What is the wavelength of the radio waves from an FM station operating at a frequency of 99.5 MHz

Answers

Answer 1

Answer:

Wavelength, [tex]\lambda=3.01\ m[/tex]

Explanation:

It is given that,

Frequency, f = 99.5 MHz = 99.5 × 10⁶ Hz

We need to find the wavelength of the radio waves from an FM station operating at above frequency. The relationship between the frequency and the wavelength is given by :

[tex]c=f\lambda[/tex]

[tex]\lambda=\dfrac{c}{f}{[/tex]

c = speed of light

[tex]\lambda=\dfrac{3\times 10^8\ m/s}{99.5\times 10^6\ Hz}[/tex]

[tex]\lambda=3.01\ m[/tex]

So, the wavelength of the radio waves from an FM station is 3.01 m. Hence, this is the required solution.


Related Questions

A particle's position coordinates (x, y) are (1.0 m, 3.0 m) at t = 0; (5.0 m, 5.0 m) at t = 2.0 s; and (14.0 m, 12.0 m) at t = 5.0 s. (a) Find the magnitude of the average velocity from t = 0 to t = 2 s. (b) Find the magnitude of the average velocity from t = 0 to t = 5 s.

Answers

Answer:

a) Magnitude of the average velocity from t = 0 to t = 2 s = 2.24 m/s

b) Magnitude of the average velocity from t = 0 to t = 5 s = 3.16 m/s

Explanation:

a) Velocity is rate of change of position.

A particle's position coordinates (x, y) are (1.0 m, 3.0 m) at t = 0

A particle's position coordinates (x, y) are (5.0 m, 5.0 m) at t = 2.0 s

Displacement = (5-1)i + (5-3)j = 4i + 2j

Change in time = 2s

Velocity

      [tex]v=\frac{4i+2j}{2}=2i+j[/tex]

Magnitude of velocity

      [tex]v=\sqrt{2^2+1^2}=2.24m/s[/tex]

b) Velocity is rate of change of position.

A particle's position coordinates (x, y) are (1.0 m, 3.0 m) at t = 0

A particle's position coordinates (x, y) are (14.0 m, 12.0 m) at t = 5.0 s

Displacement = (14-1)i + (12-3)j = 13i + 9j

Change in time = 5s

Velocity

      [tex]v=\frac{13i+9j}{5}=2.6i+1.8j[/tex]

Magnitude of velocity

      [tex]v=\sqrt{2.6^2+1.8^2}=3.16m/s[/tex]

The speed of sound through the ground is about 6.0 km/s while the speed of sound in air is 343 m/s. A very powerful explosion occurs some distance away and you feel the ground vibrate 60 seconds before you hear the sound of the explosion. How far away is the explosion?

Answers

Answer:

21828 m

Explanation:

[tex]v_{ground}[/tex] = speed of sound through ground = 6 km/s = 6000 m/s

[tex]v_{air}[/tex] = speed of sound through air = 343 m/s

t = time taken for the vibrations to arrive

t' = time taken for sound to arrive = t + 60

d = distance of the point of explosion

time taken for the vibrations to arrive is given as

[tex]t = \frac{d}{v_{ground}}[/tex]                            eq-1

time taken for the sound to arrive is given as

[tex]t' = \frac{d}{v_{air}}[/tex]

[tex]t + 60 = \frac{d}{v_{air}}[/tex]

using eq-1

[tex]\frac{d}{v_{ground}} + 60 = \frac{d}{v_{air}}[/tex]

[tex]\frac{d}{6000} + 60 = \frac{d}{343}[/tex]

d = 21828 m

What is the distance between adjacent crests of ocean waves that have a frequency of 0.20 Hz if the waves have a speed of 2.4 m/s?

Answers

Answer:

12 m

Explanation:

f = 0.2 Hz, v = 2.4 m/s

v = f x λ

Where, λ is the wavelength

λ = v / f = 2.4 / 0.2 = 12 m

The wavelength is defined as the distance between two consecutive crests or troughs.

So, the distance between two consecutive crests is 12 m.

A stone with a mass of 10 kg is sitting on the ground, not moving. a) What is the weight of the stone? b) What is the normal force acting on the stone?

Answers

Answer:

A) weight=mass X gravitational force

10Kg X 10 M/S 2

100 KgM/S2

100Newton

B) Force =Mass X gravitational force

10Kg X 10 M/S2

100 Newton

Final answer:

The weight of a 10kg stone sitting at rest on the ground is 98 Newtons, and the normal force acting on it is also 98 Newtons.

Explanation:

The weight of an object is calculated by multiplying its mass by the acceleration due to gravity. In this case, the mass of the stone is 10kg and  The standard acceleration due to gravity on Earth is approximately 9.8 m/s2.  Therefore, the weight of the stone would be 10 kg x 9.8 m/s^2 = 98 Newtons.

b) The normal force acting on the stone is the force exerted by the surface of the ground on the stone in the upward direction. When the stone is sitting on the ground, the normal force is equal in magnitude and opposite in direction to the weight of the stone. Therefore, the normal force is also 98 N.

Learn more about Physics here:

https://brainly.com/question/32123193

#SPJ2

The temperature of air decreases as it is compressed by an adiabatic compressor. a)-True b)-False

Answers

Answer: false

Explanation: the air will increase if it is compressed by an adiabatic compressor

The small piston of a hydraulic lift has a diameter of 8.0 cm, and its large piston has a diameter of 40 cm. The lift raises a load of 15,000 N. Assume the pistons each have negligible weight. (a) Determine the force that must be applied to the small piston. (b) Determine the pressure applied to the fluid in the lift.

Answers

Answer:

a)

600 N

b)

1.2 x 10⁵ Pa

Explanation:

(a)

d₁ = diameter of small piston = 8 cm = 0.08 m

d₂ = diameter of large piston = 40 cm = 0.40 m

F₂ = force applied to large piston = 15000 N

F₁ = force applied to small piston = ?

