What is the total kinetic energy of a 2500 lbm car when it is moving at 80 mph (in BTU)?

Answers

Answer 1

Answer:

The kinetic energy will be 687.186 BTU

Explanation:

We have given mass of car = 2500 lbm

We know that 1 lbm = 0.4535 kg

So 2500 lbm = [tex]2500\times 0.4535=1133.75kg[/tex]

Speed = 80 mph

We know that 1 mile = 1609.34 meter

1 hour = 3600 sec

So [tex]80mph=\frac{80\times 1609.34}{3600}=35.763m/sec[/tex]

We know that kinetic energy [tex]E=\frac{1}{2}mv^2=\frac{1}{2}\times 1133.75\times 35.76^2=725.033KJ[/tex]

We know that 1 KJ = 0.9478 BTU

So 725.033 KJ = 725.033×0.9478 = 687.186 BTU


Related Questions

A cylindrical specimen of some metal alloy having an elastic modulus of 123 GPa and an original cross-sectional diameter of 3.3 mm will experience only elastic deformation when a tensile load of 2340 N is applied. Calculate the maximum length of the specimen before deformation if the maximum allowable elongation is 0.45 mm.

Answers

Answer:

maximum length of the specimen before deformation = 200 mm

Explanation:

Hi!

If we have a cylinder with length L₀ , and it is elasticaly deformed ΔL (so the final length is L₀ + ΔL), the strain is defined as:

[tex]\epsilon =\frac{\Delta L}{L_0}[/tex]

And the tensile stress is:

[tex]\sigma = \frac{F}{A}\\F = \text{tensile load}\\A = \text{ cross section area}[/tex]

Elastic modulus E is defined as:

[tex]E = \frac{\sigma}{\epsilon }[/tex]

In this case ΔL = 0.45 mm and we must find maximum L₀. We know that A=π*r², r=(3.3/2) mm. Then:

[tex]\sigma=\frac{2340N}{\pi (1.65 \;mm)^2}=273.68 MPa = [/tex]

[tex]E=123\;GPa=\frac{L_0 \;(273.68MPa)}{0.45\;mm } \\ L_0 = 200\; mm[/tex]

A petrol engine produces 20 hp using 35 kW of heat transfer from burning fuel. What is its thermal efficiency, and how much power is rejected to the ambient surroundings?

Answers

Answer:

efficiency =42.62%

AMOUNT OF POWER REJECTED IS 20.080 kW

Explanation:

given data:

power 20 hp

heat energy = 35kW

power production = 20 hp = 20* 746 W = 14920 Watt   [1 hp =746 watt]

[tex]efficiency = \frac{power}{heat\ required}[/tex]

[tex]efficiency = \frac{14920}{35*10^3}[/tex]

                [tex]= 0.4262*10^100[/tex]

                 =42.62%

b) [tex]heat\ rejected = heat\ required - amount\ of\ power\ generated[/tex]

                           [tex]= 35*10^3 - 14920[/tex]

                           = 20.080 kW

AMOUNT OF POWER REJECTED IS 20.080 kW

A closed rigid tank contains water initially at 10,000 kPa and 520ºC and is cooled to a final temperature of 270° C. Determine the final pressure of the water.

Answers

Answer:

final pressure is 6847.41 kPa

Explanation:

given data:

[tex]P_1 =  10,000 kPa[/tex]

[tex]T_1 =520\ degree\ celcius = 793 K[/tex]

[tex]T_2  = 270 degree celcius = 543 K[/tex]

as we can see all temperature are more than 100 degree, it mean this condition is refered to superheated stream

for ischoric process we know that

[tex]\frac{P_1}{T_1} =\frac{P_2}{T_2}[/tex]

[tex]\frac{10*10^6}{793} = \frac{P_2}{543}[/tex]

[tex]P_2 = 6.84741*10^6 Pa[/tex]

final pressure is 6847.41 kPa

An air-conditioned room at sea level has an indoor design temperature of 80°F and a relative humidity of 60%. Determine a) Humidity ratio, b) Enthalpy, c) Density, d) Dew point, and e) Thermodynamic wet bulb temperature (Use Psychrometric charts)

Answers

Answer:

a)Humidity ratio =0.013  kg/kg

b) Enthalpy=60.34 KJ/kg

c) Density = 1.16 [tex]Kg/m^3[/tex]

d) Dew point temperature = 64.9°F

e) Wet bulb temperature = 69.53°F

Explanation:

Given that

Dry bulb temperature = 80°F

relative humidity = 60%

Given air is at sea level it means that total pressure will 1 atm.

