of the triangle to be [tex]x[/tex] degrees, next angle to be [tex]3x[/tex] degrees and the last angle to be [tex]x+40[/tex] degrees.
We know that all three angles of a triangle add up to 180 degrees so:
[tex]x+3x+x+40=180[/tex]
[tex]5x=140[/tex]
[tex]x=28[/tex]
Smallest angle = 28°
Next angle = [tex]3(28)[/tex] = 84°
Last angle = [tex]28+40[/tex] = 68°
Therefore, the largest angle = 84°
F(x)=x^2 What is F(x)+f(x)+f(x)
Answer:
Step-by-step explanation:
F(x)=x^2 What is F(x)+F(x)+F(x) =3F(x) =3x²
Answer:
[tex]F(x)+F(x)+F(x)[/tex] = [tex]3x^{2}[/tex]
Step-by-step explanation:
Given is :
[tex]F(x)=x^{2}[/tex]
We have to find: [tex]F(x)+F(x)+F(x)[/tex]
This means we have to find [tex]x^{2} +x^{2} +x^{2}[/tex]
This becomes [tex]3x^{2}[/tex]
Hence, [tex]F(x)+F(x)+F(x)[/tex] = [tex]3x^{2}[/tex]
Les tried to evaluate 600 x 4 step by step.
600 X 4
Step 1
= 10 x 6 x 4
Step 2
= 10 x 24
Step 3
= 240
Find Les's mistake.
Choose 1 answer:
@ Step 1
B Step 2
C Step 3
DLes did not make a mistake.
Answer:
A Step 1
Step-by-step explanation:
600 X 4
6*100 *4
The mistake is in the first line
600 = 6*100 not 6*10
PLEASE HELPP!!
The graph of y = ax^2 + bx + c is shown below. Determine the solution set of 0 = ax^2 + bx + c.
Check the picture below.
something noteworthy to look at is that the graph doesn't cross the x-axis at -2, it simply comes down to it, touches it and it goes back up, it simply bounces off the x-axis, whenever that happens, that zero/solution/root has an even multiplicity.
when 0 = ax² + bx + c, we notice that y = 0, and for the graph that happens there, at x = -2, but that solution has an even multiplicity, and since the equation is a 2nd degree polynomial, thus x = -2 is there twice, namely
x = -2
x - 2 = 0
(x - 2)² = 0 <---- multiplicity of 2.
Answer:
-2
Step-by-step explanation:
:)
Which of the following are solutions to the equation below?
Check all that apply.
5x2 - 2x + 16 = 4x2 + 6x
O A. -6
O B. 6
O C.-3
D. -4
E 4
O
F. 18
Answer:
E. x = 4Step-by-step explanation:
[tex]5x^2-2x+16=4x^2+6x\qquad\text{subtract}\ 4x^2\ \text{from both sides}\\\\x^2-2x+16=6x\qquad\text{subtract}\ 6x\ \text{from both sides}\\\\x^2-8x+16=0\\\\\text{Put the values of}\ x\ \text{to the equation and check the equality:}\\\\A.\ x=-6\\\\(-6)^2-8(-6)+16=36+48+16=100\neq0\\\\B.\ x=6\\\\6^2-8(6)+16=36-48+16=4\neq0\\\\C.\ x=-3\\\\(-3)^2-8(-3)+16=9+24+16=49\neq0\\\\D.\ x=-4\\\\(-4)^2-8(-4)+16=16+32+16=64\neq0\\\\E.\ x=4\\\\4^2-8(4)+16=16-32+16=0\\\\F.\ x=18\\\\18^2-8(16)+16=324-128+16=212\neq0[/tex]
Answer:
E
Step-by-step explanation:
Find the length of CZ
Think for a minute.
CA = 17, right?
CZ is the remaining part of CA.
ZA = 16
CZ = CA - ZA
CZ = 17 - 16
CZ = 1
Did you follow?
Answer:
D 1
Step-by-step explanation:
CA = CZ + ZA
WE know CA = 17 and ZA = 16
17 = CZ + 16
Subtract 16 from each side
17-16 = CZ +16-16
1 = CZ
What is the inverse of the function f(x) = 2x + 1?
Answer:
The inverse f-1(x) = ( x - 2) / 2.
Step-by-step explanation:
Let 2x + 1 = y
Now find x in terms of y:
2x = y - 1
x = (y - 1) / 2
Replace the x by the inverse f-1(x) and the y by x, so we have:
f-1(x) = ( x - 2) / 2.
[tex]f(x)=2x+1\\\\y=2x+1\\2x=y-1\\x=\dfrac{y-1}{2}\\\\f^{-1}(x)=\dfrac{x-1}{2}[/tex]
Select the correct answer from each drop-down menu.
consider the equation
-22 + 3x
___________ = 2
3x + 7
How do you begin isolating the variable x to one side of the equation?
