When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in parallel with the same battery, the current is 1.60 A. Part A What are the values of the two resistors?

Answers

Answer 1

Answer:

If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

Explanation:

R₁ = Resistance of first resistor

R₂ = Resistance of second resistor

V = Voltage of battery = 12 V

I = Current = 0.33 A (series)

I = Current = 1.6 A (parallel)

In series

[tex]\text{Equivalent resistance}=R_{eq}=R_1+R_2\\\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{0.33}\\\Rightarrow R_1+R_2=36.36\\ Also\ R_1=36.36-R_2[/tex]

In parallel

[tex]\text{Equivalent resistance}=\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2}\\\Rightarrow {R_{eq}=\frac{R_1R_2}{R_1+R_2}[/tex]

[tex]\text {From Ohm's law}\\V=IR_{eq}\\\Rightarrow R_{eq}=\frac{12}{1.6}\\\Rightarrow \frac{R_1R_2}{R_1+R_2}=7.5\\\Rightarrow \frac{R_1R_2}{36.36}=7.5\\\Rightarrow R_1R_2=272.72\\\Rightarrow(36.36-R_2)R_2=272.72\\\Rightarrow R_2^2-36.36R_2+272.72=0[/tex]

Solving the above quadratic equation

[tex]\Rightarrow R_2=\frac{36.36\pm \sqrt{36.36^2-4\times 272.72}}{2}[/tex]

[tex]\Rightarrow R_2=25.78\ or\ 10.57\\ If\ R_2=25.78\ then\ R_1=36.36-25.78=10.58\ \Omega\\ If\ R_2=10.57\ then\ R_1=36.36-10.57=25.79\Omega[/tex]

∴ If R₂=25.78 ohm, then R₁=10.58 ohm

If R₂=10.57 then R₁=25.79 ohm

Answer 2
Final answer:

The two resistors in question, when wired in a series, have a combined resistance of about 36.36 Ohms. When wired in parallel, they share a resistance of roughly 7.5 Ohms. The two resistor values would then most likely be around 28.86 Ohms and 7.5 Ohms.

Explanation:

The nature of your question indicates a focus on the properties and calculations associated with electrical resistors in a circuit. These resistors can either be configured in a series or parallel connection, which will drastically change their behavior and derived readings.

From the context of your question, it is evident that a 12V battery is being used in conjunction with two resistors. In a series connection, the sum of the voltages across each resistor will equal the total voltage, effectively segmenting the 12V battery's output. In a parallel connection, each resistor would experience the full 12V impact, leading to larger current readings. Your values indicate a 0.33A current in a series scenario and a 1.60A current in a parallel situation.

Knowing this, we can apply Ohm's Law, which states Voltage (V) equals Current (I) times Resistance (R). In the series connection, the total resistance can be calculated as 12V divided by 0.33A equals approximately 36.36 Ohms. For the parallel connection, the total resistance would be 12V divided by 1.60A equals approximately 7.5 Ohms. Subtracting these two values, we can find that one of the resistors is around 28.86 Ohms while the other is roughly 7.5 Ohms. This would satisfy both the series and parallel conditions outlined in your question.

Learn more about Electrical Resistors here:

https://brainly.com/question/18829138

#SPJ3


Related Questions

Given the size, shape and material of a conductor, what else would you need in order to find the current through the conductor?

Answers

Explanation:

The number of charges flowing per second inside the conductor is called the current through the conductor. Mathematically, it is given by :

[tex]I=\dfrac{Q}{t}[/tex]

Where

Q is the charge

t is time

Since, Q = ne

n is number of electrons

e is the charge on one electron

So, to find the current through the conductor we must know the number of electrons moving per second through it. Hence, this is the required solution.

Electric power is to be generated by installing a hydraulic turbine–generator at a site 120 m below the free surface of a large water reservoir that can supply water at a rate of 1500 kg/s steadily. Determine the power generation potential.

Answers

Answer:

1764 kilowatt

Explanation:

h = 120 m, mass per second = 1500 kg/s

Power = m g h / t

Power = 1500 x 9.8 x 120 / 1

Power = 1764000 Watt

Power = 1764 kilowatt

In designing a velocity selector that uses uniform perpendicular electric and magnetic fields, you want to select positive ions of charge that are traveling perpendicular to the fields at 8.75 km s. The magnetic field available to you has a magnitude of 0.550 T. (a) What magnitude of electric field do you need? (b) Show how the two fields should be oriented relative to each other and to the velocity of the ions.

Answers

Answer:

Part a)

E = 4812.5 N/C

Part b)

Two field must be perpendicular to each other as well as perpendicular to the velocity of charge so that net force on the moving charge will be zero

Explanation:

For uniform electric and magnetic field we will have a charge particle moving through it such that net force on it is zero

so here we have

[tex]qE = qvB[/tex]

magnetic force on moving charge will balanced by electrostatic force on moving charge

[tex]v = \frac{E}{B}[/tex]

now we have

[tex]v = 8.75 km/s[/tex]

B = 0.550 T

now we have

[tex]E = (8.75 \times 10^3)(0.550)[/tex]

[tex]E = 4812.5 N/C[/tex]

Part b)

Two field must be perpendicular to each other as well as perpendicular to the velocity of charge so that net force on the moving charge will be zero

A uniform electric field is pointing in x direction. The magnitude of the electric field is 10 N/C. The filed makes an angle of 30 deg with a rectangular surface of area 2 x10 m Calculate the electric flux crossing the surface.

