When an object is thrown vertically upward from the surface of the Earth: What is the instantaneous velocity in the point of maximum height?What is the acceleration in the point of maximum height?

Answers

Answer 1

Answer:

zero, acceleration due to gravity = 9.8 m/s^2

Explanation:

When an object throws vertically upwards, the acceleration acting on the object is acceleration due to gravity which is acting in vertically downwards direction.

As the object moves upwards, its velocity goes on decreasing because the direction of velocity and the acceleration both are opposite to each other. At maximum height, the velocity of object becomes zero and then object starts moving in downwards direction.

Thus, the value of instantaneous velocity at maximum height is zero but the vale of acceleration is acceleration due to gravity which is acting vertically downward direction.


Related Questions

At the intersection of Texas Avenue and University Drive,
ablue, subcompact car with mass 950 kg traveling East on
universitycollides with a amrron pickup truck with mass 1900 kg
that istraveling north on Texas and ran a red light. The
twovehicles stick together as a result of the collision and, after
thecollision, the wreckage is sliding at 16.0 m/s in the
direction24.0 degrees east of north. Calculate the speed of
eachvehicle before the collision. the collision occurs during
aheavy rainstorm; you can ignore friction forces between
thevehicles and the wet road.

Answers

Answer:

The initial speed of the truck is 21.93 m/s, and the initial speed of the car is 19.524 m/s  

Explanation:

We can use conservation of momentum to find the initial velocities.

Taking the unit vector [tex]\hat{i}[/tex] pointing north and [tex]\hat{j}[/tex] pointing east, the final velocity will be

[tex] \vec{V}_f = 16.0 \frac{m}{s} \ ( \ cos(24.0 \°) \ , \ sin (24.0 \°) \ )[/tex]

[tex] \vec{V}_f = ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )[/tex]

The final linear momentum will be:

[tex]\vec{P}_f = (m_{car}+ m_{truck}) * V_f[/tex]

[tex]\vec{P}_f = (950 \ kg \ + 1900 \ kg \ ) *  ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )[/tex]

[tex]\vec{P}_f = (2.850 \ kg \ ) *  ( \ 14.617 \frac{m}{s} \ , \ 6.508 \frac{m}{s} \ )[/tex]

[tex]\vec{P}_f = ( \ 41,658.45 \frac{ kg \ m}{s} \ , \ 18,547.8 \frac{kg \ m}{s} \ )[/tex]

As there are not external forces, the total linear momentum must be constant.

So:

[tex]\vec{P}_0= \vec{P}_f [/tex]

As initially the car is travelling east, and the truck is travelling north, the initial linear momentum must be

[tex]\vec{P}_0= ( m_{truck} * v_{truck}, m_{car}* v_{car} )[/tex] 

so:

 [tex]\vec{P}_0= \vec{P}_f[/tex] 

[tex]( m_{truck} * v_{truck}, m_{car}* v_{car} ) = ( \ 41,658.45 \frac{ kg \ m}{s} \ , \ 18,547.8 \frac{kg \ m}{s} \ )[/tex]  

so

[tex]\left \{ {{m_{truck} \ v_{truck} = 41,658.45 \frac{ kg \ m}{s}  } \atop {m_{car} \ v_{car}=18,547.8 \frac{kg \ m}{s} }} \right.[/tex]

So, for the truck

[tex]m_{truck} \ v_{truck} = 41,658.45 \frac{ kg \ m}{s} [/tex]

[tex]1900 \ kg \ v_{truck} = 41,658.45 \frac{ kg \ m}{s} [/tex]

[tex] v_{truck} = \frac{41,658.45 \frac{ kg \ m}{s}}{1900 \ kg} [/tex]

[tex]v_{truck} = \frac{41,658.45 \frac{ kg \ m}{s}}{1900 \ kg} [/tex]

[tex]v_{truck} = 21.93 \frac{m}{s}[/tex]

And, for the car

[tex]950 \ kg \ v_{car}=18,547.8 \frac{kg \ m}{s}[/tex]

[tex]v_{car}=\frac{18,547.8 \frac{kg \ m}{s}}{950 \ kg}[/tex]

[tex]v_{car}=19.524 \frac{m}{s}[/tex]

How much heat is necessary to change 350 g of ice at -20 degrees Celsius to water at 20 Celsius?

Answers

Final answer:

To change 350 g of ice at -20 degrees Celsius to water at 20 Celsius, you need to calculate the heat required for two processes: warming the ice and melting the ice. The heat needed to warm the ice can be calculated using the equation: Q = mcΔT, and the specific heat capacity of ice is 2.09 J/g°C. The heat needed to melt the ice can be calculated using the equation: Q = mL, where L is the heat of fusion, which is 334 J/g for ice.

Explanation:

To calculate the heat necessary to change 350 g of ice at -20 degrees Celsius to water at 20 degrees Celsius, we need to consider the energy required for two processes: warming the ice from -20°C to 0°C and then melting the ice at 0°C to form water at 0°C.

The heat needed to warm the ice can be calculated using the equation: Q = mcΔT, where Q is the heat, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. The specific heat capacity of ice is 2.09 J/g°C.

The heat needed to melt the ice can be calculated using the equation: Q = mL, where L is the heat of fusion, which is 334 J/g for ice.

Let's calculate the heat needed for each process and add them together:

Heat to warm the ice: Q = 350 g x 2.09 J/g°C x (0°C - (-20°C)) Heat to melt the ice: Q = 350 g x 334 J/g

Finally, add both values to find the total heat required.

An electric field of intensity 3.22 kN/C is applied along the x-axis. Calculate the electric flux through a rectangular plane 0.350 m wide and 0.700 m long if the following conditions are true. (a) The plane is parallel to the yz.plane. (b) The plane is parallel to the xy.plane. (C) The plane contains the yaxis, and its normal makes an angle of 34.2* with the x-axis. The electric field everywhere on the surface of a charged sphere of radius 0.205 m has a magnitude of 570 N/C and points radially outward from the center of the sphere. (a) What is the net charge on the sphere? nC (b) What can you conclude about the nature and distribution of charge inside the sphere?

Answers

Answer:

Part I:

(a): [tex]7.889\times 10^2\ Nm.[/tex]

(b): [tex]0\ Nm.[/tex]

(c): [tex]6.52\times 10^2\ Nm.[/tex]

Part II:

(a): [tex]2.664\times 10^{-9}\ C.[/tex]

(b): Charge on the sphere is positive and only distributed on the surface of the sphere and not inside the sphere.

Explanation:

Part I:

Assuming,

[tex]\hat i,\ \hat j,\ \hat k[/tex] are the unit vectors along positive x, y and z axes respectively.