A) Multiply both sides by 3x + 7.
Reset
B) Divide both sides by 3x + 7.
C) Multiply both sides by -22 + 3x.
D) Divide both sides by -22 + 3x.
The solution of the equation is
A) -12
B) -9
C) -6
D) -3
Answer:
A)Multiply both sides by 3x + 7.
Reset
A)the solution of the equation is x=-12
Step-by-step explanation:
Hello
let
to begin isolating we must multiply both sides by 3x + 7.
Reset
this way
[tex]\frac{-22+3x}{3x+7}=2\\\frac{-22+3x}{3x+7}*(3x+7)=2*(3x+7)\\-22+3x=2*(3x+7)[/tex]
let´s continue to find x
[tex]\\-22+3x=2*(3x+7)\\-22+3x=6x+14\\-22-14=6x-3x\\-36=3x\\x=\frac{-36}{3}\\ x=-12[/tex]
the solution of the equation is x=-12
have a great day
Which is the true solution to the radical equation y + 1 =
-2y-3?
Which is a possible turning point for the continuous function f(x)? (–3, –4) (–2, –1) (0, –5) (1, –8)
Answer:
That would be the point(-2, -1)
Step-by-step explanation:
The graph rises between (-3, -4) and (-2, -1) then falls as it passes through the last 2 points ( y = -1 goes to y= -5 and then to y = -8 as x values move to the right).
Answer: (–2, 1)
Step-by-step explanation:
just did this
what is (7x6)+(4x10)
Answer:
the answer is 82
Step-by-step explanation:
Answer:
82
Step-by-step explanation:
just use a calculator
Which fact helps you prove the isosceles triangle theorem, which states that the base angles of any isoceles triangle have equal measure?
Answer:
If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.
Step-by-step explanation:
The fact that one angle of a triangle is larger than the other angle and the side that is opposite the larger angle is longer than the side which is opposite the smaller angle proves the isosceles triangle theorem.
This theorem proves that the base angles of any isosceles triangle have equal measure.
If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.
e2020
Could anyone answer and also provide explanation.
Answer:
b
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
(a)
2x + 3y = 1 ( subtract 2x from both sides )
3y = - 2x + 1 ( divide all terms by 3 )
y = - [tex]\frac{2}{3}[/tex] x + [tex]\frac{1}{3}[/tex] ← in slope- intercept form
with y- intercept c = [tex]\frac{1}{3}[/tex] ← does not pass through the origin
(b)
2x + 3y = 0 ( subtract 2x from both sides )
3y = - 2x + 0 ( dividing all sides by 3 ), gives
y = - [tex]\frac{2}{3}[/tex] x + 0 ← in slope- intercept form
with y- intercept c = 0 ← passes through the origin
(c)
2x + 3y = 6 ( subtract 2x from both sides )
3y = - 2x + 6 ( divide all terms by 3 )
y = - [tex]\frac{2}{3}[/tex] x + 2
with y- intercept c = 2 ← does not pass through the origin
Find an equation for the line perpendicular to y=−15x+3 with x-intercept at x = 3.
Write your answer in the form y=mx+b
bearing in mind that perpendicular lines have negative reciprocal slopes, let's find the slope of the provided line then
[tex]\bf y=\stackrel{\stackrel{m}{\downarrow }}{-15}x+3\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{-15\implies -\cfrac{15}{1}}\qquad \qquad \qquad \stackrel{reciprocal}{-\cfrac{1}{15}}\qquad \stackrel{negative~reciprocal}{+\cfrac{1}{15}\implies \cfrac{1}{15}}}[/tex]
well, we know the x-intercept is at x = 3, recall when a graph intercepts the x-axis y = 0, so this point is (3 , 0). Then we're really looking for the equation of a line whose slope is 1/5 and runs through (3 , 0).
[tex]\bf (\stackrel{x_1}{3}~,~\stackrel{y_1}{0})~\hspace{10em} slope = m\implies \cfrac{1}{5} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-0=\cfrac{1}{5}(x-3)\implies y=\cfrac{1}{5}x-\cfrac{3}{5}[/tex]
Graph y=lx-3l please answer fast
Answer:
(see attachment)
Step-by-step explanation:
With an absolute value graph, if the number is inside the brackets you move the graph in the opposite direction.