Using pascal's law

[tex]\frac{F_{1}}{(0.25)\pi d_{1}^{2}} = \frac{F_{2}}{(0.25)\pi d_{2}^{2}}[/tex]

Inserting the values

[tex]\frac{F_{1}}{(0.08)^{2}} = \frac{15000}{(0.40)^{2}}[/tex]

F₁ = 600 N

b)

Pressure applied is given as

[tex]P = \frac{F_{1}}{(0.25)\pi d_{1}^{2}}[/tex]

[tex]P = \frac{(600)}{(0.25)(3.14) (0.08)^{2}}[/tex]

P = 1.2 x 10⁵ Pa

To determine the force needed on the small piston of a hydraulic lift, the ratios of the pistons' areas are used in combination with the load on the large piston, applying Pascal's Principle. The pressure in the hydraulic fluid is then found by dividing the force by the area of the piston where the force is applied.

Force applied to small piston = (Force on large piston) × (Area of small piston / Area of large piston)Pressure in the hydraulic fluid = Force / Area

Given the diameters of the pistons, we can find the areas by using the formula for the area of a circle, A = πr², where r is the radius of the piston.

For the provided diameters of 8.0 cm and 40 cm, the areas of the pistons are:

Area of small piston = π × (4 cm)²Area of large piston = π × (20 cm)²

With a load of 15,000 N on the large piston:

Force applied to small piston = 15,000 N × (Area of small piston / Area of large piston)Pressure = 15,000 N / (Area of large piston)

Once we perform these calculations, we can determine the required force to apply to the small piston and the pressure applied to the fluid within the lift.

A research-level Van de Graaff generator has a 2.15 m diameter metal sphere with a charge of 5.05 mC on it. What is the potential near its surface in MV? (Assume the potential is equal to zero far away from the surface.)

Answers

Answer:

42.3 MV

Explanation:

d = diameter of the metal sphere = 2.15 m

r = radius of the metal sphere

diameter of the metal sphere is given as

d = 2r

2.15 = 2 r

r = 1.075 m

Q = charge on sphere = 5.05 mC = 5.05 x 10⁻³ C

Potential near the surface is given as

[tex]V = \frac{kQ}{r}[/tex]

[tex]V = \frac{(9\times 10^{9})(5.05\times 10^{-3})}{1.075}[/tex]

V = 4.23 x 10⁷ volts

V = 42.3 MV

When 1.50 ✕ 10^5 J of heat transfer occurs into a meat pie initially at 20.0°C, its entropy increases by 465 J/K. What is its final temperature (in degrees)?

Answers

Answer:

The final temperature is 79.16°C.

Explanation:

Given that,

Heat [tex]Q=1.50\times10^{5}\ J[/tex]

Temperature = 20.0°C

Entropy = 465 J/k

We need to calculate the average temperature

Using relation between entropy and heat

[tex]\Delta S=\dfrac{\Delta Q}{T}[/tex]

[tex]T=\dfrac{\Delta Q}{\Delta S}[/tex]

Where, T = average temperature

[tex]\Delta Q[/tex]= transfer heat

[tex]\Delta S[/tex]= entropy

Put the value into the formula

[tex]T=\dfrac{1.50\times10^{5}}{465}[/tex]

[tex]T=322.58\ K[/tex]

We need to calculate the final temperature

Using formula of average temperature

[tex]T = \dfrac{T_{i}+T_{f}}{2}[/tex]

[tex]T_{f}=2T-T_{i}[/tex]....(I)

Put the value in the equation (I)

[tex]T_{f}=2\times322.58-293[/tex]

[tex]T_{f}=352.16\ K[/tex]

We convert the temperature K to degrees

[tex]T_{f}=352.16-273[/tex]

[tex]T_{f}=79.16^{\circ}\ C[/tex]

Hence, The final temperature is 79.16°C.

A pump is used to empty a 5200 L wading pool. The water exits the 3.0-cm-diameter hose at a speed of 2.2 m/s .How long will it take to empty the pool? Express your answer using two significant figures.

Answers

Answer:

55.79 minutes

Explanation:

Volume of water = 5200 L = 5.2 m^3

Diameter = 3 cm

radius, r = 1.5 cm = 0.015 m

v = 2.2 m/s

The volume of water coming out in 1 second = velocity x area

                                                       = 2.2 x 3.14 x 0.015 x 0.015

                                                       = 1.55 x 10^-3 m^3

1.55 x 10^-3 m^3 water flows = 1 second

5.2 m^3 water flows = 5.2 / (1.55 x 10^-3) = 3345.57 second

                                                                    = 55.79 minutes

When a comet comes close to the Sun, what happens to it that makes it bright and easier to see?

Answers

Answer:

Explanation:

Comet is made by dust particles, icy particles, gases etc.

A comet has a fixed time to complete a revolution around the sun.

As a comet comes nearer to the sun, due to the heat of the sun the vapour and the icy particles becomes gases and due to the radial pressure of energy od sun, we observe a tail of comet which has vapours mainly. SI the comet is visible easily.

A 62.0-kg woman runs up a flight of stairs having a rise of 4.28 m in a time of 4.20 s. What average power did she supply? a) 63.2 W b) 619 W c) 596 W d) 629 W e) 609 W

Answers

Answer:

The average power is 619 W.

(B) is correct option

Explanation:

Given that,

Weight = 62.0 kg

Height = 4.28 m

Time t = 4.20 s

We need to calculate the work done

Work done by woman

[tex]W=mgh[/tex]

Where,

m = mass

g = acceleration due to gravity

t = time

Put the value into the formula

[tex]W=62\times9.8\times 4.28[/tex]

[tex]W=2600.528 J[/tex]

We need to calculate the power

Using formula of power

[tex]P=\dfrac{W}{t}[/tex]

Where,

W = work done

t = time

Put the value in to the formula

[tex]P=\dfrac{2600.528}{4.20}[/tex]

[tex]P=619\ W[/tex]

Hence, The average power is 619 W.

Final answer:

The average power supplied by the woman is calculated by first determining the work done against gravity to move up the stairs, and then dividing this by the time taken. After performing these calculations, the most accurate answer is approximately 629 W.

Explanation:

The question is asking to calculate the average power supplied by a woman while running up the stairs. Power is defined as the rate at which work is done. In this scenario, the work is the woman's movement against the gravitational force, which is calculated using the formula W = mgh, where m is mass, g is the acceleration due to gravity and h is the height of the stairs. Substituting the given values, we get W = 62.0 Kg * 9.8 m/s² * 4.28 m = 2650.368 Joules. Power is calculated by dividing the work done by the time taken, so P = W/t = 2650.368 J / 4.20 s = 630.8 Watts, which is closest to option (d) 629 W.