Given, the electric field is of intensity 3.22 kN/C and is along x-axis.

Therefore,

[tex]\vec E = 3.22\ kN/C\ \hat i=3.22\times 10^3\ N/C\ \hat i.[/tex]

The magnetic flux through a surface is defined as

[tex]\phi = \vec E\cdot \vec A[/tex]

where,

[tex]\vec A[/tex] is the area vector of the surface which is directed along the normal to the plane of the surface and its magnitude is equal to the area of the surface.

[tex]A = \text{length of the plane }\times \text{width of the plane}\\=0.700\times 0.350\\=0.245\ m^2.[/tex]

(a):

When the plane is parallel to yz plane, then its normal is along x axis, therefore,

[tex]\vec A = A\ \hat i.[/tex]

Electric flux,

[tex]\phi = \vec E\cdot \vec A \\=(3.22\times 10^3)\hat i\cdot (0.245)\hat i = 3.22\times10^3\times 0.245\times (\hat i\cdot \hat i) = 7.889\times 10^2\ Nm.[/tex]

(b):

When the plane is parallel to xy plane, then its normal is along z axis, therefore,

[tex]\vec A = A\ \hat k.[/tex]

Electric flux,

[tex]\phi = \vec E\cdot \vec A \\=(3.22\times 10^3)\hat i\cdot (0.245)\hat k = 3.22\times10^3\times 0.245\times (\hat i\cdot \hat k) = 0\ Nm.[/tex]

(c):

When the normal to the plane makes an angle [tex]34.2^\circ[/tex] with the x-axis.

Electric flux through the plane is given by,

[tex]\phi = \vec E\cdot \vec A\\=EA\cos(34.2^\circ) \\=(3.22\times 10^3)\times (0.245)\times \cos(34.2^\circ)\\=6.52\times 10^2\ Nm.[/tex]

Part II:

(a):

Given:

Electric field everywhere on the surface of the sphere, [tex]E = 570\ N/C.[/tex]Radius of the sphere, [tex]R = 0.205\ m.[/tex]

The electric field is directed radially outward from the surface of the sphere at its every point and the normal to the surface of the sphere is also radially outwards at its every point therefore both the electric field and the area vector of the sphere is along the same direction.

The flux through the surface is given by

[tex]\phi = \vec E \cdot \vec A \\= EA\cos0^\circ\\=EA\\=E\ 4\pi R^2\\=570\times 4\pi \times 0.205^2\\=3.01\times 10^2\ Nm.[/tex]

According to Gauss law of electrostatics,

[tex]\phi = \dfrac q{\epsilon_o}[/tex]

where,

[tex]q[/tex] = charge enclosed by the sphere.[tex]\epsilon_o[/tex] = electric permittivity of free space =[tex]8.85\times10^{-12}\ C^2N^{-1}m^{-2}.[/tex]

Therefore, the net charge on the sphere is given by

[tex]q=\epsilon_o\times \phi\\=8.85\times 10^{-12}\times 3.01\times 10^2\\=2.664\times 10^{-9}\ C.[/tex]

(b):

Since, the sphere is charged all of the charge resides on its surface. The electric field through the sphere is radially outwards which means the charge on the sphere should be positive.

There is no charge distributed inside the sphere.

During a hard sneeze, your eyes might shut for 0.32 s. If you are driving a car at 76 km/h during such a sneeze, how far does the car move during that time?

Answers

Answer:

Distance, d = 6.75 meters

Explanation:

Given that,

Time taken by the eyes to shut during a hard sneeze, t = 0.32 s

Speed of the car, v = 76 km/h = 21.11 m/s

We need to find the distance covered by the car during this time. The product of speed and the time taken by the car is called the distance covered by the it. Mathematically,

[tex]d=v\times t[/tex]

[tex]d=21.11\times 0.32[/tex]

d = 6.75 meters

So, the car will cover 6.75 meters during that time. Hence, this is the required solution.

onsider a 20-cm-thick granite wall with a thermal conductivity of 2.79 W/m·K. The temperature of the left surface is held constant at 50°C, whereas the right face is exposed to a flow of 22°C air with a convection heat transfer coefficient of 15 W/m2·K. Neglecting heat transfer by radiation, find the right wall surface temperature and the heat flux through the wall.

Answers

Answer:

q=heat flux=216.83W/m^2

Ts=36.45C

Explanation:

What you should do is raise the heat transfer equation from the inside of the granite wall to the air.

You should keep in mind that in the numerator you place the temperature differences, while the denominator places the sum of the thermal resistances by conduction and convection.

When you have the heat value, all you have to do is use the convection equation q = h (ts-t) and solve for the surface temperature.

I attached procedure

A tank holds 10.3 mol of an ideal gas at an absolute pressure of 519 kPa while at a temperature of 361.38°C. (a) Compute the container's volume (b) The gas is now heated to 651.6 °C. What is the pressure of the gas now?

Answers

Answer:

(a) 62.57 L

(b) 801.94 kPa

Explanation:

Given:

[tex]n[/tex] = number of moles of gas = 10.3 mol

[tex]P_1[/tex] = initial pressure of the gas = [tex]519\ kPa = 5.19\times 10^5\ Pa[/tex]

[tex]T_1[/tex] = initial temperature of the gas = [tex]361.38^\circ C = (361.38+273)\K = 598.38\ K[/tex]

[tex]T_2[/tex] = final temperature of the gas = [tex]651.6^\circ C = (651.6+273)\K = 924.6\ K[/tex]

[tex]V[/tex] = volume of the tank

R = universal gas constant = [tex]8.314 J/mol K[/tex]

Part (a):

Using Ideal gas equation, we have

[tex]PV=nRT\\\Rightarrow V = \dfrac{nRT}{P}\\\Rightarrow V = \dfrac{10.3\times 8.314\times 598.38}{5.19\times 10^{5}}\\\Rightarrow V = 6.2567\times10^{-2}\ m^3\\\Rightarrow V = 62.567\ L[/tex]

Hence, the volume of the container is 62.567 L.

Part (b):

As the volume of the container remains constant.

Again using ideal gas equation,

[tex]PV=nRT\\\because V,\ n, R\ are\ constant\\\therefore \dfrac{P_1}{P_2}=\dfrac{T_1}{T_2}\\\Rightarrow P_2 = \dfrac{T_2}{T_1}P_1\\\Rightarrow P_2 = \dfrac{924.6}{598.38}\times 519\\\Rightarrow P_2 = 801.94\ kPa[/tex]

Hence, the final pressure of the gas is now 801.94 kPa.

Determine the velocity and position as a function of time for the time force F(t)=F Cos^2(WT). Generate plots for the resulting equation.