Answers

Answer:

- 100 Nm²/C

Explanation:

E = magnitude of electric field along x-direction = 10 N/C

θ = angle made by the direction of electric field with rectangular surface = 30

φ = angle made by the direction of electric field with normal to the rectangular surface = 90 + 30 = 120

A = area of the rectangular surface = 2 x 10 = 20 m²

Φ = Electric flux crossing the surface

Electric flux is given as

Φ = E A Cosφ

Φ = (10) (20) Cos120

Φ = - 100 Nm²/C

Calculate the magnitude of the angular momentum of the Mars in a circular orbit around the sun. The Mars has mass 6.42×1023 kg , radius 3.40×106 m , and orbit radius 2.28×1011 m . The planet completes one rotation on its axis in 24.5 hours and one orbit in 687 days.

Answers

Answer:

The magnitude of the angular momentum of the Mars in a circular orbit around the sun is [tex]3.53\times10^{39}\ kg-m^2/s[/tex]

Explanation:

Given that,

Mass of mars [tex]M=6.42\times10^{23}\ kg[/tex]

Radius [tex]r'= 3.40\times10^{6}[/tex]

Orbit radius [tex]r=2.28\times10^{11}\ m[/tex]

Time period = 687 days

We need to calculate the magnitude of the angular momentum of the mars

Using formula of angular momentum

[tex]L = I\omega[/tex]

Here, [tex] I = mr^2[/tex]

[tex] L=mr^2\omega[/tex]

[tex] L=mr^2\times\dfrac{2\pi}{T}[/tex]

Where,

L = angular momentum

I = moment of inertia

r = radius

[tex]\omega[/tex]=angular speed

Put the value into the formula

[tex]L=6.42\times10^{23}\times(2.28\times10^{11})^2\times\dfrac{2\pi}{687\times24\times3600}[/tex]

[tex]L=3.53\times10^{39}\ kg-m^2/s[/tex]

Hence, The magnitude of the angular momentum of the Mars in a circular orbit around the sun is [tex]3.53\times10^{39}\ kg-m^2/s[/tex]

Final answer:

The angular momentum of Mars in its circular orbit around the Sun can be calculated by using the formula L = mvr, where m is the mass of Mars, v is its orbital velocity, and r is the radius of its orbit. The orbital velocity is calculated based on the time Mars takes to complete one orbit.

Explanation:

The question is asking for the calculation of the angular momentum of Mars in its circular orbit around the sun. The angular momentum of any body moving in a circular path is given by the product of its mass (m), its orbital velocity (v), and the radius of its circular path (r). The orbital velocity can be calculated as the circumference of the circular path (2πr) over the period of orbit.

Given that the mass of Mars is 6.42×1023 kg, orbit radius is 2.28×1011 m, and that Mars completes one orbit in 687 days, we can convert these days into seconds as this is the standard SI unit for time, then calculate the orbital speed.

Angular momentum can then be calculated using the formula L = mvr

The full set of calculations is often more complicated, because they have to account for the gravitational influence of other celestial bodies, but for our purposes, this basic calculation should suffice.

Learn more about Angular Momentum here:

https://brainly.com/question/37906446

#SPJ3

Enter your answer in scientific notation. Be sure to answer all parts. Calculate the nuclear binding energy (in J) and the nuclear binding energy per nucleon of 107 Ag 47 (106.905093 amu).

Answers

Answer:

The nuclear binding energy = [tex]1.466\times 10^{-13} KJ[/tex]

The binding energy per nucleon =1.37×10⁻¹⁵ KJ/nucleon

Explanation:

Given:

Number of protons = 47

Number of neutrons = 107-47 = 60

Now,

the mass defect (m)= Theoretical mass - actual mass

m = [tex]47 (1.007825) + 60(1.008665) - 106.9051[/tex]

since,

mass of proton = 1.007825 amu

Mass of neutron = 1.008665 amu

thus,

m = [tex]47.367775 + 60.5199 - 106.9051[/tex]

or

m = [tex]0.982575 amu[/tex]

also

1 amu = [tex]1.66\times 10^{-27} kg[/tex]

therefore,

m =  [tex]0.982575 amu \times 1.66\times 10^{-27} kg[/tex]

or

m = [tex]1.6310745\times 10^{-27} kg[/tex]

now,

Energy = mass × (speed of light)²

thus,

Energy = [tex]1.6310745\times 10^{27} kg ( 3\times 10^8 ms^{-1} )[/tex]

or

Energy = [tex]14.66\times 10^{-11} kgm^2/s^2[/tex]

or

Energy = [tex]1.466\times 10^{-10} J[/tex] = [tex]1.466\times 10^{-13} KJ[/tex]

Therefore the nuclear binding energy = [tex]1.466\times 10^{-13} KJ[/tex]

Now,

the binding energy per nucleon = [tex]\frac{1.466\times 10^{-13} KJ}{107}[/tex] = 1.37×10⁻¹⁵ KJ/nucleon

The motor in normal operation carries a direct current of 0.750 A when connected to a 120 V power supply. The resistance of the motor windings is 19.6 Ω. Your supervisor asks you to determine by what factor the rate of change of internal energy in the windings will increase if the rotor seizes while it is operating and the supply voltage is not cut off.