Learn more about Calculating Power here:

https://brainly.com/question/33381197

#SPJ3

A 900 kg SUV is traveling at a constant speed of 1.44 m/s due north. What is the total force (in N) on the vehicle? (Assume north is the positive direction. Indicate the direction with the sign of your answer.)

Answers

Explanation:

It is given that,

Mass of SUV, m = 900 kg

It is moving with a constant speed of 1.44 m/s due south. We need to find the total force on the vehicle. The second law of motion gives the magnitude of force acting on the object. It is given by :

F = m a

Since, [tex]a=\dfrac{dv}{dt}[/tex] i.e. the rate of change of velocity

As SUV is travelling at a constant speed. This gives acceleration of it as zero.

So, F = 0

So, the total force acting on SUV is 0 N. Hence, this is the required solution.

Answer:

The total force acting on the vehicle is 0 N.

Explanation:

Given that,

Mass of SUV = 900 kg

Velocity = 1.44 m/s

SUV is travelling at a constant speed of 1.44 m/s due north.

We need to calculate the force on the vehicle.

Using newton's second law

[tex]F = ma[/tex]....(I)

We know that,

The acceleration is the first derivative of the velocity of the particle.

[tex]a = \dfrac{dv}{dt}[/tex]

Now,put the value of a in equation (I)

[tex]F=m\dfrac{dv}{dt}[/tex]

SUV is traveling at a constant speed it means acceleration is zero.

So, The force will be zero.

Hence, The total force acting on the vehicle is 0 N.

A metal ring 4.20 cm in diameter is placed between the north and south poles of large magnets with the plane of its area perpendicular to the magnetic field. These magnets produce an initial uniform field of 1.12 T between them but are gradually pulled apart, causing this field to remain uniform but decrease steadily at 0.240 T/s . (A) What is the magnitude of the electric field induced in the ring? (B) In which direction (clockwise or counterclockwise) does the current flow as viewed by someone on the south pole of the magnet?

Answers

Answer:

09m

Explanation:

yes the current flow in clockwise direction

Explanation:

Given that,

Diameter of the metal ring, d = 4.2 cm

Radius, r = 2.1 cm

Initial magnetic field, B = 1.12 T

The magnetic field is decreasing at the rate of, [tex]\dfrac{dB}{dt}=0.24\ T/s[/tex]

Due to change in magnetic field, an emf is induced in it. And hence, electric field is induced. It is given by :

[tex]\int\limits {E.dl}=\dfrac{d}{dt}(\int\limits{B.dA)}[/tex]

[tex]E.(2\pi r)=\dfrac{dB}{dt}(\pi r^2)[/tex]

[tex]E=\dfrac{dB}{dt}\times \dfrac{r}{2}[/tex]

[tex]E=0.24\times \dfrac{2.1\times 10^{-2}}{2}[/tex]

[tex]E=0.00252\ N/C[/tex]

So, the magnitude of the electric field induced in the ring has a magnitude of 0.00252 N/C.

The direction of electric field will be counter clock wise direction as viewed by someone on the south pole of the magnet.

An early submersible craft for deep-sea exploration was raised and lowered by a cable from a ship. When the craft was stationary, the tension in the cable was 7000 N {\rm N}. When the craft was lowered or raised at a steady rate, the motion through the water added an 1800 N {\rm N} drag force.

Part A

What was the tension in the cable when the craft was being lowered to the seafloor?

Express your answer to two significant figures and include the appropriate units.

Part B

What was the tension in the cable when the craft was being raised from the seafloor?

Express your answer to two significant figures and include the appropriate units.

Answers

Answer:

A) 5.2 x 10³ N

B) 8.8 x 10³ N

Explanation:

Part A)

[tex]F_{g}[/tex] = weight of the craft in downward direction = tension force in the cable when stationary = 7000 N

[tex]T[/tex] = Tension force in upward direction

[tex]F_{d}[/tex] = Drag force in upward direction = 1800 N

Force equation for the motion of craft is given as

[tex]F_{g}[/tex] - [tex]F_{d}[/tex] - [tex]T[/tex] = 0

7000 - 1800 - [tex]T[/tex] = 0

[tex]T[/tex] = 5200 N

[tex]T[/tex] = 5.2 x 10³ N

Part B)

[tex]F_{g}[/tex] = weight of the craft in downward direction = tension force in the cable when stationary = 7000 N

[tex]T[/tex] = Tension force in upward direction

[tex]F_{d}[/tex] = Drag force in downward direction = 1800 N

Force equation for the motion of craft is given as

[tex]T[/tex]  - [tex]F_{g}[/tex] - [tex]F_{d}[/tex] = 0

[tex]T[/tex] - 7000 - 1800  = 0

[tex]T[/tex] = 8800 N

[tex]T[/tex] = 8.8 x 10³ N

An alpha particle travels at a velocity of magnitude 760 m/s through a uniform magnetic field of magnitude 0.034 T. (An alpha particle has a charge of charge of 3.2 × 10-19 C and a mass 6.6 × 10-27 kg) The angle between the particle's direction of motion and the magnetic field is 51°. What is the magnitude of (a) the force acting on the particle due to the field, and (b) the acceleration of the particle due to this force

Answers

Answer:

(a) 6.42 x 10^-18 N

(b) 9.73 x 10^8 m/s^2

Explanation:

v = 760 m/s, B = 0.034 T, m = 6.6 x 10^-27 kg, q = 3.2 x 10^-19 C, theta = 51 degree

(a) F = q v B Sin theta

F = 3.2 x 10^-19 x 760 x 0.034 x Sin 51

F = 6.42 x 10^-18 N

(b) Acceleration, a = Force / mass

a = (6.42 x 10^-18) / (6.6 x 10^-27)

a = 0.973 x 10^9

a = 9.73 x 10^8 m/s^2

The force between two electrical charges is 0.3 N. What would be the force if the charges are doubled, and the distance between them increased by 100%?

(Please show clear steps/explanation)

Answers

Answer:

The new force F' will be same of the original force F.

Explanation:

Given that,

Charges = 0.3

We need to calculate the force between the charges

Suppose that the distance between the charges is r.