Answers

Answer with Explanation:

We know from newton's second law that acceleration produced by a force 'F' in a body of mass 'm' is given by

[tex]a=\frac{Force}{Mass}=\farc{F}{m}[/tex]

In the given case the acceleration equals

[tex]a=\frac{F_{o}cos^{2}(\omega t)}{m}[/tex]

Now by definition of acceleration we have

[tex]a=\frac{dv}{dt}\\\\\int dv=\int adt\\\\v=\int adt\\\\v=\int \frac{F_{o}cos^{2}(\omega t)}{m}\cdot dt\\\\v=\frac{F_{o}}{m}\int cos^{2}(\omega t)dt\\\\v=\frac{F_{o}}{\omega m}\cdot (\frac{\omega t}{2}+\frac{sin(2\omega t)}{4}+c)[/tex]

Similarly by definition of position we have

[tex]v=\frac{dx}{dt}\\\\\int dx=\int vdt\\\\x=\int vdt[/tex]

Upon further solving we get

[tex]x=\int [\frac{F_{o}}{\omega m}\cdot (\frac{\omega t}{2}+\frac{sin(2\omega t)}{4}+c)]dt\\\\x=\frac{F_{o}}{\omega m}\cdot ((\int \frac{\omega t}{2}+\frac{sin(2\omega t)}{4}+c)dt)\\\\x(t)=\frac{F_{o}}{\omega m}\cdot (\frac{\omega t^{2}}{4}-\frac{cos(2\omega  t)}{8\omega }+ct+d)[/tex]

The plots can be obtained depending upon the values of the constants.

A 34.9-kg child starting from rest slides down a water slide with a vertical height of 16.0 m. (Neglect friction.)

(a) What is the child's speed halfway down the slide's vertical distance?

(b) What is the child's speed three-fourths of the way down?

Answers

Answer:

a) 12.528 m/s

b) 15.344 m/s

Explanation:

Given:

Mass of the child, m = 34.9 kg

Height of the water slide, h = 16.0 m

Now,

a) By the conservation of energy,

loss in potential energy = gain in kinetic energy

mgh = [tex]\frac{\textup{1}}{\textup{2}}\textup{m}\times\textup{v}^2[/tex]

where,

g is the acceleration due to the gravity

v is the velocity of the child

thus,

at halfway down, h = [tex]\frac{\textup{16}}{\textup{2}}[/tex]= 8 m

therefore,

34.9 × 9.81 × 8 = [tex]\frac{\textup{1}}{\textup{2}}\textup{34.9}\times\textup{v}^2[/tex]

or

v = 12.528 m/s

b)

at three-fourth way down

height = [tex]\frac{\textup{3}}{\textup{4}}\times16[/tex] = 12 m

thus,

loss in potential energy = gain in kinetic energy

34.9 × 9.81 × 12 = [tex]\frac{\textup{1}}{\textup{2}}\textup{34.9}\times\textup{v}^2[/tex]

or

v = 15.344 m/s

Answer:

(a) 12.52 m/s

(b) 15.34 m/s

Explanation:

mass, m = 34.9 kg

h = 16 m

(a) Initial velocity, u = 0

height = h / 2 = 16 / 2 = - 8 m (downward)

let the speed of child is v.

acceleration, a = - 9.8 m/s^2 (downward)

Use third equation of motion

[tex]v^{2}=u^{2}+2as[/tex]

[tex]v^{2}=0^{2}+2\times 9.8\times 8[/tex]

v = 12.52 m/s

(b) Initial velocity, u = 0

height = 3 h / 4 = 12 m = - 12 m (downward)

let the speed of child is v.

acceleration, a = - 9.8 m/s^2 (downward)

Use third equation of motion

[tex]v^{2}=u^{2}+2as[/tex]

[tex]v^{2}=0^{2}+2\times 9.8\times 12[/tex]

v = 15.34 m/s

A soccer ball starts from rest and accelerates with an acceleration of 0.395 m/s^2 while moving down a 8.50 m long inclined plane. When it reaches the bottom, the ball rolls up another plane, where, after moving 14.75 m, it comes to rest. (a) What is the speed of the ball at the bottom of the first plane (in m/s)? (Round your answer to at least two decimal places.) (b) How long does it take to roll down the first plane (in s)?

Answers

Answer:

a) The speed of the ball at the bottom of the first plane is 2.59 m/s

b) It takes the ball 6.56 s to roll down the first plane.

Explanation:

The equations for the position and velocity of the ball are as follows:

x = x0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

Where:

x = position at time t

x0 = initial position

v0 = initial speed

t = time

a = acceleration

v = velocity at time t

b) First, let´s calculate the time it takes the ball to reach the bottom of the plane using the equation for the position:

x = x0 + v0 · t + 1/2 · a · t²

Placing the center of the frame of reference at the point where the ball starts rolling, x = 0. Since the ball starts from rest, v0 = 0. Then:

x = 1/2 · a ·t²

Let´s find the time when the ball reaches a position of 8.50 m

8.50 m = 1/2 · 0.395 m/s² · t²

t² = 2 · 8.50 m / 0.395 m/s²

t = 6.56 s

a) Now, using the equation of the velocity, we can calculate the velocity of the ball at the bottom of the plane (t = 6.56 s):

v = a · t

v = 0.395 m/s² · 6.56 s = 2.59 m/s

what are the components of friction?

Answers

Answer:

Friction:

When an object slips on a surface, an opposing force acts between the tangent planes which acts in the opposite direction of motion. This opposing force is called Friction. Or in other words, Friction is the opposing force that opposes the motion between two surfaces.

The main component of friction are:

Normal Reaction (R):

Suppose a block is placed on a table in the above picture, which is in resting state, then two forces are acting on it at that time.

The first is due to its weight mg which is working from its center of gravity towards the vertical bottom.

The second one is superimposed vertically upwards by the table on the block, called the reaction force (P). This force passes through the center of gravity of the block.

Due to P = mg, the box is in equilibrium position on the table.

Coefficient of friction ( μ ):

The ratio of the force of friction and the reaction force is called the coefficient of friction.

Coefficient of friction, µ = force of friction / reaction force

μ = F / R

The coefficient of friction is volume less and dimensionless.

Its value is between 0 to 1.

Advantage and disadvantage from friction force:

The advantage of the force of friction is that due to friction, we can walk on the earth without slipping. Brakes in all vehicles are due to the force of friction. We can write on the board only because of the force of friction. The disadvantage of this force is that due to friction, some parts of energy are lost in the machines and there is wear and tear on the machines.

How to reduce friction:

Using lubricants (oil or grease) in machines. Friction can be reduced by using ball bearings etc. Using a soap solution and powder.