So P= 1 atm.

As we know that psychrometric charts are always drawn at constant pressure.

Now from charts

We know that dry bulb temperature line is vertical and relative humidity line is curve and at that point these two line will meet ,will us property all property.

a)Humidity ratio =0.013  kg/kg

b) Enthalpy=60.34 KJ/kg

c) Density = 1.16 [tex]Kg/m^3[/tex]

d) Dew point temperature = 64.9°F

e) Wet bulb temperature = 69.53°F

A cylindrical tank with a radius of 2-m is filled with oil and water. The water has a density of rho = 1000 kg/m3 while the oil has a density of rho = 800 kg/m^3 . If the depth of the water is 2.5 m, and the pressure difference between the top of the oil and the bottom of the water is 80 kPa, determine the depth of the oil, in m. Assume that gravity is 9.81 m/s^2 .

Answers

Answer:

Height of oil is 7.06 meters.

Explanation:

The situation is shown in the attached figure

The pressure at the bottom of the tank as calculated by equation of static pressure distribution is given by

[tex]P_{bottom}=P_{top}+\rho _{water}gh_{water}+\rho _{oil}gh_{oil}\\\\\therefore g(\rho _{water}h_{water}+\rho_{oil}h_{oil})=P_{bottom}-P_{top}[/tex]

Applying the given values we get

[tex]P_{bottom}=P_{top}+\rho _{water}gh_{water}+\rho _{oil}gh_{oil}\\\\\therefore g(1000\times 2.5+800\times h_{oil})=80\times 10^{3}\\\\\therefore 800\times h_{oil}=\frac{80\times 10^{3}}{9.81}-2500\\\\\therefore 800\times h_{oil}=5654.94\\\\\therefore h_{oil}=7.06m[/tex]

What is the ideal cooling system for low horsepower motor? For example1hp motor

Answers

Answer:

Air cooling.

Explanation:

Low power motors are supposed to be low cost, and they dissipate little heat. Therefore a low cost solution is ideal.

Air cooling can be achieved with very little cost. Fins can be added to a cast motor casing and a fan can be places on the shaft to use a small amount of the motor power to move air to cool it.

In a reversing 2-high mill, a series of cold rolling process is used to reduce the thickness of a plate from 45mm down to 20mm. Roll diameter is 600mm and coefficient of friction between rolls and strip 0.15. The specification is that the draft is to be equal on each pass. Determine a) Minimum number of passes required? b) Draft for each pass?

Answers

Answer:

Explanation:

Given

Initial Thickness=45 mm

Final thickness=20 mm

Roll diameter=600 mm

Radius(R)=300 mm

coefficient of friction between rolls and strip ([tex]\nu [/tex])=0.15

maximum draft[tex](d_{max})=\nu ^2R[/tex]

[tex]=0.15^2\times 300=6.75 mm[/tex]

Minimum no of passes[tex]=\frac{45-20}{6.75}=3.70\approx 4[/tex]

(b)draft per each pass

[tex]d=\frac{Initial\ Thickness-Final\ Thickness}{min.\ no.\ of\ passes}[/tex]

[tex]d=\frac{45-20}{4}=6.25 mm[/tex]

A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and a gage pressure of 300 kPa. If the gas is heated to 77°C, determine the final pressure, expressed as a gage pressure, in kPa. The local atmospheric pressure is 1 atm.

Answers

Final answer:

The final gage pressure of the gas after being heated from 27°C to 77°C in a closed, rigid tank can be found using Gay-Lussac's Law. After adjusting the initial and final temperatures to Kelvin and converting the gage pressure to absolute pressure, calculate the new absolute pressure and then convert back to gage pressure.