Answers

Answer:

Factor by which the intrnal energy changes is 66.63

Explanation:

Given:

When the is motor operated normally, the current through the motor,I₁ =0.750A

Motor winding resistance, R = 19.6Ω

Thus, the Power dissipated at Normal condition,(P₁):

P₁=I₁²×R

P₁=(0.750)²×19.6= 11.025 W

Also,

Power = Rate of change of energy = [tex]\frac{dE}{dt}[/tex]

Now,

when the motor is connected to 120 V power supply, the current through the  motor (I₂) =[tex]\frac{V}{R}[/tex]

or

I₂ =[tex]\frac{120}{19.6}A[/tex]

or

I₂ =6.122 A

Thus, the power dissipated due the current I₂ will be

P₂ = I₂² × R

⇒ P₂ = (6.122)² × 19.6 = 734.693 W

Hence, the factor by which the internal energy rate in resistor winding increases is = [tex]\frac{P_2}{P_1}=\frac{734.693}{11.025}=[/tex]66.63

Final answer:

The solution involves using Ohm's Law and the formula for power dissipation to determine the increase in the rate of change of internal energy in the motor windings when the rotor seizes and compare it to normal operating conditions.

Explanation:

The student's question pertains to a direct current motor and involves calculating the rate of change of internal energy, back electromotive force (emf), and current under various scenarios. To address the student's question, one would need to apply Ohm's Law (V = IR, where V is voltage, I is current, R is resistance) and the power dissipation formula (P = I²R, where P is power).

Explanation of Solution

Initially, the motor's normal operation can be described by the values given: I = 0.750 A, V = 120 V, R = 19.6 Ω. The power dissipated (P) by the motor windings when the motor is operating normally would be P = I²R = (0.750 A)²(19.6 Ω).

However, if the rotor seizes, the motor will essentially become a static resistor and the current through it will increase. This is because without the back emf generated by the rotating rotor, the voltage across the motor windings will be the full supply voltage. The current in this case (let's call it I') can be calculated using Ohm's Law: I' = V/R = 120 V / 19.6 Ω. The new power dissipation (P') when the rotor seizes would be P' = I'²R. To find by what factor the rate of change of internal energy increases, we would need to compare P' to the original power dissipation P by calculating P'/P.

How far will a stone travel over level ground if it is thrown upward at an angle of 30.0° with respect to the horizontal and with a speed of 11.0 m/s? What is the maximum range that could be achieved with the same initial speed?

Answers

Explanation:

It is given that, a stone travel over level ground if it is thrown upward at an angle of 30.0° with respect to the horizontal.

Speed with which it is thrown, v = 11 m/s

We need to find the maximum height above the ground level. The maximum height attained by the stone is given by :

[tex]h=\dfrac{v^2sin^2\theta}{2g}[/tex]

[tex]h=\dfrac{(11\ m/s)^2sin^2(30)}{2\times 9.8\ m/s^2}[/tex]

h = 1.54 m

So, the stone will travel a distance of 1.54 meters.

Range of a projectile is given by :

[tex]R=\dfrac{v^2sin\ 2\theta}{g}[/tex]

[tex]R=\dfrac{(11\ m/s)^2sin(60)}{9.8\ m/s^2}[/tex]

R = 10.69 m

So, the maximum range achieved with the same initial speed is 10.69 meters. Hence, this is the required solution.

A stone thrown upward at a 30.0° angle with a speed of 11.0 m/s will travel approximately 10.74 meters over level ground. For maximum range, the same stone thrown at a 45° angle would travel approximately 12.34 meters.

We need to use the equations of projectile motion. The horizontal range (R) of a projectile is given by the formula R = (v^2 * sin(2θ)) / g, where v is the initial velocity, θ is the launch angle, and g is the acceleration due to gravity (9.81 m/s² on Earth). For maximum range, the ideal launch angle is 45° as it provides the optimal balance between vertical and horizontal components of velocity. Thus, for the same initial speed, the maximum range is achieved at this angle.

To calculate the range at 30°: R = (11.0^2 * sin(60°)) / 9.81 = (121 * 0.866) / 9.81 ≈ 10.74 meters.

For maximum range at v = 11.0 m/s and θ = 45°: R = (11.0^2 * sin(90°)) / 9.81 = (121 * 1) / 9.81 ≈ 12.34 meters.

A 1500 kg car rounds a horizontal curve with a radius of 52 m at a speed of 12 m/s. what minimum coefficient of friction must exist between the road and tires to prevent the car from slipping?

Answers

Answer:

The minimum coefficient of friction must exist between the road and tires to prevent the car from slipping is μ= 0.28

Explanation:

m= 1500 kg

r= 52m

Vt= 12m/s

g= 9.8 m/s²

Vt= ω * r

ω= Vt/r

ω= 0.23 rad/s

ac= ω²* r

ac= 2.77 m/s²

Fr= m* ac

Fr= 4153.84 N

W= m*g

W= 14700 N

Fr= μ * W

μ= Fr/W

μ=0.28

A stone is dropped from the upper observation deck of a tower, "500" m above the ground. (Assume g = 9.8 m/s2.) (a) Find the distance (in meters) of the stone above ground level at time t. h(t) = Correct: Your answer is correct.

Answers

Answer:

h₍₁₎ = 495,1 meters

h₍₂₎ = 480,4 m

h₍₃₎ = 455,9 m

...

..

Explanation:

The exercise is "free fall". t = [tex]\sqrt{\frac{2h}{g} }[/tex]

Solving with this formula you find the time it takes for the stone to reach the ground (T) = 102,04 s

The heights (h) according to his time (t) are found according to the formula:

h(t) = 500 - 1/2 * g * t²

Remplacing "t" with the desired time.