In his Galileo inclined plane experiment he proved that: a. The distance is proportional to the square of time
b. The distance is proportional to time
c. The distance is proportional to a third of the time
d. Distance and time are the same

Answers

Answer:

Option a

Explanation:

Galileo's experiment of inclined plane provides the measurement of acceleration with accuracy with the help of simple equipment.

The ultimate objective of the experiment was to prove that when other external forces are absent like the one due to air resistance, all the objects fall at a constant accelerated rate towards the Earth.

Thus he measured the influence of gravity on the free falling object accurately and observed that the distance covered by these objects when released from rest and moving at a steady rate, then the distance traveled by the object is proportional to the square of the time taken.

From his findings:

[tex]D = \frac{gH}{2L}t^{2}[/tex]

where

D = distance

L = Inclined plane length

H = Height of the inclined plane

A nervous squirrel gets startled and runs 5.0\,\text m5.0m5, point, 0, space, m leftward to a nearby tree. The squirrel runs for 0.50\,\text s0.50s0, point, 50, space, s with constant acceleration, and its final speed is 15.0\,\dfrac{\text m}{\text s}15.0 s m ​ 15, point, 0, space, start fraction, m, divided by, s, end fraction. What was the squirrel's initial velocity before getting startled

Answers

Answer:

−5.0  

Explanation:

Answer:

The squirrel's initial velocity is 5 m/s.

Explanation:

It is given that,

Distance covered by the squirrel, d = 5 m

Time taken, t = 0.5 s

Final speed of the squirrel, v = 15 m/s

To find,

The squirrel's initial velocity.

Solution,

Let a is the acceleration of the squirrel. Using the first equation of motion to find it :

[tex]a=\dfrac{v-u}{t}[/tex]

[tex]a=\dfrac{15-u}{0.5}[/tex]..............(1)

Let u is the initial speed of the squirrel. Using again third equation of kinematics to find it :

[tex]v^2-u^2=2ad[/tex]

Use equation (1) to put value of a

[tex](15)^2-u^2=2\times \dfrac{15-u}{0.5}\times 5[/tex]

[tex]225-u^2=20(15-u)[/tex]

On solving the above quadratic equation, we get the value of u as :

u = 5 m/s

Therefore, the squirrel's initial velocity before getting started is 5 m/s.

Radiant heat makes it impossible to stand close to a hot lava flow. Calculate the rate of heat loss by radiation from 1.00 m^2 of 1110°C fresh lava into 36.2°C surroundings, assuming lava's emissivity is 1.

Answers

The rate of heat loss by radiation is equal to -207.5kW

Why?

To calculate the heat loss rate (or heat transfer rate) by radiation, from the given situation, we can use the following formula:

[tex]HeatLossRate=E*S*A*((T_{cold})^{4} -(T_{hot})^{4} )[/tex]

Where,

E, is the emissivity of the body.

A, is the area of the body.

T, are the temperatures.

S, is the Stefan-Boltzmann constant, which is equal to:

[tex]5.67x10^{-8}\frac{W}{m^{2}*K^{-4} }[/tex]

Now, before substitute the given information, we must remember that the given formula works with absolute temperatures (Kelvin), so,  we need to convert the given values of temperature from Celsius degrees to Kelvin.

We know that:

[tex]K=Celsius+273.15[/tex]

So, converting we have:

[tex]T_{1}=1110\°C+273.15=1383.15K\\\\T_{2}=36.2\°C+273.15=309.35K[/tex]

Therefore, substituting the given information and calculating, we have:

[tex]HeatLossRate=E*S*A*((T_{cold})^{4} -(T_{hot})^{4} )[/tex]

[tex]HeatLossRate=1*5.67x10^{-8}\frac{W}{m^{2}*K^{-4} }*1m^{2} *((309.35K)^{4} -(1383.15})^{4} )\\\\HeatLossRate=5.67x10^{-8}\frac{W}{K^{-4} }*(95697.42K^{4} -3.66x10^{12}K^{4})\\ \\HeatLossRate=5.67x10^{-8}\frac{W}{K^{-4} }*(-3.66x10^{12} K^{4})=-207522W=-207.5kW[/tex]

Hence, we have that the rate of heat loss is equal to -207.5kW.

A single point charge is placed at the center of an imaginary cube that has 19 cm long edges. The electric flux out of one of the cube's sides is -2.5 kN·m2/C. How much charge is at the center? .................. nC

Answers

Answer:

The amount of charge at the center is -132.7 nC

Solution:

As per the question:

Electric flux from one face of cube, [tex]\phi_{E} = - 2.5 kN.m^{2}/C[/tex]

Edge, a = 19cm

Since, a cube has six faces, thus total flux from all the 6 faces = [tex]6\times (-2.5) = - 15 kN.m^{2}/C[/tex]

Also, from Gauss' law:

[tex]\phi_{E,net} = \frac{1}{\epsilon_{o}}Q_{enc}[/tex]

[tex]Q_{enc} = 8.85\times 10^{- 12}\times - 15\times 10^{3}[/tex]

[tex]Q_{enc} = - 132.7 nC[/tex]

Two point charges are located on the y axis as follows: charge q1 = -2.30 nC at y1 = -0.600 m , and charge q2 = 2.80 nC at the origin (y = 0). What is the magnitude of the net force exerted by these two charges on a third charge q3 = 7.50 nC located at y3 = -0.300 m ?

Answers

Answer:

3.825*10^-6 N

Explanation:

As particle 1 and particle 3 has opposite types of charge, particle 3 will be attracted to particle 1. And as particle 2 and 3 has the same sign, they will repel each other. Due to the position of the particles, both the Force that 1 exerts on 3 and the force that 2 exerts on 3, will have the same direction. Now, you need the magnitude. You can use the following expression:

[tex]F_e = K\frac{q_1*q_3}{r^2}[/tex]

K is the Coulomb constant equal to 9*10^9 N*m^2/C^2, q1 and q2 is the charge of the particles, and r is the distance.

Force 1 on 3 is equal to:

[tex]F_e = K\frac{q_1*q_3}{r^2} = 9*10^9 \frac{Nm^2}{C^2} * \frac{2.3*10^{-9}C * 7.5*10^{-9}C}{(-0.6m - (-0.3m))^2} = 1.725 * 10^{-6} N[/tex]

Force 2 on 3:

[tex]F_e = K\frac{q_2*q_3}{r^2} = 9*10^9 \frac{Nm^2}{C^2} * \frac{2.8*10^{-9}C * 7.5*10^{-9}C}{(0m - (-0.3m))^2} = 2.1 * 10^{-6} N[/tex]

The magnitude of the resultant force is the addition of both forces:

[tex]F_e = 1.725*10^{-6} N + 2.1*10^{-6} N= 3.825 * 10^{-6} N[/tex]

Final answer:

The magnitude of the net force exerted by the two charges on the third charge is 1.38 N.