The force between the charges

[tex]F =\dfrac{kq_{1}q_{2}}{r^2}[/tex]

Put the value into the formula

[tex]F=\dfrac{k\times0.3\times0.3}{r^2}[/tex]

[tex]F=\dfrac{k\times(0.09)}{r^2}[/tex]

If the charges are doubled, and the distance between them increased by 100%.

So, The charges are 0.6 and the distance is 2r.

Then,

The force between the charges

[tex]F'=\dfrac{k\times0.6\times0.6}{(2r)^2}[/tex]

[tex]F'=\dfrac{k\times0.09}{r^2}[/tex]

[tex]F'=F[/tex]

Hence, The new force F' will be same of the original force F.

Consider a simple tension member that carries an axial load of P=22.44N. Find the total elongation in the member due to the load. Assume that the member is made of steel, which has a modulus of elasticity of E=204.00 N/mm2. Also assume that the member is 3048 mm long and has a cross-sectional area of 1290 mm2

Answers

Answer:

The total elongation for the tension member is of 0.25mm

Explanation:

Assuming that material is under a linear deformation then the relation between the stress and the specific elongation is given as:

[tex]\sigma=E*\epsilon[/tex] (1)

Where E is the modulus of elasticity, σ the stress and ε the specific deformation. Also, the total longitudinal elongation can be expressed as:

[tex]\delta L=L*\epsilon[/tex] (2)

Here L is the member extension and δL the change total longitudinal elongation.  

Now if the stress is found then the deformation can be calculated by solving the stress-deformation equation (1). The stress applied sigama is computed dividing the axial load P by the cross-sectional area A:

[tex]\sigma=P/A[/tex]  

[tex]\sigma=22.44N / 1290 mm^2[/tex]  

[tex]\sigma=0.0174 N/mm^2[/tex]  

Solving for epsilon and replacing the calculated value for the stress and the value for the modulus of elasticity:

[tex]=\sigma=E*\epsilon[/tex]

[tex]\epsilon=\sigma/E[/tex]

[tex]\epsilon=0.0174 \frac{N}{mm^2}/\ 204 \frac{N}{mm^2} [/tex]

[tex]\epsilon=8.53*10^-{5}[/tex]

Finally introducing the specific deformation and the longitudinal extension in the equation of total elongation (2):

[tex]\delta L=3048 mm * 8.53*10^{-5} [/tex]  

[tex]\delta L= 0.25 mm [/tex]

5.90. A force is applied to a block to move it up a 30° incline. The incline is frictionless. If F = 65.0 N and M = 5.00 kg , what is the magnitude of the acceleration of the block? Enter your answer in units of m/s^2m/s 2 , without units, to the nearest hundredth.

Answers

Answer:

The acceleration of the block is 6.35 m/s².

Explanation:

It is given that,

A force is applied to a block to move it up a 30° incline. The applied force is, F = 65 N

Mass of the block, m = 5 kg

We need to find the acceleration of the block. From the attached figure, it is clear that.

[tex]F_x=ma_x[/tex]

[tex]F\ cos\theta-mg\ sin\theta=ma_x[/tex]

[tex]a_x=\dfrac{F\ cos\theta-mg\ sin\theta}{m}[/tex]

[tex]a_x=\dfrac{65\ N\ cos(30)-5\ kg\times 9.8\ m/s^2\ sin(30)}{5\ kg}[/tex]

[tex]a_x=6.35\ m/s^2[/tex]

So, the acceleration of the block is 6.35 m/s². Hence, this is the required solution.

Acceleration is defined as the rate of change of the velocity of the body. Its unit is m/sec².The magnitude of the acceleration of the block will be 6.35 m/sec².

What is the friction force?

It is a type of opposition force acting on the surface of the body that tries to oppose the motion of the body. its unit is Newton (N).

Mathematically it is defined as the product of the coefficient of friction and normal reaction.

On resolving the given force and accelertaion in the different components and balancing the equation gets.Components in the x-direction.

The given data in the problem,

F is the applied force =65 N

Θ is the angle of inclined plane=30°

m is the mass of the block= 5 kg

We need to find the acceleration of the block in the x-direction

[tex]\rm F_x=ma_x\\\\\rm F_x=Fcos\theta-mgsin\theta\\\\\rm Fcos\theta-mgsin\theta=ma_x\\\\\rm a_x=\frac{Fcos\theta-mgsin\theta}{m}\\\\ \rm a_x=\frac{65\timescos30^0-mgsin30^0}{5} \\\\\rm a_x=6.35 m/sec^2[/tex]

Hence the magnitude of the acceleration of the block will be 6.35 m/sec².

To know more about friction force refer to the link;

https://brainly.com/question/1714663

Calculate the work against gravity required to build the right circular cone of height 4 m and base of radius 1.2 m out of a lightweight material of density 600 kg/m3. (Assume that acceleration due to gravity is g = 9.8 m/s2. Round your answer to one decimal place.)

Answers

Answer:

Work done = 35467.278 J

Explanation:

Given:

Height of the cone = 4m

radius (r) of the cone = 1.2m

Density of the cone = 600kg/m³

Acceleration due to gravity, g = 9.8 m/s²

Now,

The total mass of the cone (m) = Density of the cone × volume of the cone

Volume of the cone = [tex]\frac{1}{3}\pi r^2 h[/tex]

thus,

volume of the cone = [tex]\frac{1}{3}\pi 1.2^2\times 4[/tex] = 6.03 m³

therefore, the mass of the cone = 600 Kg/m³ × 6.03 m³ = 3619.11 kg

The center of mass for the cone lies at the [tex]\frac{1}{4}[/tex]times the total height

thus,

center of mass lies at,  h' = [tex]\frac{1}{4}\times4=1m[/tex]

Now, the work gone (W) against gravity is given as:

W = mgh'

W = 3619.11kg × 9.8 m/s² × 1 = 35467.278 J

The work against gravity required to build a cone of height 4 m and base of radius 1.2 m out of a material of density 600 kg/m3 is 35,467.278 J.

Given to us

Height of the cone = 4m

The radius of the cone = 1.2 m

Density of the material = 600 kg/m³

We know that the work gone against the gravity is given as,

[tex]W = mgh'[/tex]

where W is the work, m is the mass, g is the acceleration due to gravity, and h' is the center of mass.