Suppose that 2 J of work is needed to stretch a spring from its natural length of 30 cm to a length of 42 cm. (a) How much work is needed to stretch the spring from 35 cm to 40 cm? (b) How far beyond its natural length will a force of 30 N keep the spring stretched?

Answers

Answer:

(a) 1.042 J

b) 0.108 m

Explanation:

(a)

W = work done to stretch the spring = 2 J

k = spring constant

L₀ = initial length = 30 cm = 0.30 m

L = final length = 42 cm = 0.42 m

x = stretch of the spring = L - L₀ = 0.42 - 0.30 = 0.12 m

Work done to stretch the spring is given as

W = (0.5) k x²

2 = (0.5) k (0.12)²

k = 277.78 N/m

x₀ = initial stretch of the spring = 35 - 30 = 5 cm = 0.05 m

x = final stretch of the spring = 40 - 30 = 10 cm = 0.10 m

W' = work needed to stretch the spring from 35 cm to 40 cm

Work needed to stretch the spring from 35 cm to 40 cm is given as

W' = (0.5) k (x² - x₀²)

W' = (0.5) (277.78) (0.10² - 0.05²)

W' = 1.042 J

b)

x = Stretch of the spring beyond natural length

F = force = 30 N

Spring force is given as

F = k x

30 = (277.78) x

x = 0.108 m

(a) The work is needed to stretch the spring from 35 cm to 40 cm is 1.042 J.

(b) Beyond the length of 0.108 m  force of 30 N keep the spring stretched.

what is spring force?

In order to stretch or compress the spring some amount of work has to be done. Which is given as,

          [tex]\rm{W=\frac{1}{2} Kx^{2} }[/tex]  

where k = spring constant of the spring

          x = compression of spring

          W= Work required or spring work

Initial length is given by 30 cm = 0.30 m

final length is given by  42 cm = 0.42 m

When spring is stretched change in the length occurs denoted by x

x = final length - initial length =0.42 - 0.30 = 0.12 m

[tex]\rm{W=\frac{1}{2} Kx^{2} }[/tex]

[tex]\rm{2=\frac{1}{2} K(0.12)^{2} }[/tex]

K= 277.78 N/m

(a) work is needed to stretch the spring from 35 cm to 40 cm

stretching length from30cm to 35 is 5 cm which is 0.05 m

stretching length from cm to 30 is 40 cm is 10 cm which is 0.1m

x = final stretch of the spring = 40 - 30 = 10 cm = 0.10 m

Work needed to stretch the spring from 35 cm to 40 cm is given

W = (0.5)K([0.1]² - [0.5]²)

W = (0.5) (277.78) (0.10² - 0.05²)

W = 1.042 J

x is stretch of the spring beyond natural length

F = force = 30 N

Spring force is given as

F = k x

30 = (277.78) x

x = 0.108 m

To learn more about the spring work refer to the link

https://brainly.in/question/18110192

You're driving your pickup truck around a curve that has a radius of 22 m.How fast can you drive around this curve before a steel toolbox slides on the steel bed of the truck?

Answers

Final answer:

The maximum speed at which the truck can briefly move around the curve without making the toolbox slide can be found by setting the sliding acceleration equal to the centripetal acceleration (v²/r) and solving for v. Factors like tire friction and flat terrain are also taken into account.

Explanation:

To determine how fast the truck can go before the toolbox starts to slide, we need to calculate the maximum static friction (the force that prevents sliding).

The formula to identify the maximum speed that didn't result in sliding, we would use centripetal acceleration, which is the product of tangential speed squared divided by the curve's radius.

The acceleration of the crate on the truck bed must equal centripetal acceleration to prevent sliding. Given that the sliding acceleration is 2.06 m/s², setting this value to equal centripetal acceleration (v²/r where r is 22 m) and solving for v (velocity/speed), would provide the maximum speed at which the truck can move without the toolbox sliding.Tire friction also plays a role, as it allows vehicles to move at higher speeds without sliding off the road.

This also assumes that the road is relatively flat and the truck moves uniformly, similar to the situation illustrated in Figure 24.7 with a motorist moving in a straight direction.

Learn more about Centripetal Acceleration here:

https://brainly.com/question/14465119

#SPJ1

Final answer:

The speed at which a toolbox in a truck will start to slide when the truck is turning around a curve depends on the balance of the centripetal force and static friction force. These depend on the truck's speed, the curve's radius, the toolbox's mass and the friction coefficient. Without specific values, a numerical answer can't be given.

Explanation:

The question is asking about the speed at which the toolbox in the truck would start sliding due to the forces acting upon it when the truck turns around a curve. This is related to centripetal force and frictional force.

When the truck turns, the toolbox experiences a centripetal force which pushes it towards the center of the curve. At the same time, friction between the toolbox and the truck bed is resisting this pushing force, keeping the box in place. At some point, if the truck is going too fast, the centripetal force will overcome friction, and the toolbox will start to slide.

We can use the formula for centripetal force, which is F = mv²/r, where m is the mass of the toolbox, v is the velocity of the truck and r is the radius of the curve. And we know that the maximum static friction force (F_max) is f_s * m * g, where f_s is the static friction coefficient and g is the acceleration due to gravity.