Explanation:

The magnitude of the net force exerted by q1 and q2 on q3 can be found using Coulomb's Law. Coulomb's Law states that the force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

The formula for Coulomb's Law is:

F = k(q1 * q2) / r^2

Where F is the force, k is Coulomb's constant (k = 9 x 10^9 N * m^2 / C^2), q1 and q2 are the charges, and r is the distance between them.

In this case, q1 = -2.30 nC, q2 = 2.80 nC, q3 = 7.50 nC, y1 = -0.600 m, y3 = -0.300 m, and y2 = 0 m.

Using the formula and substituting the values, we can calculate the force:

F = (9 x 10^9 N * m^2 / C^2) * (q1 * q3) / ((y3 - y1)^2)

F = (9 x 10^9 N * m^2 / C^2) * (-2.30 nC * 7.50 nC) / ((-0.300 m + 0.600 m)^2)

F = -1.38 N

Therefore, the magnitude of the net force exerted by the two charges on the third charge is 1.38 N.

600-nm light is incident on a diffraction grating with a ruling separation of 1.7 10 m. The second order line occurs at a diffraction angle of: 42 45° 21° 10°

Answers

Answer:

45°

Explanation:

λ = 600 nm = 600 x 10^-9 m

d = 1.7 x 10^-6 m

For second order, N = 2

Use the equation

d Sinθ = N λ

1.7 x 10^-6 x Sinθ = 2 x 600 x 10^-9

Sinθ = 0.706

θ = 45°

Thus, the angle of diffraction is 45°.

Final answer:

The diffraction angle of the second-order line is approximately 44.22°.

Explanation:

The diffraction angle of the second order line can be found using the formula:

dsinθ = mλ

Where d is the ruling separation of the diffraction grating, θ is the diffraction angle, m is the order of the line, and λ is the wavelength of light. Plugging in the values given in the question:

1.7 × 10-6 m × sinθ = 2 × 600 × 10-9 m

Simplifying the equation:

sinθ = 2 × 600 × 10-9 m / (1.7 × 10-6 m)

Calculating the value of sinθ, we find:

sinθ ≈ 0.7059

Finally, taking the inverse sine of 0.7059, we find:

θ ≈ 44.22°

The second-order line occurs at a diffraction angle of approximately 44.22°.

Learn more about Diffraction here:

https://brainly.com/question/12290582

#SPJ3

A team exerts a force of 10 N towards the south in a tug of war. The other, opposite team, exerts a force of 17 N towards the north. The net force is A. 27 N east. B. 7 N south C. 7 N north D. 27 N north

Answers

Final answer:

In a tug-of-war where forces are exerted in opposite directions (10 N south and 17 N north), the net force is calculated by subtracting the smaller force from the larger, resulting in a 7 N force towards the north. The correct answer is D.

Explanation:

The net force in a tug of war scenario is the vector sum of all the forces acting on the object. Since force is a vector quantity, it has both magnitude and direction. In this case, the force exerted by one team (17 N north) and the force exerted by the other team (10 N south) are in opposite directions along the same line, so we subtract the smaller force from the larger one to find the net force.

|17 N| - |10 N| = 17 N - 10 N = 7 N north.

If a body travels half it’s total path in the last 1.10s if it’s fall from rest, find the total time of its fall (in seconds)

Answers

Answer:

3.75s

Explanation:

We can use the equations for constant acceleration motion. Let's call x, the total length of the path, then x/2 will be half of path. After falling from rest and reaching the half of its total path, the velocity of the body will be:

[tex]v_f^2 =v_0^2 + 2a(x/2)[/tex]

vf is the final velocity, v0 is the initial velocity, 0m/s because the body starts from rest. a is the acceleration, gravity = 9.81m/s^2 in this case. Now, clearing vf we get:

[tex]v_f=\sqrt{(0m/s)^2 + 2g(x/2)}\\v_f = \sqrt{g*x}

In the second half:

[tex]x/2 = \frac{1}{2}gtx^{2}  + v_ot[/tex]

[tex]x/2 = \frac{1}{2}g*(t)^2 + \sqrt{g*x}*(t)[/tex]

[tex](\frac{1}{2}\frac{(x-gt^2)}{\sqrt{g}t})^2 = x\\\\\frac{1}{4gt^2}(x^2 - 2xgt^2 + g^2t^4) = x\\\\\frac{1}{4gt^2}x^2 - (\frac{2gt^2}{4gt^2}+1)x + \frac{g^2t^4}{4gt^2} = 0\\ \frac{1}{4gt^2}x^2 - \frac{3}{2}x + \frac{gt^2}{4} = 0\\[/tex]

[tex]0.0211 x^2 - 1.5x + 2.97 = 0\\[/tex]

Solving for x, you get that x is equal to 69.2 m or 2.03m. The total time of the fall would be:

[tex]x = \frac{1}{2}gt^2\\t=\sqrt{(2x/g)}[/tex]

Trying both possible values of x:

[tex]t_1 = 3.75 s\\t_2 = 0.64 s[/tex]

t2  is lower than 1.1s, therefore is not a real solution.

Therefore, the path traveled will be 69.2m and the total time 3.75s

what is the approximate radius of the n = 1orbit of gold ( Z
=19 )?

Answers

Answer:

[tex]r=6.72\times 10^{-13}\ m[/tex]

Explanation:

Let r is the radius of the n = 1 orbit of the gold. According to Bohr's model, the radius of orbit is given by :

[tex]r=\dfrac{n^2h^2\epsilon_o}{Z\pi me^2}[/tex]

Where

n = number of orbit

h = Planck's constant

Z = atomic number (for gold, Z = 79)

m = mass of electron

e = charge on electron

[tex]r=\dfrac{(6.63\times 10^{-34})^2 \times 8.85\times 10^{-12}}{79\pi \times 9.1\times 10^{-31}\times (1.6\times 10^{-19})^2}[/tex]

[tex]r=6.72\times 10^{-13}\ m[/tex]

So, the radius of the n = 1 orbit of gold is [tex]6.72\times 10^{-13}\ m[/tex]. Hence, this is the required solution.

An object moving due to gravity can be described by the motion equation y=y0+v0t−12gt2, where t is time, y is the height at that time, y0 is the initial height (at t=0), v0 is the initial velocity, and g=9.8m/s2 (the acceleration due to gravity). If you stand at the edge of a cliff that is 75 m high and throw a rock directly up into the air with a velocity of 20 m/s, at what time will the rock hit the ground? (Note: The Quadratic Formula will give two answers, but only one of them is reasonable.)