Also, the mass of an object is the product of its volume and density, therefore,

[tex]m = v \times \rho[/tex]

We know the value of the volume of a cone,

[tex]m = \dfrac{1}{3}\pi r^2 h \times \rho[/tex]

The center of mass of a cone lies at the center of its base at 1/4 of the total height from the base,

[tex]h' = \dfrac{h}{4}[/tex]

Substitute all the values we will get,

[tex]W = mgh'\\\\W = (v \times \rho) g \times \dfrac{h}{4}\\\\W = (\dfrac{1}{3}\pi r^2h \times \rho) g \times \dfrac{h}{4}\\\\W = (\dfrac{1}{3}\pi (1.2)^2 \times4 \times 600) \times 9.81 \times \dfrac{4}{4}\\\\W = 35467.278\rm\ J[/tex]

Hence, the work against gravity required to build the right circular cone of height 4 m and base of radius 1.2 m out of a lightweight material of density 600 kg/m3 is 35,467.278 J.

Learn more about Work:

https://brainly.com/question/81684

A marble rolls off the edge of a table top with a speed of 2.00 m/s. a.) What is the magnitude of its velocity 0.100 s later? b.) How far from the table does it land? The height of the table is 1.00m.

Answers

Answer:

(a) 2.23 m/s

(b) 0.9 m

Explanation:

h = 1 m, t = 0.1 second

horizontal component of initial velocity, ux = 2 m/s

vertical component of initial velocity, uy = 0  

(a) Let v be the velocity after 0.1 seconds. Its vertical component is vy and horizontal component is vx.

The horizontal component of velocity remains constant as in this direction, acceleration is zero.

vx = ux = 2 m/s

Use first equation of motion in Y axis direction.

vy = uy + g t

vy = 0 + 9.8 x 0.1 = 0.98 m/s

Resultant velocity after 0.1 second

v^2 = vx^2 + vy^2

v^2 = 2^2 + 0.98^2

v = 2.23 m/s

(b) Let it takes time t to land.

Use second equation of motion along Y axis

h = uy t + 1/2 g t^2

1 = 0 + 1/2 x 9.8 x t^2

t = 0.45 second

Let it lan at a distance x.

so, x = ux x t

x = 2 x 0.45 = 0.9 m

A book slides across a level, carpeted floor with an initial speed of 3.25 m/s and comes to rest after 3.25 m. Calculate the coefficient of kinetic friction ????k between the book and the carpet. Assume the only forces acting on the book are friction, weight, and the normal force.

Answers

A book that slides across a level, carpeted floor with an initial speed of 3.25 m/s and comes to rest after 3.25 m, has a coefficient of kinetic friction of 0.166.

A book slides across a level, carpeted floor with an initial speed (u) of 3.25 m/s. It comes to rest (final speed = v = 0m/s) after 3.25 m (s).

Since this is a uniformly decelerated rectilinear motion, we can calculate the acceleration (a) using the following kinematic expression.

[tex]v^{2} = u^{2} + 2as\\\\(0m/s)^{2} = (3.25m/s)^{2} + 2a(3.25m)\\\\a = -1.63 m/s^{2}[/tex]

The negative sign only explains that the friction opposes the movement. We can calculate the force exerted by the friction (F) using Newton's second law of motion.

[tex]F = m \times a[/tex]    [1]

where,

m: mass of the book

We can also calculate the force of friction using the following expression.

[tex]F = k \times N = k \times m \times g[/tex]    [2]

where,

k: coefficient of kinetic frictionN: normal forceg: gravity (9.81 m/s²)

Given [1] = [2], we get,

[tex]m \times a = k \times m \times g\\\\k = \frac{1.63 m/s^{2} }{9.81 m/s^{2}} = 0.166[/tex]

A book that slides across a level, carpeted floor with an initial speed of 3.25 m/s and comes to rest after 3.25 m, has a coefficient of kinetic friction of 0.166.

Learn more: https://brainly.com/question/13754413

This question involves the concepts of the equations of motion, Newton's Second Law, and Frictional Force.

The coefficient of kinetic friction is found to be "0.15".

First, we will use the third equation of motion to find out the acceleration of the book:

[tex]2as = v_f^2-v_i^2\\[/tex]

where,

a = acceleration = ?

s = distance covered = 3.25 m

vf = final speed  = 0 m/s

vi = initial speed = 3.25 m/s

Therefore,

[tex]2a(3.25\ m) = (0\ m/s)^2-(3.25\ m/s)^2\\\\a=\frac{-10.56\ m^2/s^2}{7\ m/s}[/tex]

a = - 1.51 m/s² (negative sign indicates deceleration)

Now the force can be calculated using Newton's Second Law of motion:

F = ma

This force is also equal to the frictional force:

F = μmg

comparing both forces, we get:

ma = μmg

a = μg

[tex]\mu = \frac{a}{g} = \frac{1.51\ m/s^2}{9.81\ m/s^2}[/tex]

μ = 0.15

Learn more about equations of motion here:

brainly.com/question/20594939?referrer=searchResults

The attached picture shows the equations of motion.

An electron is to be accelerated in a uniform electric field having a strength of 2.00 × 106 V/m. (a) What energy in keV is given to the electron if it is accelerated through 0.400 m? (b) Over what distance would it have to be accelerated to increase its energy by 50.0 GeV?

Answers

Answer:

a) 800 keV

b) 25 km

Explanation:

[tex]Strength\ of\ Electric\ field=2\times 10^6\ V/m\\a)\ Potential\ Difference=Strength\ of\ Electric\ field\times Distance\\\Rightarrow Potential\ Difference=Kinetic\ Energy\ =2\times 10^6\times 0.4\\\therefore Energy=0.8\times 10^6\ eV=800\ keV\\[/tex]

[tex]b)\ Potential\ difference=50\ GeV=50\times 10^9\ eV\\Distance=\frac{Potential\ difference}{electric\ field}\\\Rightarrow Distance=\frac{50\times 10^9}{2\times 10^6}\\\Rightarrow Distance=25\times 10^3\ m\\\therefore Distance=25\ km[/tex]

Answer:

a) 800 keV

b)  24.996 km.