The toolbox starts to slide when F = F_max, so we can find the maximum speed (v_max) before sliding happens by making these two equations equal to each other and solving for v. Without the specific values for the mass of the toolbox and the static friction coefficient, we cannot calculate a numerical answer.

Learn more about Centripetal and Frictional Forces here:

https://brainly.com/question/34301329

#SPJ2

In jumping to block a shot, a volleyball player with a weight of 600 N generates an average vertical ground reaction force of 900 N for 0.37 seconds. What is the net vertical impulse that causes her velocity to increase in the upward direction?

Answers

Answer:

111 N

Explanation:

weight (downwards) = 600 N

reaction force (upwards) = 900 N

t = 0.37 s

Net force

F = reaction force - weight = 900 - 600 = 300 N

Impulse = force x time = 300 x 0.37 = 111 N

An ideal gas in a sealed container has an initial volume of 2.50 L. At constant pressure, it is cooled to 21.00 ∘C, where its final volume is 1.75 L. What was the initial temperature?

Answers

Answer: The initial temperature of the system comes out to be 147 °C

Explanation:

To calculate the initial temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.

Mathematically,

[tex]\frac{V_1}{T_1}=\frac{V_2}{T_2}[/tex]

where,

[tex]V_1\text{ and }T_1[/tex] are the initial volume and temperature of the gas.

[tex]V_2\text{ and }T_2[/tex] are the final volume and temperature of the gas.

We are given:

[tex]V_1=2.50L\\T_1=?K\\V_2=1.75L\\T_2=25^oC=(25+273)K=294K[/tex]

Putting values in above equation, we get:

[tex]\frac{2.50L}{T_1}=\frac{1.75L}{294K}\\\\T_1=420K[/tex]

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:

[tex]T(K)=T(^oC)+273[/tex]

[tex]420=T(^oC)+273\\T(^oC)=147^oC[/tex]

Hence, the initial temperature of the system comes out to be 147 °C

Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.3 kg · m2 and an angular velocity of +6.6 rad/s. Disk B is rotating with an angular velocity of -9.3 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.1 rad/s. The axis of rotation for this unit is the same as that for the separate disks. What is the moment of inertia of disk B?

Answers

The angular momentum of a rotation object is the product of its moment of inertia and its angular velocity:

L = Iω

L is the angular momentum, I is the moment of inertia, and ω is the angular velocity.

Apply the conservation of angular momentum. The total angular momentum before disks A and B are joined is:

L_{before} = (3.3)(6.6) + B(-9.3)

L_{before} = -9.3B+21.78

where B is the moment of inertia of disk B.

The total angular momentum after the disks are joined is:

L_{after} = (3.3+B)(-2.1)

L_{after} = -2.1B-6.93

L_{before} = L_{after}

-9.3B + 21.78 = -2.1B - 6.93

B = 4.0kg·m²

The moment of inertia of disk B is 4.0kg·m²

A 1210 W radiant heater is constructed to operate at 115 V. (a) What is the current in the heater when the unit is operating? (b) What is the resistance of the heating coil? (c) How much thermal energy is produced in 4.07 h?

Answers

Answer:

(a) 10.52 A

(b) 11 ohm

(c) 1.77 x 10^7 J

Explanation:

P = 1210 W, V = 115 V,

Let i be the current.

(a) Use the formula of power

P = V i

1210 = 115 x i

i = 10.52 A

(b) Let the resistance of heating coil is R.

Use the formula given below

V = i x R

R = V / i = 115 / 10.52 = 11 ohm

(c) Use the formula for energy

E = V x i x t  

E = 115 x 10.52 x 4.07 x 60 x 60 = 1.77 x 10^7 J

Two infinite parallel surfaces carry uniform charge densities of 0.20 nC/m2 and -0.60 nC/m2. What is the magnitude of the electric field at a point between the two surfaces?

Answers

Answer:

Electric field, E = 45.19 N/C

Explanation:

It is given that,

Surface charge density of first surface, [tex]\sigma_1=0.2\ nC/m^2=0.2\times 10^{-9}\ C/m^2[/tex]

Surface charge density of second surface, [tex]\sigma=-0.6\ nC/m^2=-0.6\times 10^{-9}\ C/m^2[/tex]

The electric field at a point between the two surfaces is given by :

[tex]E=\dfrac{\sigma}{2\epsilon_o}[/tex]

[tex]E=\dfrac{\sigma1-\sigma_2}{2\epsilon_o}[/tex]

[tex]E=\dfrac{0.2\times 10^{-9}-(-0.6\times 10^{-9})}{2\times 8.85\times 10^{-12}}[/tex]

E = 45.19 N/C

So, the magnitude of the electric field at a point between the two surfaces is 45.19 N/C. Hence, this is the required solution.

A small insect is placed 3.75 cm from a +4.00 −cm -focal-length lens. Calculate the angular magnification.

Answers

Final answer:

The angular magnification produced by a +4.00 cm focal length lens with an object at 3.75 cm distance is approximately 7.25 times.

Explanation:

The question presented is a problem in optics, more specifically in the subtopic of lens magnification, which is a part of Physics. To calculate the angular magnification for a lens, we can use the thin lens formula and the magnification formula. Given that the focal length of the lens (f) is +4.00 cm and the object distance (do) is 3.75 cm, we first determine if an image is formed by using the lens equation 1/f = 1/do + 1/di. However, since this equation will not yield a real value for di (image distance) because do is smaller than f, we can't directly use it to find the angular magnification.