Answers

Answer:

[tex]t=6.4534 s[/tex]

Explanation:

This is an exercise where you need to use the concepts of free fall objects

Our knowable variables are initial high, initial velocity and the acceleration due to gravity:

[tex]y_{0}=75m[/tex]

[tex]v_{oy} =20m/s[/tex]

[tex]g=9.8 m/s^{2}[/tex]

At the end of the motion, the rock hits the ground making the final high y=0m

[tex]y=y_{o}+v_{oy}*t-\frac{1}{2}gt^{2}[/tex]

If we evaluate the equation:

[tex]0=75m+(20m/s)t-\frac{1}{2}(9.8m/s^{2})t^{2}[/tex]

This is a classic form of Quadratic Formula, we can solve it using:

[tex]t=\frac{-b ± \sqrt{b^{2}-4ac } }{2a}[/tex]

[tex]a=-4.9\\b=20\\c=75[/tex]

[tex]t=\frac{-(20) + \sqrt{(20)^{2}-4(-4.9)(75) } }{2(-4.9)}=-2.37s[/tex]

[tex]t=\frac{-(20) - \sqrt{(20)^{2}-4(-4.9)(75) } }{2(-4.9)}=6.4534s[/tex]

Since the time can not be negative, the reasonable answer is

[tex]t=6.4534s[/tex]

The rock will hit the ground approximately 2.37 seconds after it is thrown.

Given:

- Initial height, [tex]\( y_0 = 75 \)[/tex] m

- Initial velocity, [tex]\( v_0 = 20 \)[/tex] m/s (since the rock is thrown upwards, this velocity will be negative in the equation as it is in the opposite direction to the positive y-axis)

- Acceleration due to gravity, [tex]\( g = 9.8 \) m/s\( ^2 \)[/tex]

The motion equation becomes:

[tex]\[ 0 = 75 - 20t - \frac{1}{2}(9.8)t^2 \][/tex]

Multiplying through by 2 to clear the fraction, we get:

[tex]\[ 0 = 150 - 40t - 9.8t^2 \][/tex]

Rearranging the terms to align with the standard quadratic form [tex]\( at^2 + bt + c = 0 \)[/tex], we have:

[tex]\[ 9.8t^2 + 40t - 150 = 0 \][/tex]

Now we can apply the Quadratic Formula to solve for t:

[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Where ( a = 9.8 ), ( b = 40 ), and ( c = -150 ). Plugging in these values, we get:

[tex]\[ t = \frac{-40 \pm \sqrt{40^2 - 4(9.8)(-150)}}{2(9.8)} \][/tex]

Solving this, we get two values for t, but only the positive value is physically meaningful since time cannot be negative.

 Calculating the discriminant:

[tex]\[ \sqrt{40^2 - 4(9.8)(-150)} = \sqrt{1600 + 5880} = \sqrt{7480} \][/tex]

Now, we find the two possible values for t:

[tex]\[ t = \frac{-40 \pm \sqrt{7480}}{2(9.8)} \] \[ t = \frac{-40 \pm 86.52}{19.6} \][/tex]

The two solutions for t are:

[tex]\[ t_1 = \frac{-40 + 86.52}{19.6} \approx 2.37 \text{ s} \] \[ t_2 = \frac{-40 - 86.52}{19.6} \approx -6.43 \text{ s} \][/tex]

Since time cannot be negative, we discard [tex]\( t_2 \)[/tex] and take [tex]\( t_1 \)[/tex] as the time when the rock hits the ground.

The time taken is 2.37 s.

A car travels in a straight line from a position 50 m to your right to a position 210 m to your right in 5 sec. a. What is the average velocity of the car?b. Construct a position vs. time graph and calculate the slope of the line of best fit.

Answers

Answer:

The average velocity of the car is 32 m/s.

Explanation:

Given that,

Initial position = 50 m

Final position = 210 m

Time = 5 sec

(a). We need to calculate the average velocity of the car

Using formula of average velocity

[tex]v_{avg}=\dfrac{v_{f}-v_{i}}{t}[/tex]

Put the value into the formula

[tex]v_{avg}=\dfrac{210-50}{5}[/tex]

[tex]v_{avg}=32\ m/s[/tex]

(b). We need to draw the position vs. time graph

We need to calculate the slope of the line of best fit.

Using formula of slop

[tex]slope =\dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

Put the value into the formula

[tex]slope =\dfrac{210-50}{5-0}[/tex]

[tex]slope =32[/tex]

Hence, The average velocity of the car is 32 m/s.

When the electric field strength is large, electric field lines are: a) close together.
b) perpendicular to each other.
c) electric field lines are not related to the field strength.
d) far apart.
e) None of the above.

Answers

Answer: a) close together

Explanation: The electric field lines also  represent the intensity of the field, in this sense  for strong electric fields it is usually draw the lines close to each other. In constrast when they are far apart the electric field is weak.  

Final answer:

The electric field lines are close together when the electric field strength is large, indicating a stronger field due to the direct proportionality between field strength and the density of the field lines. The correct answer is a) close together.

Explanation:

When the electric field strength is large, electric field lines are close together. This is because the strength of the electric field is directly proportional to the number of lines per unit area perpendicular to the field lines. The more electric field lines there are in a given area, the stronger the electric field at that point.

Hence, near a positive charge or around a negative charge, where the field lines begin or terminate, the field lines are densely packed when the charge is large, indicating a strong electric field. Field lines provide a visual representation of the field's strength and direction, and they will never intersect because the electric field at a point must have a unique direction.

An equilateral triangle has a height of 3.32 cm. Draw the picture and use this information to determine the length of the sides of the triangle.

Answers

Answer:

The answer is  a=b=c=3.833 cm

Explanation:

Lets call the variables a=side a b=side b c=side c

We have that the formula of the equilateral triangle for its height is:

1)h=(1/2)*root(3)*a

2) If we resolve the equation we have

 2.1)2h=root(3)*a

 2.2)(2h/root(3))=a

3) After the replacement of each value we have that

a=2*3.32/1.73205

a=3.833 cm

And we know that the equilateral triangle has the same value for each side so a=b=c=3.833 cm

Write down an equation describing a sinusoidal traveling wave (in 1-D). Tell us (words and/or equations) what in your equation tells us the speed and direction of the wave? [Hint: you can google this if you do not know the answer. Be sure you understand it though!]