Explanation:

(a) we have

[tex]\large \Delta K.E=q\Delta V[/tex]  .............(1)

where,

[tex]\large \Delta K.E[/tex] = Change in kinetic energy

[tex]q[/tex] = charge of an electron

[tex]\Delta V[/tex] = Potential difference

also

[tex]\large E=\frac{V}{d}[/tex]       .......(2)

E = electric field

d = distance traveled

Now from (1) and (2) we have,

[tex]\large \Delta K. E=qV=qEd[/tex]

substituting the values in the above equation, we get

[tex]\large \Delta K. E=(1.6\times 10^{-19}C)(2\times 10^6V/m)(0.400m)(\frac{1eV}{1.6\times 10^{-19}J})(\frac{1keV}{1000eV})[/tex]

[tex]\large \Delta K. E=800keV[/tex]

Thus, the energy gained by the electron is 800 keV if it is accelerated over a distance of 0.400 m.

(b) Using the equation (1), we have

[tex]\large d=\frac{\Delta K.E}{qE}[/tex]

[tex]\large d=\frac{(50\times 10^9eV)}{(1.6\times 10^{-19C})(2\times 10^6V/m)}(\frac{1.6\times 10^{-19}J}{1eV})[/tex]

or

[tex]\large d=2.4996\times 10^4m[/tex]

or

[tex]\large d=24.996\times 10^3m=24.996km[/tex]

Thus, to gain 50.0 GeV of energy the electron must be accelerated over a distance of 24.996 km.

horizontal block–spring system with the block on a frictionless surface has total mechanical energy E 5 47.0 J and a maximum displacement from equilibrium of 0.240 m. (a) What is the spring constant? (b) What is the kinetic energy of the system at the equilibrium point? (c) If the maximum speed of the block is 3.45 m/s, what is its mass? (d) What is the speed of the block when its displacement is 0.160 m? (e) Find the kinetic energy of the block at x 5 0.160 m. (f) Find the potential energy stored in the spring when x 5 0.160 m. (g) Suppose the same system is released from rest at x 5 0.240 m on a rough surface so that it loses

Answers

Answer:

Part a)

[tex]k = 1632 J[/tex]

Part b)

[tex]KE = 47 J[/tex]

Part c)

[tex]m = 7.9 kg[/tex]

Part d)

[tex]v = 2.57 m/s[/tex]

Part e)

[tex]KE = 26.1 J[/tex]

Part f)

[tex]PE = 20.9 J[/tex]

Explanation:

Total Mechanical energy is given as

[tex]E = 47.0 J[/tex]

Its maximum displacement from mean position is given as

[tex]A = 0.240 m[/tex]

Part a)

Now from the formula of energy we know that

[tex]E = \frac{1}{2}kA^2[/tex]

[tex]47 = \frac{1}{2}k(0.240)^2[/tex]

[tex]k = 1632 J[/tex]

Part b)

At the mean position of SHM whole mechanical energy will convert into kinetic energy

so it is given as

[tex]KE = 47 J[/tex]

Part c)

As per the formula of kinetic energy we know that

[tex]KE = \frac{1}{2}mv^2[/tex]

[tex]47 = \frac{1}{2}m(3.45^2)[/tex]

[tex]m = 7.9 kg[/tex]

Part d)

As we know by the equation of the speed of SHM is given as

[tex]v = \sqrt{\frac{k}{m}(A^2 - x^2)}[/tex]

[tex]v = \sqrt{\frac{1632}{7.9}(0.24^2 - 0.16^2)}[/tex]

[tex]v = 2.57 m/s[/tex]

Part e)

As we know by the formula of kinetic energy

[tex]KE = \frac{1}{2}mv^2[/tex]

[tex]KE = \frac{1}{2}(7.9)(2.57^2)[/tex]

[tex]KE = 26.1 J[/tex]

Part f)

As per energy conservation we know

KE + PE = Total energy

[tex]26.1 + PE = 47[/tex]

[tex]PE = 20.9 J[/tex]

(a) The spring constant will be k=1632 [tex]\frac{N}{m^2}[/tex]

(b) The KE at equilibrium point =47j

(c) The mass =7.9kg

(d) The velocity block [tex]2.57\frac{m}{sec}[/tex]

(e)The KE of block 0.160m will be 26.1

(f) The PE will be 20.9j

What will be the asked values of the spring-mass system in the question?

(a) for finding spring constant

KE=47 j

A=0.240m

By using the formula

[tex]E=\dfrac{1}{2} kx^2[/tex]

[tex]47=\dfrac{1}{2} k(0.240)^2[/tex]

[tex]k=1632\frac{N}{m^2}[/tex]

(b) At the mean position the whole mechanical energy will be equal to KE so

KE=47j

(c) The mass of the system

[tex]KE =\dfrac{1}{2} mv^2[/tex]

[tex]47=\dfrac{1}{2} m(3.45^2)[/tex]

[tex]m=7.9kg[/tex]

(d)Now the speed of the block

[tex]v=\sqrt{\dfrac{k}{m} (A^2-x^2)}[/tex]

[tex]v=\sqrt{\dfrac{1632}{7.9} (0.24^2-0.16^2)}[/tex]

[tex]v=2.57\frac{m}{s}[/tex]

(e) The KE of the block

[tex]KE=\dfrac{1}{2} mv^2=\dfrac{1}{2} 7.9(2.57)^2=26.1J[/tex]

(f) The PE of the system

[tex]Total Energy = KE+PE[/tex]

[tex]PE= 47-26.1 =20.9J[/tex]

Thus

(a) The spring constant will be k=1632 [tex]\frac{N}{m^2}[/tex]

(b) The KE at equilibrium point =47j

(c) The mass =7.9kg

(d) The velocity block [tex]2.57\frac{m}{sec}[/tex]

(e)The KE of block 0.160m will be 26.1

(f) The PE will be 20.9j

To know more about the spring-mass system follow

https://brainly.com/question/15540894

A satellite orbits the earth in a circle with constant speed. Which of the following is true? The net force on the satellite is zero because the satellite is not accelerating. The net force on the satellite is directed forward, in the direction of travel. The net force on the satellite is directed straight down, toward the Earth. The net force on the satellite is directed outward, away from the Earth.

Answers

Answer: The net force on the satellite is directed straight down, toward the Earth.

Explanation:

A satellite orbiting the Earth is a characteristic example of the uniform circular motion, where the direction of the velocity vector [tex]\vec{V}[/tex] is perpendicular to the radius [tex]r[/tex] of the trajectory.  Hence, the velocity is changing although the speed is constant.

On the other hand,  acceleration [tex]\vec{a}[/tex] is directed toward the center of the circumference (that is why it is called centripetal acceleration).  