Explanation:

To determine the final gage pressure of a gas modeled as an ideal gas in a closed, rigid tank after it is heated from an initial temperature of 27°C to a final temperature of 77°C, we can use the ideal gas law in a form that relates pressure and temperature while keeping the volume and number of moles constant (Gay-Lussac's Law). We're told that the initial gage pressure is 300 kPa, and we need to find the final gage pressure. The local atmospheric pressure is given as 1 atm, which is equivalent to approximately 101.325 kPa. The formula for the final pressure, assuming no changes in the amount of gas or volume, is P2 = P1 * (T2/T1), where pressures are absolute pressures.

The steps to solve the problem are:

Convert the initial and final temperatures from Celsius to Kelvin by adding 273.15 to each.Add the atmospheric pressure to the initial gage pressure to get the initial absolute pressure.Use the equation to calculate the final absolute pressure.Subtract the atmospheric pressure from the final absolute pressure to get the final gage pressure.

The answer explains how to calculate the initial pressure of a gas using the combined gas law equation.

The initial pressure of the gas in the closed system can be found using the combined gas law equation:

P1V1/T1 = P2V2/T2

Substitute the given values to find the initial pressure, which is calculated to be 1.6 atm.

Therefore, the initial pressure of the gas was 1.6 atm.

What is the definition of a fluid?

Answers

Answer: Basically it's a substance with no shape and it's one of the different states of water.

Explanation:

Which of the two materials (brittle vs. ductile) usually obtains the highest ultimate strength and why?

Answers

Answer:

Explanation:

Ductile materials typically have a higher ultimate strength because they stretch absorbing more energy before breaking. While fragile materials snap in half before larger deformations due to larger loads occur.

It should be noted that when ductile materials stretch their section becomes smaller, and in that reduced section the stresses concentrate.

Briefly describe the operation and use of strain gauges

Answers

Answer:

Strain gauge:

 Strain gauge is a sensor. It is use to measure the strain of the material with help of electric resistance. A strain gauge is attached to the work piece and when any change in dimensions of work piece occurs ,due to this electric resistance of strain gauge also changes. Then by using a proper electric circuit strain of a material can be measured. Depending upon the situations one or more than one strain gauges is attached to the work piece to measure the strain .

Use of strain gauges

1. To measure the stress of a structure.

2. Use for testing of ships ,vehicle ,dams etc.

The flow of a real fluid has (more —less - same ) complexity of an ideal fluid, owing to the phenomena caused by the existence of (viscosity-pressure drop- friction

Answers

Answer:

The flow of a real fluid has more complexity as compared to an ideal fluid owing to the phenomena caused by existence of viscosity

Explanation:

For a ideal fluid we know that there is no viscosity of the fluid hence the boundary condition need's not to be satisfied and the flow occur's without any head loss due to viscous nature of the fluid. The friction of the pipe has no effect on the flow of an ideal fluid. But for a real fluid the viscosity of the fluid has a non zero value, the viscosity causes boundary layer effects, causes head loss and also frictional losses due to pipe friction hugely make the analysis of the flow complex. The losses in the energy of the flow becomes complex to calculate as frictional losses depend on the roughness of the pipe and Reynolds number of the flow thus increasing the complexity of the analysis of flow.

The kinetic energy correction factor depends on the (shape — volume - mass) of the cross section Of the pipe and the (velocity — pressure — temperature distribution.

Answers

Answer:

The kinetic energy correction factor the depends on the shape of the cross section of the pipe and the velocity distribution.

Explanation:

The kinetic energy correction factor take into account that the velocity distribution over the pipe cross section is not uniform.  In that case, neither the pressure nor the temperature are involving and as we can notice, the velocity distribution depends only on the shape of the cross section.

An element has two naturally occurring isotopes, isotope 1 with an atomic weight of 78.918 amu and isotope 2 with an atomic weight of 80.916 amu. If the average atomic weight for the element is 79.903 amu, calculate the fraction of occurrences of these two isotopes.

Answers

Answer:

The fraction of isotope 1 is 50.7 % and fraction  fraction of isotope 1 is 49.2 %.