Answers

Answer:

Explanation:

The standard equation of the sinusoidal wave in one dimension is given by

[tex]y = A Sin\left ( \frac{2\pi }{\lambda }\left ( vt-x \right )+\phi  \right )[/tex]

Here, A be the amplitude of the wave

λ be the wavelength of the wave

v be the velocity of the wave

Φ be the phase angle

x be the position of the wave

t be the time

this wave is travelling along positive direction of X axis

The frequency of wave is f which relates with velocity and wavelength as given below

v = f x λ

The relation between the time period and the frequency is

f = 1 / T.

A centrifuge in a medical laboratory rotates at an
angularspeed of 3800 rev/min. When switched off, it rotates through
46.0revolutions before coming to rest. Find the constant
angularacceleration of the centrifuge.

Answers

Answer:

- 273.77 rad/s^2

Explanation:

fo = 3800 rev/min = 3800 / 60 rps = 63.33 rps

f = 0

ωo = 2 π fo = 2 x 3.14 x 63.33 = 397.71 rad/s

ω = 2 π f = 0

θ = 46 revolutions = 46 x 2π radian = 288.88 radian

Let α be the angular acceleration of the centrifuge

Use third equation of motion for rotational motion

[tex]\omega^{2}=\omega _{0}^{2}+2\alpha \theta[/tex]

[tex]0^{2}=397.71^{2}+2 \times \alpha \times 288.88[/tex]

α = - 273.77 rad/s^2

A spherical water droplet of radius 35 um carries an excess 236 electrons. What vertical electric field in N/C) is needed to balance the gravitational force on the droplet at the surface of the earth? (Assume the density of a water droplet is 1,000 kg/m". Enter the magnitude.)

Answers

Answer:

4.66 x 10^7 N/C

Explanation:

radius of drop, r = 35 micro meter = 35 x 10^-6 m

number of electrons, n = 26

density of water, d = 1000 kg / m^3

The gravitational force is equal to the product of mass of drop and the acceleration due to gravity.

Mass of drop, m = Volume of drop x density of water

[tex]m = \frac{4}{3}\times 3.14 \times r^{3}\times d[/tex]

[tex]m = \frac{4}{3}\times 3.14 \times \left ( 35\times10^{-6} \right )^{3}\times 1000[/tex]

m = 1.795 x 10^-10 kg

Gravitational force, Fg = m x g = 1.795 x 10^-10 x 9.8 = 1.759 x 10^-9 N

Charge,q = number of electrons x charge of one electron

q = 236 x 1.6 x 10^-19 = 3.776 x 10^-17 C

Electrostatic force, Fe = q E

Where, E is the strength of electric field.

here electrostatic force is balanced by the gravitational force

Fe = Fg

3.776 x 106-17 x E = 1.759 x 10^-9

E = 4.66 x 10^7 N/C

One cubic meter (1.00 m3) of aluminum has a mass of 2.70 103 kg, and the same volume of iron has a mass of 7.86 103 kg. Find the radius of a solid aluminum sphere that will balance a solid iron sphere of radius 1.82 cm on an equal-arm balance.

Answers

Answer:

[tex]r_{al}=2.598cm[/tex]

Explanation:

Density =mass/volume

[tex]D_{al}=2.70103kg/m^{3}[/tex]

[tex]D_{iron}=7.86103/m^{3}[/tex]

condition for balance:

[tex]M_{iron}=M_{al}[/tex]

M=D*Volum

then:

[tex]D_{iron}*4/3*pi*r_{ir}^{3}=D_{al}*4/3*pi*r_{al}^{3}[/tex]

[tex]r_{al}=r_{ir}*\sqrt[3]{\frac{D_{iron}}{D_{al}}}[/tex]

[tex]r_{al}=2.598cm[/tex]

Answer:

1.28 cm

Explanation:

Density (ρ) is an intensive property resulting from the quotient of mass (m) and volume (V).

The density of Al is ρAl = 2.70 × 10³ kg/m³

The density of Fe is ρFe = 7.86 × 10³ kg/m³

A Fe sphere of radius 1.82 cm has the following volume.

V = 4/3 × π × r³

V = 4/3 × π × (0.0182 cm)³

V = 2.53 × 10⁻⁵ m³

The mass corresponding to this sphere is:

2.53 × 10⁻⁵ m³ × 2.70 × 10³ kg/m³ = 0.0683 kg

The Al sphere has the same mass, so its volume is:

0.0683 kg × (1 m³/7.86 × 10³ kg) = 8.69 × 10⁻⁶ m³

The radius corresponding to an Al sphere of 8.69 × 10⁻⁶ m³ is:

V = 4/3 × π × r³

8.69 × 10⁻⁶ m³ = 4/3 × π × r³

r = 0.0128 m = 1.28 cm

The so-called Lyman-α photon is the lowest energy photon in the Lyman series of hydrogen and results from an electron transitioning from the n = 2 to the n = 1 energy level. Determine the energy in eV and the wavelength in nm of a Lyman-α photon. (a) the energy in eV
(b)the wavelength in nm

Answers

Answer:

a) 10.2 eV

b) 122 nm

Explanation:

a) First we must obtain the energy for each of the states, which is given by the following formula:

[tex]E_{n}=\frac{-13.6 eV}{n^2}[/tex]

So, we have:

[tex]E_{1}=\frac{-13.6 eV}{1^2}=-13.6 eV\\E_{2}=\frac{-13.6 eV}{2^2}=-3.4 eV[/tex]

Now we find the energy that the electron loses when it falls from state 2 to state 1, this is the energy carried away by the emitted photon.

[tex]E_{2}-E_{1}=-3.4eV-(-13.6eV)=10.2eV[/tex]

b) Using the Planck – Einstein relation, we can calculate the wavelength of the photon:

[tex]E=h\nu[/tex]

Where E is the photon energy, h the Planck constant and  [tex]\nu[/tex] the frequency.

Recall that [tex]\nu=\frac{c}{\lambda}[/tex], Rewriting for [tex]\lambda[/tex]:

[tex]E=\frac{hc}{\lambda}\\\lambda=\frac{hc}{E}\\\lambda=\frac{(4.13*10^{-15}eV)(3*10^8\frac{m}{s})}{10.2eV}=1.22*10^{-7}m[/tex]

Recall that [tex]1 m=10^9nm[/tex], So:

[tex]1.22*10^{-7}m*\frac{10^9nm}{1m}=122nm[/tex]

You hold a ruler that has a charge on its tip 6 cm above a small piece of tissue paper to see if it can be picked up. The ruler has −14 µC of charge. The tissue has 5 g of mass. What is the minimum charge required to pick up the tissue paper?