Now, according to Newton's 2nd law, the force [tex]\vec{F}[/tex] is directly proportional and in the same direction as the acceleration:  

[tex]\vec{F}=m.\vec{a}[/tex]  

Therefore, the net force on the satellite resulting from its circular motion points towards the center of the circle (where the Earth is in the Earth-satellite system).

A motoris st enters a freeway at a speed of 35 mi/h and accelerates uniformly to a speed of 55 mi h. The motorist travels 500 ft while accelerating. I Determine: ) The acceleration of the car 2) The time required to reach 55 mi/h.

Answers

Answer:

1)  The acceleration of the car = 1.17 m/s²

2) The time required to reach 55 mi/h = 7.59 seconds.

Explanation:

1)  Initial speed of motorist, u = 35 mph = 15.56 m/s

   Final speed of motorist, v = 55 mph = 24.44 m/s

   Distance traveled, s = 500ft = 152.4 m

   We have v² = u² + 2as

                  24.44² = 15.56² + 2 x a x 152.4

                  a = 1.17 m/s²

  The acceleration of the car = 1.17 m/s²  

2) We have v = u + at

                   24.44 = 15.56 + 1.17 x t

                           t = 7.59 s

   The time required to reach 55 mi/h = 7.59 seconds.  

The earth orbits the sun once per year at the distance of 1.50 x 1011 m. Venus orbits the sun at a distance of 1.08 x 1011 m. These distances are between the centers of the planets and the sun. How long (in earth days) does it take for Venus to make one orbit around the sun

Answers

Final answer:

It takes 225 Earth days for Venus to orbit the Sun. Interestingly, Venus spins on its axis so slowly that its day (243 Earth days) is longer than its year. The Sun takes 117 Earth days to return to the same place in Venus' sky.

Explanation:

The time it takes for Venus to make one orbit around the sun, also known as its orbital period, is actually 225 Earth days. This is quite different compared to Earth which takes 365.25 days to orbit the Sun. Additionally, Venus spins on its axis very slowly, with its rotational period being 243 Earth days. As a result, a day on Venus - considering its rotation - is longer than its year! Also, this leads to an unusual phenomenon where the sun takes 117 Earth days to return to the same place in the Venusian sky. This suggests that Venus' rotation and orbit display unique characteristics compared to other planets in our solar system, likely due to factors from its formation.

Learn more about Orbit of Venus here:

https://brainly.com/question/28479362

#SPJ11

Venus completes one orbit around the Sun in approximately 225 Earth days. This is shorter than Earth's orbital period due to Venus's closer distance to the Sun.

Orbit of Venus Around the Sun-

The distance between the Earth and the Sun is approximately 1.50 x 1011 meters, while Venus is closer, at 1.08 x 1011 meters. This difference in distance influences the orbital period of each planet. Venus takes about 225 Earth days to complete one full orbit around the Sun.

Venus has a nearly circular orbit and, being closer to the Sun than Earth, receives almost twice as much light and heat. The elliptical orbits mean that different planets have different orbital periods, with those closer to the Sun having shorter years.

A diver shines light up to the surface of a flat glass-bottomed boat at an angle of 30° relative to the normal. If the index of refraction of water and glass are 1.33 and 1.5, respectively, at what angle (in degrees) does the light leave the glass (relative to its normal)?

Answers

The light leaves the glass at about 42° relative to its normal

[tex]\texttt{ }[/tex]

Further explanation

Let's recall Snell's Law about Refraction as follows:

[tex]\boxed{n_1 \sin \theta_1 = n_2 \sin \theta_2}[/tex]

where:

n₁ = incident index

θ₁ = incident angle

n₂ = refracted index

θ₂ = refracted angle

[tex]\texttt{ }[/tex]

Given:

incident angle = θ₁ = 30°

index of refraction of air = n₃ = 1.0

index of refraction of glass = n₂ = 1.5

index of refraction of water = n₁ = 1.33

Asked:

refracted angle = θ₃ = ?

Solution:

Surface between Glass - Water:

[tex]n_1 \sin \theta_1 = n_2 \sin \theta_2[/tex]

[tex]\sin \theta_2 = \frac{n_1}{n_2} \sin \theta_1[/tex] → Equation A

[tex]\texttt{ }[/tex]

Surface between Air - Glass:

[tex]n_2 \sin \theta_2 = n_3 \sin \theta_3[/tex]

[tex]\sin \theta_3 = \frac{n_2}{n_3} \sin \theta_2[/tex]

[tex]\sin \theta_3 = \frac{n_2}{n_3} (\frac{n_1}{n_2} \sin \theta_1)[/tex] ← Equation A

[tex]\sin \theta_3 = \frac{n_1}{n_3} \sin \theta_1[/tex]

[tex]\sin \theta_3 = \frac{1.33}{1.0} \times \sin 30^o[/tex]

[tex]\sin \theta_3 = \frac{1.33}{1.0} \times \frac{1}{2}[/tex]

[tex]\sin \theta_3 \approx 0.665[/tex]

[tex]\boxed{\theta_3 \approx 42^o}[/tex]

[tex]\texttt{ }[/tex]

Learn moreCompound Microscope : https://brainly.com/question/7512369Reflecting Telescope : https://brainly.com/question/12583524Focal Length : https://brainly.com/question/8679241Mirror an Lenses : https://brainly.com/question/3067085

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Light

Final answer:

The angle at which the light leaves the glass is approximately 19.5°.

Explanation:

When a light ray crosses from one medium to another, such as from water to glass, it undergoes refraction, which causes the ray to bend. The angle between the incident ray and the normal to the surface of the glass is called the angle of incidence. To find the angle of incidence, we can use Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is equal to the ratio of the indices of refraction of the two media.

In this case, the index of refraction of water (n1) is 1.33 and the index of refraction of glass (n2) is 1.5.

The angle of incidence (θ1) is given as 30°. We can use the formula: n1*sin(θ1) = n2*sin(θ2) to solve for θ2, the angle at which the light leaves the glass.

Plugging in the values, we get: 1.33*sin(30°) = 1.5*sin(θ2).

Solving for θ2 gives us θ2 = sin^(-1)((1.33*sin(30°))/1.5).

Evaluating this expression, we find that θ2 is approximately 19.5°.