Instead, the angular magnification (M) of a simple lens while viewing a close object is approximately given by M = 1 + (25 cm / f), where 25 cm is the near point of a normal human eye. Thus, for this lens:

M = 1 + (25 cm / 4.00 cm)

M = 1 + 6.25

M = 7.25

This means the lens would produce an angular magnification of approximately 7.25 times when the object is placed at 3.75 cm from the lens.

Consider two copper wires. One has twice the length and twice the cross-sectional area of the other. How do the resistances of these two wires compare? A) Both wires have the same resistance. B) The shorter wire has twice the resistance of the longer wire. The longer wire has twice the resistance of the shorter wire. D) The longer wire has four times the resistance of the shorter wire. E) The shorter wire has four times the resistance of the longer wire.

Answers

Final answer:

The longer wire will have twice the resistance of the shorter wire.

Explanation:

The resistance of a wire depends on both its length and cross-sectional area. In this case, the longer wire has twice the length and twice the cross-sectional area of the shorter wire. The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area. Therefore, the longer wire will have twice the resistance of the shorter wire.

The total electric field consists of the vector sum of two parts. One part has a magnitude of E1 = 1300 N/C and points at an angle θ1 = 35o above the +x axis. The other part has a magnitude of E2 = 1700 N/C and points at an angle θ2 = 55o above the +x axis. Find the magnitude and direction of the total field. Specify the directional angle relative to the x axis.

Answers

Answer:

2954.6 N/C, 46.36 degree from positive  axis

Explanation:

E1 = 1300 N/C, θ1 = 35 degree

E2 = 1700 N/C, θ2 = 55 degree

Now write the electric fields in vector form

E1 = 1300 ( Cos 35 i + Sin 35 j) = 1064.9 i + 745.6 j

E2 = 1700 ( Cos 55 i + Sin 55 j) = 975.08 i + 1392.6 j

Resultant electric field

E = E1 + E2

E =  1064.9 i + 745.6 j + 975.08 i + 1392.6 j

E = 2039.08 i + 2138.2 j

Magnitude of E

E = sqrt (2039.08^2 + 2138.2^2)

E = 2954.6 N/C

Let it makes an angle Φ from X axis

tan Φ = 2138.2 / 2039.08 = 1.049

Φ = 46.36 degree from positive X axis.

Final answer:

This question is about calculating the overall electric field from two individual fields using vector addition. This involves resolving each field into its components, adding the respective components, and then using Pythagoras' theorem and the tangent inverse relation to determine the overall magnitude and direction of the resultant field.

Explanation:

The total electric field can be determined by using vector addition to add together the individual electric fields due to each of the two components mentioned in your question. Firstly, we resolve each field into its x and y components. The x-component and y-component for E1 are E1*cos(θ1) and E1*sin(θ1), respectively. Similarly, the x and y components for E2 are E2*cos(θ2) and E2*sin(θ2), respectively.

We then add together the respective x and y components: E(x total) = E1*cos(θ1) + E2*cos(θ2) and E(y total) = E1*sin(θ1) + E2*sin(θ2).

The overall magnitude of the resultant electric field can be calculated using Pythagoras' theorem, √[(E(x total))^2 + (E(y total))^2]. The direction of the total electric field can be evaluated using the tangent inverse relation θ total = tan^-1 [E(y total)/E(x total)].

Learn more about Electric Field Calculation here:

https://brainly.com/question/14423246

#SPJ3

When an electromagnetic wave falls on a white, perfectly reflecting surface, it exerts a force F on that surface. If the surface is now painted a perfectly absorbing black, what will be the force that the same wave will exert on the surface?

Answers

Answer and Explanation:

We know by Newton's second law of motion that Force can be given by the rate of change of momentum i.e.,

F = m[tex]\frac{dp}{dt}[/tex]

where, p is momentum

Now, when EM wave falls on perfectly reflecting body , change in momentum is : -(p+p) = -2p

i.e., after reflection momentum is twice of its initial value

In case of absorption of radiation of EM wave as in perfectly black painted body, change in momentum  is half of that in reflection i.e., '-p'

Since, the force, F is equal to the change in momentum, the Force erxerted by the wave will also be half i.e., [tex]\frac{F}{2}[/tex] or 0.5F

Final answer:

When the wave is absorbed, the force is half compared to when the wave is reflected, that's means the force will be F/2

Explanation:

When an electromagnetic wave falls on a white, perfectly reflecting surface, it exerts a force F on that surface. According to Maxwell's predictions, electromagnetic waves carry momentum, and thus when these waves are absorbed by an object, they exert a force in the direction of the wave's propagation, known as radiation pressure. In the case of a perfectly reflecting surface,

the force is twice as great as that on a perfectly absorbing surface because the change in momentum when the wave is reflected is twice as much as when it is absorbed, due to the wave's momentum being reversed while conserving the system's total momentum.

When the same electromagnetic wave falls on a surface that has been painted a perfectly absorbing black, the force exerted on the surface will be half compared to the force on a perfectly reflecting surface.

This is because the absorbing surface does not reflect the electromagnetic waves, and thus, the change in momentum is only due to the wave being absorbed rather than being both absorbed and reflected back.

The property of the surface, whether it is absorbing or reflecting, significantly changes the amount of force exerted by the electromagnetic wave on the surface, that's means the force will be F/2 for the absorbing surface.