Answers

We have that for the Question "What is the minimum charge required to pick up the tissue paper?" it can be said that minimum charge is

q=0.0014\muC

From the question we are told

You hold a ruler that has a charge on its tip 6 cm above a small piece of tissue paper to see if it can be picked up. The ruler has −14 µC of charge. The tissue has 5 g of mass. What is the minimum charge required to pick up the tissue paper?

minimum charge

Generally the equation for the Electro static force  is mathematically given as

[tex]\frac{kqq'}{r^2}=mg\\\\Therefore\\\\q=\frac{5*10^{-3}*9.8*(0.06^)^2}{9*10^{9}*14*10^{-6}}\\\\q=1.4*10^{-9}C\\\\q=1.4mc\\\\[/tex]

q=0.0014\muC

For more information on this visit

https://brainly.com/question/19007362

Which of the following statements is/are CORRECT? 1. Atoms are the smallest particles of an element that retain the element's chemical properties. 2. Substances composed of only one type of atom are classified as elements. 3. Of the 118 known elements, only 48 occur naturally.

Answers

Answer:

1. Atoms are the smallest particles of an element that retain the element's chemical properties.

2. Substances composed of only one type of atom are classified as elements.

Explanation:

Statement 3 is wrong because out of the 118 identified elements, the first 94 of them occur naturally on Earth and the remaining 24 are synthetic elements.

Final answer:

Atoms are the smallest units retaining an element's properties, and elements consist exclusively of one type of atom. The provided statement about natural occurrence of elements is incorrect, as 92 elements, not 48, occur naturally.

Explanation:

Regarding the student's question on the properties of atoms and elements:

Atoms are the smallest particles of an element that retain the element's chemical properties. For instance, a hydrogen atom possesses all properties of the element hydrogen.

Substances made up of only one type of atom are considered elements. Each element has atoms with a characteristic mass and identical chemical properties.

The statement about the occurrence of elements is partially incorrect. Although 118 elements have been identified, some sources suggest that 92 occur naturally, not just 48.

Other Questions
Quadratic Functions Put the equationy = x^2 + 14a + 40 into the form y = (x - h )^2 + k: Answer: y Preview Get help: Video Poins What improved the living conditions of poor Europeans as a result of the Columbian Exchange? A. Slaves from Africa B. New types of food C. Animals from America D. New trade routes The CFO of Green Dating Service, Inc. has just collected the following data for December 31, 2018. Write a balance sheet and an income statement. Accounts Receivable 250,000 Accounts Payable 260,000 Capital Surplus 100,000 Cash 190,000 Common Stock 300,000 Costs 640,000 Depreciation Expense 40,000 Dividends 97,500 Net Furniture & Fixtures 200,000 Goodwill 180,000 Interest Expense 50,000 Inventory 175,000 Land 305,000 Line of Credit (used) 200,000 Long Term Loan 340,000 Retained Earnings ? Sales 980,000 Tax rate 21% In the moss Polytrichum commune, the haploid chromosome number is 7. A haploid male gamete fuses with a haploid female gamete to form a diploid cell that divides and develops into the multicellular sporophyte. Cells of the sporophyte then undergo meiosis to produce haploid cells called spores. What is the probability that an individual spore will contain a set of chromosomes all of which came from the male gamete? Assume no recombination. a Draw a Lewis structure for CH_4 Explicitly draw all H atoms. Include all valence lone pairs in your answer. Include all nonzero formal charges. C opy P aste H ** H . H H a blastocyst is a group of cells that forms after a human egg is fertilized. The blastocyst consist of two types of cells. Some of these cells develop into all of the cells of a growing fetus. What do the other cells develop into?A. The Umbilical CordB. The PlacentaC. The EmbryoD. The Fetus The data in an experiment come from observing or measuring theQuestion 5 options:A. independent variableB. controlC. dependent variableD. experiment Derive the formula for the electric field E to accelerate the charged particle to a fraction f of the speed of light c. Express E in terms of M, Q, D, f, c and v0. (a) Using the Coulomb force and kinematic equations. (8 points) (b) Using the work-kinetic energy theorem. ( 8 points) (c) Using the formula above, evaluate the strength of the electric field E to accelerate an electron from 0.1% of the speed of light to 90% of the speed of light. You need to look up the relevant constants, such as mass of the electron, charge of the electron and the speed of light. (5 points) Comment dit-on en fancais: I like this dogJ'aime ____________ (4,-2) and (-2,-2) write the equation. Which of the following statements is true?1.The Middle Ages cover a period included between the end of the Roman Empire and Renaissance (Modern Age)2.The Middle Ages cover a period included between the beginning of the Byzantine Empire and the Renaissance (Modern Age)3.The Middle Ages cover a period included between the Romanesque style and the Gothic style4.The Middle Ages cover a period included between the fall of the Babylonian Empire and the beginning of the Roman EmpireStatements 1 and 3 b. Statement 1 only c. None of these statements are true d. All statements are true find the number described.The number 44.4 is what percent of 74? 1. Answer true or false to the following:A ball rolling on a flat table has a horizontal but no verticalcomponent of motion.A rock falling straight downward with no wind blowing has nohorizontal component of motion.A baseball hit into the air toward right field has vertical but nohorizontal component of motion.A basketball bounced straight up and down has vertical but nohorizontal component of motion. Rolando Cruz is a native of Mexico City and has lived in Portland, Oregon since 1996. Since 2008, Rolando has been District Executive for Hispanic Outreach and responsible for the Soccer and Scouting program at the Boy Scouts of America in Portland. His bi cultural background and focus on community collaboration has led him to a number of volunteer opportunities and community leadership roles. Rolando received his Bachelor of Science in Communications at Oklahoma Christian University and a Masters in Management and Organizational Leadership at Warner Pacific College in Portland, Oregon. What genre is it? A m=7.2 gram object is accelerated at a rate of a=2.9 m/s^2. What force (in millinewtons) does the object experience? No need to add the unit (already given). If 3.7 grams of a gas contains 3.7 10^22 molecules, what is the molar mass of this gas in units of g/mol? The information revolution is defined as ______. Discuss the differences between conduction and convective heat transfer. Which of the following is NOT part of the male reproductive system? A. Seminiferous tubulesB.Vas deferens C. Epididymis D. Bartholins glands In a Hydrogen atom an electron rotates around a stationary proton in a circular orbit with an approximate radius of r =0.053nm. (a) Find the magnitude of the electrostatic force of attraction, Fe between the electron and the proton. (b) Find the magnitude of the gravitational force of attraction Fg , between the electron and the proton, and find the ratio, Fe /Fg . me = 9.11 x 10-31kg, e = 1.602 x 10-19C mp = 1.67 x 10-27kg k = 9 x 109 Nm2 /C2 G = 6.67 x 10-11 Nm2 /kg2