Explanation:

Given that

Weight of isotope 1 = 78.918 amu

Weight of isotope 2 = 80.916 amu

Average atomic weight= 79.903 amu

Lets take fraction of isotope 1 is x then fraction of isotope 2 will be 1-x.

The total weight will be summation of these two isotopes

79.903 = 78.918 x + 80.916(1-x)

By solving above equation

80.916 - 79.903 = (80.916-78.918) x

   x=0.507

So the fraction of isotope 1 is 50.7 % and fraction  fraction of isotope 1 is 49.2 %.

You are to define and illustrate the following in regards to a 4 bar linkage mechanism: a) Illustrate and briefly define an open-loop 4 bar linkage system. b) illustrate and briefly define a closed-loop 4 bar linkage system.

Answers

Answer:

Answered

Explanation:

Open- loop 4 bar linkage system:

Open- loop 4 bar linkages are not mechanically constrained, meaning in this type of linkages the degree of freedom is are more than 1.

DOF> 1 example = industrial robots, epicyclic gear trains etc.

Closed loop four bar linkage system:

These types are linkages are mechanically constrained and have degree of freedom as one. examples,  four bar chains,  slider crank mechanism.

DOF=1

What is the resultant force on one side of a 25cm diameter circular plate standing at the bottom of 3m of pool water?

Answers

Final answer:

The resultant force on one side of a 25cm diameter circular plate at the bottom of 3m of pool water is approximately 1447 Newtons, calculated using the principles of fluid pressure and hydrostatic force.

Explanation:

The question asks for the resultant force on one side of a 25cm diameter circular plate at the bottom of 3m of pool water. To calculate this, we first need to understand that the pressure exerted by a fluid in a static situation is given by the equation P = ρgh, where ρ is the density of the fluid (water in this case, which is approximately 1000 kg/m³), g is the acceleration due to gravity (approximately 9.8 m/s²), and h is the depth of the fluid above the point of interest (3m in this case).

To find the force exerted by the water on the plate, we also need the area of the plate, which can be derived from its diameter (D = 0.25m). The area (A) of a circle is given by πD²/4, which in this case gives us an area of approximately 0.0491 square meters. The force (F) exerted by the water can then be calculated using the equation F = P*A.

Substituting the values into the equations gives us a pressure (P) of 29430 Pa and, subsequently, a resultant force of approximately 1447 Newtons. This represents the sum of all the hydrostatic forces acting perpendicularly to the surface area of the circular plate due to the water pressure at the depth of 3 meters.

Discuss the difference between the observed and calculated values. Is this error? If yes, what is the source?

Answers

Final answer:

Measurement error is the difference between observed and calculated values, including both random and systematic errors. Adjusting parameters such as K can help fit experimental data to models, with potential errors addressed through improved methods and investigation of discrepancies.

Explanation:

The difference between the observed and calculated values is known as measurement error or observational error. This error can be classified into two types: random error, which occurs naturally and varies in an unpredictable manner, and systematic error, which is consistent and typically results from a flaw or limitation in the equipment or the experimental design. To identify the sources of these errors, one can compare the experimental data with calculated models and adjust parameters, such as the constant K, to find the best fit.

If the experimental values do not match the accepted values, sources of error should be investigated and procedures modified to improve accuracy. For example, in a physics experiment, one could compare the experimental acceleration to the standard acceleration due to gravity (9.8 m/s²) and identify factors contributing to any discrepancy. Common sources of error might include environmental factors, instrument calibration issues, or procedural mistakes.

Describe the differences, if any, between fin efficiency and fin resistance.

Answers

Answer:

[tex]\eta =\dfrac{1}{mL}[/tex]

[tex]R=\sqrt {\dfrac{KA}{hP}}[/tex]

Explanation:

Fin efficiency:

 Fin efficiency is the ratio of actual heat transfer through fin to the maximum heat transfer through fin.

For infinite long fin:

 Actual heat transfer

[tex]q=\sqrt{hPKA}\Delta[/tex]

So the efficiency of fin

[tex]\eta =\dfrac{1}{mL}[/tex]

Where

[tex]m =\sqrt{\dfrac{hP}{KA}}[/tex]

h is heat transfer coefficient,P is the perimeter,K is the thermal conductivity and A is the cross sectional area.