A police car has an 800-Hz siren. It is traveling at 35.0 m/s on a day when the speed of sound through air is 340 m/s. The car approaches and passes an observer who is standing along the roadside. What change of frequency does the observer hear?

Answers

Answer:

The observer experienced a change I'm frequency of 6971.42Hertz

Explanation:

In waves, the frequency of a wave is directly proportional to its velocity i.e F ∝ V

F = kV

k = F/V

F1/V1 = F2/V2 = k... 1

Given F1 = 800Hz at V1 = 35m/s

F2 = ? when V2 = 340m/s

Substituting this given datas into equation 1 to get the new frequency F2:

800/35 = F2/340

35F2 = 800×340

F2 = 800×340/35

F2 = 7771.42Hertz

Change of frequency = F2-F1

Change of frequency = 7771.42-800

Change of frequency = 6971.42Hertzz

The change of frequency does the observer hear due to police car siren is 6971.42 Hz.

What is frequency?

Frequency of wave is the number of waves, which is passed thorough a particular point at a unit time.

For the cars approaching to the observer, the Doppler formula can be given as

[tex]\dfrac{f_1}{v_1}=\dfrac{f_2}{v_s}[/tex]

Here, [tex](v_s)[/tex] is the speed of the sound.

A police car has an 800-Hz siren. It is traveling at 35.0 m/s on a day when the speed of sound through air is 340 m/s.

As, the car approaches and passes an observer. Thus by the above formula,

[tex]\dfrac{800}{35}=\dfrac{f_2}{340}\\f_2=7771.41\rm Hz[/tex]

As the frequency of police car siren is 800-Hz. Thus, the change of the frequency observed by the observer is,

[tex]\Delta f=7771.42-8000\\\Delta f=6971.42\rm Hz[/tex]

Thus, change of frequency does the observer hear due to police car siren is 6971.42 Hz.

Learn more about the frequency here;

https://brainly.com/question/1436295

a) How fast must a meter stick be moving if its length is observed to shrink to 0.6 m? b) With what speed will a clock have to be moving in order to run at a rate that is one-half the rate of a clock at rest?

Answers

Answer:

A)

0.8 c

B)

0.87 c

Explanation:

A)

L₀ = Original length of the meter stick = 1 m

L = Length observed = 0.6 m

[tex]v[/tex] = speed of the meter stick

Using the equation

[tex]L = L_{o} \sqrt{1 - \left ( \frac{v}{c} \right )^{2}}[/tex]

[tex]0.6 = 1 \sqrt{1 - \left ( \frac{v}{c} \right )^{2}}[/tex]

[tex]0.36 = 1 - \left ( \frac{v}{c} \right )^{2}[/tex]

[tex]v[/tex] = 0.8 c

B)

T₀ = Time of the clock at rest = t

T = Time of the clock at motion = (0.5) t

[tex]v[/tex] = speed of the clock

Using the equation

[tex]T = T_{o} \sqrt{1 - \left ( \frac{v}{c} \right )^{2}}[/tex]

[tex]0.5 t = t \sqrt{1 - \left ( \frac{v}{c} \right )^{2}}[/tex]

[tex]0.5  =  \sqrt{1 - \left ( \frac{v}{c} \right )^{2}}[/tex]

v = 0.87 c

An object of weight 8N is moving along a horizontal plane. If the coefficient of kinetic friction is 0.25 find the friction force acting on the object.

Answers

Answer:

2 N

Explanation:

Wight of object = mg = 8 N

Coefficient of friction, u = 0.25

The normal reaction acting on the object = N = mg = 8 N

According to the laws of limiting friction,

The friction force, f = uN

f = 0.25 x 8 = 2 N

Three point charges are arranged along the x-axls. Charge q1 = +4.25 μC Is at the origin, and charge q2 =-5.75 pC ls at x = 0.230 m. charge q3 =-9.00 pC. Where ls σ3 located if the net force on q1 ls 6.00 N In the -x-direction?

Answers

Hey there!:

q1 = 4.25 * 10^-6 C is at x1 = 0 m

q2 = - 5.75 * 10^-6 C is at x2 = 0.23 m

q3 = - 9 uC = -9 * 10^-6 C

for the net force on q1 to be in -x direction

q3 must be placed to the left of q1

the net force on q1 , F = k * q1 * q3 /( x3^2) - k * q1 * q2 /( x2 - x3)^2

6 = 9 * 10^9 * 10^-6 * 4.25 *  10^-6 * (9 /x3^2 - 5.75 /( 0.25 - x3 )^2 )

solving for x3

x3 = - 0.22 m

the charge q3 is placed at x3 =  - 0.22 m

Hope this helps!

Which statement about a pair of units is true? A yard is shorter than a meter. Amile is shorter than a kilometer. A foot is shorter than a centimeter. An inch is shorter than a centimeter.

Answers

Answer:

A yard is shorter than a meter.

Explanation:

>>>1 yard is 0.914 m, so a yard is shorter than a meter.

>>>1 mile is 1.609 km, so a mile is longer than a kilometer

>>>1 foot is 30.48cm, so a foot longer than a centimeter

>>> 1 inch is 2.54cm, so an inch is longer than a centimeter

From the above relationships, only a yard is shorter than a meter is true. Others are wrong.

An air-track cart is attached to a spring and completes one oscillation every 5.67 s in simple harmonic motion. At time t = 0.00 s the cart is released at the position x = +0.250 m. What is the position of the cart when t = 29.6 s?