A flowerpot falls off a windowsill and passes the win- dow of the story below. Ignore air resistance. It takes the pot 0.380 s to pass from the top to the bottom of this window, which is 1.90 m high. How far is the top of the window below the window- sill from which the flowerpot fell?

Answers

Answer:

d = 0.50 m

Explanation:

Let say the speed at the top and bottom of the window is

[tex]v_1 \: and \: v_2[/tex] respectively

now we have

[tex]d = \frac{v_1 + v_2}{2}t[/tex]

[tex]1.90 = \frac{v_1 + v_2}{2} (0.380)[/tex]

[tex]v_1 + v_2 = 10 [/tex]

also we know that

[tex]v_2 - v_1 = 9.8(0.380)[/tex]

[tex]v_2 - v_1 = 3.72[/tex]

now we have from above equations

[tex]v_2 = 6.86 m/s[/tex]

[tex]v_1 = 3.14 m/s[/tex]

now the distance from which it fall down is given as

[tex]v_f^2 - v_i^2 = 2ad[/tex]

[tex]3.14^2 - 0^2 = 2(9.8)d[/tex]

[tex]d = 0.50 m[/tex]

 How many centimeters are there in meter? b. 10 c. d 1000 e. 10000 100 2. A centimeter is equal to 1 inch b.½inch C 1/2.54 inch d. 2.54 inches e. 37.39 inches

Answers

Answer:

a) There are 100 centimeters in 1 meter.

b) [tex]\texttt{A cm is equal to }\frac{1}{2.54}\texttt{ inch}[/tex]

Explanation:

a) We have the conversion

         1 m = 100 cm

   So there are 100 centimeters in 1 meter.

b) 1 inch = 2.54 cm

    [tex]1cm=\frac{1}{2.54}inch[/tex]

   [tex]\texttt{A cm is equal to }\frac{1}{2.54}\texttt{ inch}[/tex]

An optical disk drive in your computer can spin a disk up to 10,000 rpm (about 1045 rad/s1045 rad/s ). If a particular disk is spun at 646.1 rad/s646.1 rad/s while it is being read, and then is allowed to come to rest over 0.234 seconds0.234 seconds , what is the magnitude of the average angular acceleration of the disk?

Answers

Answer:

The magnitude of the average angular acceleration of the disk is 2761.1 rad/s².

Explanation:

Given that,

Angular velocity of optical disk= 1045 rad/s

Angular velocity of particular disk = 646.1 rad/s

Time = 0.234 sec

We need to calculate the average angular acceleration

Using formula of  angular acceleration

[tex]\alpha=\dfrac{\omega_{f}-\omega_{i}}{t}[/tex]

Where, [tex]\omega_{f}[/tex] = final angular velocity

[tex]\omega_{i}[/tex] = Initial angular velocity

t = time

Put the value in the equation

[tex]\alpha = \dfrac{0-646.1}{0.234}[/tex]

[tex]\alpha= -2761.1\ rad/s^2[/tex]

Negative sign shows the angular deceleration.

Hence, The magnitude of the average angular acceleration of the disk is 2761.1 rad/s².

Other Questions
The best treatment for an acute thigh contusion is? What should the athlete wear when he/she returns? HELPStories that are written using the third-person limited point of view are _____ than those written using the third person omniscient point of view.more accurateless accuratemore focusedless focused What is the mean of the data set?108, 305. 252, 113, 191 In a monohybrid cross of corn plants, purple seeds (P) are dominant to yellow (Y). Both parents in the original cross are homozygous. One has purple seeds, and one has yellow seeds. What is the genotype of the purple plant? Which european country celebrates the first day of summer as an annual public holiday in april? what is the theme of the story daedalus and icarus In a research project investigating power relationships in speech, first-semester college freshmen and college seniors were invited to a laboratory in equal numbers. There, they were asked to chat and get to know each other before the real experiment began. The researchers actually analyzed the number of interruptions that people made in the course of a conversation. This is an example of __________ research. Find the volume of the sphere. At school, Harrys physical education teacher constantly calls him good for nothing because of his lack of talent for physical activities. What kind of abuse is this? Select the algebraic equation that correctly represents the given sentence, and solve the equation. If 4 is subtracted from twice a number, the result is 12 less than the number. A. 2x 4 = x + 12 x = 16 B. 2x + 4 = x 12 x = 16 C. 2x + 4 = x + 12 x = 8 D. 2x 4 = x 12 x = 8 Which of the following statements is TRUE? a.The person most responsible for initiating the use of interchangeable parts in manufacturing was Eli Whitney. b.The origins of management by exception are generally credited to Frederick W. Taylor. c.The person most responsible for initiating the use of interchangeable parts in manufacturing was Walter Shewhart. d.The origins of the scientific management movement are generally credited to Henry Ford. e.The person most responsible for initiating the use of interchangeable parts in manufacturing was Henry Ford. 1 PointHow can you ensure that a classmate participates in a class discussion?OA. Actively listen to the classmate's ideas.OB. Offer your ideas about each topic brought up in the discussion.OC. Interrupt classmates when they are speaking.OD. Ask the classmate only yes-no questions.SUBMIT can you please solve this Identify the type of conjunction in the following sentence."You may go to Ken's house after you mow the grass."A) subordinateB) correlativeC) coordinate An allocation is efficient if: a. it is technically infeasible to make anyone better off without making someone worse off. b. the surplus is split equally between producers and consumers. c. no individual has an incentive to change behavior. d. profits are maximized. which function is a linear function a. 1-3x^2 b. y+7=5x c. x^3 + 4 = y d. 9(x^2-y) = 3 e.y-x^3=8 In a hydraulic lift, the diameter of the input piston is 10.0 cm and the diameter of the output piston is 50.0 cm. (a) How much force must be applied to the input piston so that the output piston can lift a 250N object? (b) If the object is lifted a distance of 0.3 m, then how far is the input piston moved? Which muscle is deeper in the body: the internal oblique muscle or the transverse abdominal muscle? Is the trapezius muscle located in the abdomen, back, head, neck, or thorax? To travel 80 miles, it takes Sue, riding a moped, 2 hours less time than it takes Doreen to travel 60 miles riding a bicycle. Sue travels 10 miles per hour faster than Doreen. Find the times and rates of both girls. If AB is an angle bisector of CAD, what is the value of x?