[tex]q=\sqrt{hPKA}\Delta[/tex]\

From equation we can say that fin resistance

[tex]R=\sqrt {\dfrac{KA}{hP}}[/tex]

Thermal resistance offer resistance to flow of heat.

An open glass tube is inserted into a pan of fresh water at 20 °C. What tube diameter is needed to make the height of capillary rise equal to four times the tube diameter? State all assumptions.

Answers

Answer:

The tube diameter is 2.71 mm.

Explanation:

Given:

Open glass tube is inserted into a pan of fresh water at 20°C.

Height of capillary raise is four times tube diameter.

h = 4d

Assumption:

Take water as pure water as the water is fresh enough. So, the angle of contact is 0 degree.

Take surface tension of water at 20°C as [tex]72.53\times 10^{-3}[/tex] N/m.

Take density of water as 100 kg/m3.

Calculation:

Step1

Expression for height of capillary rise is gives as follows:

[tex]h=\frac{4\sigma\cos\theta}{dg\rho}[/tex]

Step2

Substitute the value of height h, surface tension, density of water, acceleration due to gravity and contact angle in the above equation as follows:

[tex]4d=\frac{4\times72.53\times10^{-3}\cos0^{\circ}}{d\times9.81\times1000}[/tex]

[tex]d^{2}=7.39\times10^{-6}[/tex]

[tex]d=2.719\times10^{-3}[/tex] m.

Or

[tex]d=(2.719\times10^{-3}m)(\frac{1000mm}{1m})[/tex]

d=2.719 mm

Thus, the tube diameter is 2.719 mm.

 

A disk with radius of 0.4 m is rotating about a centrally located axis with an angular acceleration of 0.3 times the angular position theta. The disk starts with an angular velocity of 1 rad/s when theta = 0. Determine the magnitudes of the normal and tangential components of acceleration of a point P on the rim of the disk when theta has completed one revolution.

Answers

Answer:

a₁= 1.98 m/s²   : magnitud of the normal acceleration

a₂=0.75  m/s²  : magnitud of the tangential acceleration

Explanation:

Formulas for uniformly accelerated circular motion

a₁=ω²*r : normal acceleration     Formula (1)

a₂=α*r:    normal acceleration     Formula (2)

ωf²=ω₀²+2*α*θ                             Formula (3)

ω : angular velocity

α : angular acceleration

r  : radius

ωf= final angular velocity

ω₀ : initial angular velocity

θ :   angular position theta

r  : radius

Data

r =0.4 m

ω₀= 1 rad/s

α=0.3 *θ , θ= 2π

α=0.3 *2π= 0,6π rad/s²

Magnitudes of the normal and tangential components of acceleration of a point P on the rim of the disk when theta has completed one revolution.

We calculate ωf with formula 3:

ωf²= 1² + 2*0.6π*2π =1+2.4π ²= 24.687

ωf=[tex]\sqrt{24.687}[/tex] =4.97 rad/s

a₁=ω²*r = 4.97²*0.4 = 1.98 m/s²    

a₂=α*r = 0,6π * 0.4 = 0.75  m/s²  

A rigid tank with a volume of 0.5 m3 contains air at 120 kPa and 300 K. Find the final temperature after 20 kJ of heat is added to the air using (a) constant specific heats and (b) ideal gas tables.

Answers

Answer:

T=340. 47 K

Explanation:

Given that

Volume of tank =0.5 [tex]m^3[/tex]

Pressure P=120 KPa

Temperature T=300 K

Added heat ,Q= 20 KJ

Given that air is treated as ideal gas and specific heat is constant.

Here tank is rigid so we can say that it is constant volume system.

We know that specific heat at constant volume for air

[tex]C_v=0.71\ \frac{KJ}{kg.K}[/tex]

We know that for ideal gas

P V = m R T

For air R=0.287 KJ/kg.K

P V = m R T

120 x 0.5 = m x 0.287 x 300

m=0.696 kg

[tex]Q=mC_v\Delta T[/tex]

Lets take final temperature of air is T

Now by putting the values

[tex]Q=mC_v\Delta T[/tex]

[tex]20=0.696\times 0.71\times (T-300)[/tex]

T=340. 47 K

So the final temperature of air will be 340.47 K.