(Btw you should use Desmos. That's what I use all the time and it is a LIFESAVER)
(Also can I please have Brainliest, I need it to level up)
The graph of the function y = |x - 3| is added as an attachment
Sketching the graph of the functionFrom the question, we have the following parameters that can be used in our computation:
y = |x - 3|
The above function is an absolute function that has been transformed as follows
Vertically stretched by a factor of 1Shifted right by 3 unitsNext, we plot the graph using a graphing tool by taking not of the above transformations rules
The graph of the function is added as an attachment
Read more about functions at
brainly.com/question/2456547
#SPJ2
Solve the following equation. Then place the correct number in the box provided. 2x - 20 = 32
Answer:
x=26
Step-by-step explanation:
Given:
2x - 20 = 32
2x=32+20
2x=52
2x/2=52/2
x=26!
Dan took a train to his vacation spot. His train travels 75 miles each hour before making a stop. He left the station at 10:00. Phil is taking a vacation to the same spot, except his train travels 60 miles each hour before making a stop. Phil’s train left the station at 8:00. What time will they be in the same place?
Answer:
6pm
Step-by-step explanation:
Assumption: Both Dan and Phil both depart from the same station and arrive at the same station. (i.e they both travel the same distance)
Dan's travel speed is 75mph and Phil's travel speed is 60mph
Let Dan's travel time be [tex]t_{Dan}[/tex] and Phil's travel time be [tex]t_{Phil}[/tex]
Use Formula Distance travelled = speed x time, hence
Dan's Distance Travelled =75 [tex]t_{Dan}[/tex]
Phil's Distance Travelled =60 [tex]t_{Phil}[/tex]
Because they travel the same distance, we can equate the 2
75 [tex]t_{Dan}[/tex] = 60 [tex]t_{Phil}[/tex]
or [tex]t_{Dan}[/tex] = (60/75) [tex]t_{Phil}[/tex]
[tex]t_{Dan}[/tex] = 0.8 [tex]t_{Phil}[/tex] -------> eq 1
We also know that Dan left at 10:00 and Phil left at 8:00. If they end up being at the same place, this means that Phil's journey will be 2 hours longer than Dan, or
[tex]t_{Phil}[/tex] = [tex]t_{Dan}[/tex] + 2------> eq2
we can solve the system of 2 equations to get
[tex]t_{Phil}[/tex] = 10 hrs
[tex]t_{Dan}[/tex] = 8 hrs
If Phil left at 8:00 am, he will be in the same place as Dan at 8:00 + 10 hrs = 6 pm.
Double Check:
If Dan left at 10:00, he will be in the same place as Phill at 10:00 + 8 hrs = 6 pm.
A, B, and C are polynomials, where A = n, B = 2n + 6, and C = n2 – 1. What is AB – C in simplest form?
Answer:
B=n2 + 6n + 1
Step-by-step explanation:
A = n
B = 2n + 6
C = n^2 - 1
AB - C = n * (2n + 6) - (n^2 - 1) = 2n^2 + 6n - n^2 + 1 = n^2 + 6n + 1
Answer:
The simplest form of the expression AB-C is [tex]n^2+6n+1[/tex].
Step-by-step explanation:
In this exercise we only need to use the properties of arithmetic operations and a minimal knowledge of algebraic notation. We have the expressions
[tex]A = n[/tex],[tex]B=2n+6[/tex],[tex]C=n^2-1[/tex].Now we make the indicated operations, beginning by AB:
[tex]AB=n\cdot(2n+6) = 2n^2+6n[/tex] using the distributive property of multiplication.
Then, we make AB-C:
[tex]AB-C = 2n^2+6n - (n^2-1) = 2n^2+6n-n^2+1 = n^2+6n+1[/tex].
In the last step we must be vary careful with the change of signs in the expression inside parenthesis.
Help ASAP pls !!!!!!!!!!!!!
Answer:
I think it's B.
Step-by-step explanation:
They are asking for integers greater than -3 and less than 5.
For this case we have to:
[tex]x <-3[/tex]: Represents the solution of all strict minor numbers to -3.
[tex]x> 5[/tex]: Represents the solution of all strict major numbers to 5.
The global solution is given by the intersection of both sets.
If we represent the solution in a straight line, it gives us empty. do not intersect.
Answeer:
Option C
Solve 2cos theta+2=3 in the interval 0-2pi
Answer:
[tex]\theta=\frac{\pi}{3}, \frac{5\pi}{3}[/tex].
Step-by-step explanation:
[tex]2\cos(\theta)+2=3[/tex]
Subtract 2 on both sides:
[tex]2\cos(\theta)=3-2[/tex]
Simplify:
[tex]2\cos(\theta)=1[/tex]
Divide both sides by 2:
[tex]\cos(\theta)=\frac{1}{2}[/tex]
Now let's refer to the unit circle... When is the x-coordinate, 1/2?
There are 2 places this happens on [0,2pi].
One is in the first quadrant and the other in the fourth quadrant.
It is at [tex]\theta=\frac{\pi}{3}, \frac{5\pi}{3}[/tex].