The pressure forces on a submersed object will be (A)- Tangential to the objects body (B)- Parallel (C)- Normal (D)- None of the above

Answers

Answer:

c) normal

Explanation:

The pressure forces on a submersed object will be normal to the surfaces of the object. Hydrostatic pressure cannot apply tangential forces, so only the normal components exist.

Also, it should be noted that in the hydrostatic case (submerged object) all pressures depend linearly of depth. For small object we can approximate this with equal pressures everywhere.

The velocity of a point mass that moves along the s-axis is given by s' = 40 - 3t^2 m/s, where t is in seconds. Find displacement of the particle from t = 2 s to t 6 s.

Answers

Answer:

The displacement is -48m.

Explanation:

Velocity is the rate of change of displacement. So, the instantaneous displacement is calculated by the integration of velocity function with respect to time. Displacement in range of time is calculated by integrating the velocity function with respect to time with in time range.  

Given:

Velocity along the s-axis is

[tex]s{}'=40-3t^{2}[/tex]

time range is t=2s to t=6s.

Calculation:

Step1

Displacement in the time range t=2s to t=6s is calculated as follows:

[tex]\frac{\mathrm{d}s}{\mathrm{d}t}=40-3t^{2}[/tex]

[tex]ds=(40-3t^{2})dt[/tex]

Step2

Integrate the above equation with respect to time with the lower limit as 2 and upper limit as 6 as follows:

[tex]\int ds=\int_{2}^{6}(40-3t^{2})dt[/tex]

[tex]s=(40\times6-40\times2)-3(\frac{1}{3})(6^{3}-2^{3})[/tex]

s=160-208

s=-48m

Thus, the displacement is -48m.

Final answer:

The displacement of a point mass moving along the s-axis from t = 2 s to t = 6 s, with a given velocity function s' = 40 - 3t^2 m/s, is calculated by integrating the velocity to get the position function and then evaluating it between the two time limits, resulting in a displacement of 152 meters.

Explanation:

The question requires finding the displacement of a point mass moving along the s-axis between t = 2 s and t = 6 s. The velocity is given as s' = 40 - 3t^2 m/s. To find the displacement, we will integrate the velocity function with respect to time from 2 to 6 seconds.

To integrate s' = 40 - 3t^2, we get:

Integral of 40 dt is 40tIntegral of -3t^2 dt is -t^3


The displacement (s) is thus
s = 40t - t^3 evaluated from t = 2 to t = 6. Inserting the limits, we subtract the value at t = 2 from the value at t = 6:

s(6) - s(2) = (40(6) - 6^3) - (40(2) - 2^3) = 240 - 216 - 80 + 8 = 152 m

So, the displacement of the particle from t = 2 s to t = 6 s is 152 meters.

25 gallons of an incompressible liquid exert a force of 70 lbf at the earth’s surface. What force in lbf would 6 gallons of this liquid exert on the surface of the moon? The gravitational acceleration on the surface of the moon is 5.51 ft/s2.

Answers

Answer:

froce by 6 gallon liquid on moon surface is  2.86 lbf

Explanation:

given data:

at earth surface

volume of an incompressible liquid = Ve = 25 gallons

force by liquid = 70 lbf

on moon

volume of  liquid = Vm = 6 gallons

gravitational acceleration on moon is am = 5.51 ft/s2

Due to incompressibility , the density remain constant.

mass of liquid on surface of earth[tex]= \frac{ force}{ acceleration}[/tex]

[tex]mass = \frac{70lbf}{32.2 ft/s2}[/tex]

mass = 2.173 pound

[tex]density \rho = \frac{mass}{volume}[/tex]

                  [tex]= \frac{2.173}{25} = 0.0869 pound/ gallon[/tex]

froce by 6 gallon liquid on moon surface is

Fm = mass * acceleration

      = density* volume * am

      = 0.0869 *6* 5.51

      = 2.86 lbf

For a rod of annealed AISI 1018 steel with a cross sectional area of 0.65 in^2?; what is the maximum tensile load Pmax that should be placed on it given a design factor of 3 to avoid yielding?

Answers

Answer:

maximum tensile load Pmax is 11.91 ksi

Explanation:

given data

area = 0.65 in²

design factor of safety = 3

to find out

what is the maximum tensile load Pmax

solution

we know here area is 0.65 in² and FOS = 3

so by steel table for rod of annealed AISI 1018 steel table we know σy = 55 ksi

so

we use here design factor formula that is

[tex]\frac{ \sigma y}{FOS}  = \frac{Pmax}{area}[/tex]  .............1

put here all these value we get Pmax in equation 1

[tex]\frac{55}{3}  = \frac{Pmax}{0.65}[/tex]

Pmax = 11.91 ksi

so maximum tensile load Pmax is 11.91 ksi

Draw and label a typical true stress-strain curve for a ductile material.

Answers

Answer:

this is a typical stress-strain curve for a ductile material

Explanation:

A: proportional limit

B:Elastic limit

C:upper yield point

D:lower yield point

E:ultimate strength

F:rupture strength

A 400-m^3 storage tank is being constructed to hold LNG, liquefied natural gas, which may be assumed to be essentially pure methane. If the tank is to contain 90% liquid and 10% vapor, by volume, at 150 K, what mass of LNG (kg) will the tank hold? What is the quality in the tank?

Answers

Answer:

mass of LNG: 129501.3388 kg

quality: 0.005048662

Explanation:

Volume occupied by liquid:

400 m^3*0.9 = 360 m^3

Volume occupied by vapor

400 m^3*0.1 = 40 m^3  

A figured with thermodynamic properties of saturated methane is attached. Notice that a liquid-gas mixture is present

For liquid phase specific volume (vf) at 150 K is 0.002794 m^3/kg and for vapor phase specific volume (vg) is 0.06118 m^3/kg

From specific volume definition:

vf = liquid volume/liquid mass

liquid mass = liquid volume/vf

liquid mass = 360 m^3/0.002794 m^3/kg

liquid mass = 128847.5304 kg

vg = vapor volume/vapor mass

vapor mass = liquid volume/vg

vapor mass = 40 m^3/0.06118 m^3/kg

vapor mass = 653.8084341 kg

total mass = 128847.5304 kg + 653.8084341 kg = 129501.3388 kg

Quality is defined as the ratio between vapor mass and total mass

quality =  653.8084341 kg/129501.3388 kg = 0.005048662

Given two resistors R1=40 ohm and R2=30 ohm connected in series, what is the total resistance of this configuration? Enter the value in the box below without the unit. Round the result to two decimal places if necessary. For example if the answer is 10.333 ohm, put 10.33 in the box.

Answers

Answer:

Rt=70.00 ohm

Explanation:

ohm's theory tells us that the connected resistors in series add up directly

Rt=R1+R2+R3+R4.......

Therefore, for this case, the only thing we should do is add the resistance directly

Rt=R1+R2

Rt=40.00 ohm+30.00 Ohm.

Rt=70.00 ohm

the total resistance of this configuration is 70.00 ohm

A 25 lb sacrificial Mg anode is attached to the steel hull of a container ship. If the anode completely corrodes within 3 months, what is the average current produced by the anode?

Answers

Answer:

The average current will be of 6.36 A.

Explanation:

The anode capacity of magnesium is C = 550 A*h/lb

A month has 30 days.

A day has 24 hours.

Therefore 3 months have:

t = 3 * 30 * 24 = 2160 hours.

The average current is then:

I = C * m / t

I = 550 * 25 / 2160 = 6.36 A

The average current will be of 6.36 A.

The 10mm diameter rod is made of Kevlar 49. Determine the change in
length and the change in diameter.
Lenght of the rod = 100mm
Therefore there are two 80KN forces are pulling the rod from both
sides.

Answers

Answer:

0.815 mm

Explanation:

The rod in made of Kevlar 49, so it has an Young's modulus of

E = 125 GPa

The stiffness of a rod is given by:

k = E * A / L

k = E * π/4 * d^2 / L

So:

k = 125*10^9 * π/4 * 0.01^2 / 0.1 = 98.17 MN/m

Of the pulling forces only one is considered because when you pull on something there is always another force on the other side of equal magnitude and opposite direction to maintain equilibrium.

Hooke's law:

Δl = P/k

Δl = 80*10^3 / 98.17*10^6 = 0.000815 m = 0.815 mm

Other Questions
The first stage of cellular respiration (Glycolysis) occurs in _________.a. inner mitochondrial membraneb. cytoplasmc. mitochondrial matrixd. nucleus I need to know what x is ABCDHelp much appreciate Let M N >1 . Let M be a non-perfect square. Or in other words M / {4, 9, 16, } (a) Prove that there exists a prime p, whose exponent in the prime factorization of M is odd. [Hint: Prove by a method of contradiction] what is the probability of drawing a black card or a card with a letter?Standard deck of 52A:4/121/221/2617/26 The 1783 Treaty of Paris gave the United States control over all land between the A company makes greeting cards and their research shows that that price and demand are related linearly: p = mx + b. They know that for every additional card they wish to sell they need to drop the price by $0.05. They also know that in order to sell 360 cards they need to set the price at $4. Find the linear equation relating price to demand. p= 0 Preview Which ordered pair is a solution to the linear system? (2x + y = 5) (x y = 13) Question 32Read the quotation opposing the ratification of the US Constitution and answer the question."Suspicion is a virtue as long as its object is the public good, and as long as it stays within proper bounds. . . . Guard with jealous attention the public liberty. Suspect every one who approaches that jewel. . . . Show me that age and country where the rights and liberties of the people were placed on the sole chance of their rulers being good men, without a consequent loss of liberty?" Patrick Henry, 1788Why was Henry, like many Anti-Federalists, against ratifying the US Constitution?AHe believed the US Constitution was too similar to the Articles of Confederation.BHe believed the US Constitution was too similar to the constitution of Great Britain.CHe feared that the government created by the US Constitution would be too weak.DHe feared that the government created by the US Constitution would be too strong. how can readers identify details that support a central idea in an informational text A rectangle has an area of 90 square centimeters and a height of 12.5 centimeters. What is the length of the base?A.7.2 centimetersB.72 centimetersC.112.5 centimetersD.1125 centimeters The __________ is used for things that have happened before the present moment in time. Formulate the situation as a system of two linear equations in two variables. Be sure to state clearly the meaning of your x- and y-variables. Solve the system by the elimination method. Be sure to state your final answer in terms of the original question. A jar contains 70 nickels and dimes worth $6.10. How many of each kind of coin are in the jar? nickels dimes Williams Company uses the weighted-average method in its process costing system. The Packaging Department started the month with 400 units in process that were 80% complete, receiving 3,000 units from the Cutting Department. The packaging department had 300 units in process at the end of the period that are 50% complete. All materials are added at the beginning of the process and conversion is added uniformly. From the Packaging Department, units are transferred to Finished Goods. For direct material, the equivalent units of production for the Finishing Department is Subtract 2 1/8- 1 7/8 What type of metalwork sculpture is pictured below? In "A Cub Pilot," after Twain realizes that the others are testing his confidence and courage, he says, "It was a fine trick to play on an orphan, wasn't it?"How does Twain's use of the word "orphan" affect the memoir? It shows that Twain also thinks the prank the others played is very funny. It indicates that Twain's father is Mr. Bixby. It conveys how Twain feels alone, with no one looking out for him. It demonstrates that Twain still does not realize that he is the victim of a joke. Is there any reason that meiosis could not occur in an organism whose genome is always haploid? The amount of red blood cells in a blood sample is equal to the total amount in the sample minus the amount of plasma. What is the total amount of blood drawn? Maressa has 150 g of a NaCl solution that has concentration of 15.0 % NaCl (mm). How much NaCl is dissolved in that solution? O a. 0.05 O b. 1.08 Oc2.25 O d. 225 Oe. None of the above.