Answers

Answer:

0.2447 m

Explanation:

Amplitude, A = 0.25 m, T = 5.67 s, t = 29.6 s, y = ?

The general equation of SHM is given by

y = A Sin wt

y = 0.25 Sin (2 x 3.14 t /5.67)

Put t = 29.6 s

y = 0.25 Sin (2 x 3.14 x 29.6 / 5.67)

y = 0.2447 m

A hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary, and the electron has a speed of 6.1 105 m/s. Find the radius between the stationary proton and the electron orbit within the hydrogen atom.

Answers

Answer:

Radius between electron and proton[tex] = 6.804\times 10^{-10}m[/tex]

Explanation:

The motion of the electron is carried out in the orbit due to the balancing of the electrostatic force between the proton and the electron and the centripetal force acting on the electron.

The electrostatic force is given as = [tex]\frac{kq_1q_2}{r^2}[/tex]

Where,

k = coulomb's law constant (9×10⁹ N-m²/C²)

q₁ and q₂  = charges = 1.6 × 10⁻¹⁹ C

r = radius between the proton and the electron

Also,

Centripetal force on the moving electron is given as:

=[tex]\frac{m_eV^2}{r}[/tex]

where,

[tex]m_e[/tex] = mass of the electron (9.1 ×10⁻³¹ kg)

V = velocity of the moving electron (given: 6.1 ×10⁵ m/s)

Now equating both the formulas, we have

[tex]\frac{kq_1q_2}{r^2}[/tex] = [tex]\frac{m_eV^2}{r}[/tex]

⇒[tex]r = \frac{kq_1q_2}{m_eV^2}[/tex]

substituting the values in the above equation we get,

[tex]r = \frac{9\times 10^{9}\times (1.6\times 10^{-19})^2}{9.1\times 10^{-31}\times (6.1\times 10^5)^2}[/tex]

⇒[tex]r = 6.804\times 10^{-10}m[/tex]

 Why does a child in a wagon seem to fall backward when you give the wagon a sharp pull forward? 15. What force is needed to accelerate a sled ( (mass 55 kg) at 1.4 m/s2 on hortzsontal ricti a 63 N b. 71N C 77 N 101 N

Answers

Answer:

Force, F = 77 N

Explanation:

A child in a wagon seem to fall backward when you give the wagon a sharp pull forward. It is due to Newton's third law of motion. The forward pull on wagon is called action force and the backward force is called reaction force. These two forces are equal in magnitude but they acts in opposite direction.

We need to calculate the force is needed to accelerate a sled. It can be calculated using the formula as :

F = m × a

Where

m = mass = 55 kg

a = acceleration = 1.4 m/s²

[tex]F=55\ kg\times 1.4\ m/s^2[/tex]

F = 77 N

So, the force needed to accelerate a sled is 77 N. Hence, this is the required solution.

Final answer:

The child in the wagon appears to fall backward due to inertia, which is the property that resists changes in motion. To accelerate a 55 kg sled at 1.4 m/s2, a force of 77 N is required.

Explanation:

A child in a wagon seems to fall backward when you give the wagon a sharp pull forward due to inertia. Inertia is the resistance of any physical object to a change in its state of motion or rest. The child's body tends to remain in a state of rest while the wagon accelerates forward, resulting in the child appearing to fall backward.

Now, to address the second part of the question:

What force is needed to accelerate a sled (mass 55 kg) at 1.4 m/s2 on a horizontal direction?

To find this, we use Newton's second law, F = ma where F is force, m is mass, and a is acceleration.


Therefore, F = 55 kg * 1.4 m/s2 = 77 N.

The correct answer is 77 N.

You throw a tennis ball straight up (neglect air resistance). It takes 7.0 seconds to go up and then return to your hand. How fast did you throw the ball?

Answers

Answer:

Velocity of throwing = 34.335 m/s

Explanation:

Time taken by the tennis ball to reach maximum height, t = 0.5 x 7 = 3.5 seconds.

Let the initial velocity be u, we have acceleration due to gravity, a = -9.81 m/s² and final velocity = 0 m/s

Equation of motion result we have v = u + at

Substituting

             0 = u - 9.81 x 3.5

             u = 34.335 m/s

Velocity of throwing = 34.335 m/s

Other Questions
Two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. The electric potential of the inner conductor, with respect to the outer conductor, is +600 V. An electron is released from rest at the surface of the outer conductor. What is the speed of the electron as it reaches the inner conductor? P is a prime number and q is a positive integers such that p + q = 1696 IF P and Q are co primes and their Lcm is 21879 Then find p and q Which of the following is true about organizing items and information during scientific investigations?A.Items and information must be organized differently each time an investigation is repeated.B. No two investigations can use the same method for organizing items and information.There is only one method for organizing items and information in a scientific investigation.WEThere are usually multiple methods for organizing items and information in a scientific investigation. Use the tables to determine which function will eventually exceed the other, and provide your reasoning. xf(x)15 06 15 22 xg(x)10.166 0 1 1 6 2 36 f(x) will eventually exceed g(x) because f(x) is an exponential function. f(x) will eventually exceed g(x) because f(x) has a higher rate of change. g(x) will eventually exceed f(x) because g(x) is an exponential function. g(x) will eventually exceed f(x) because g(x) has a higher rate of change. Consider the polynomial p(x)=x^3-9x^2+18x-25, which can be rewritten as p(x)=(x-7)(x^2-2x+4)+3 . The number _[blank 1]_ is the remainder whenp(x) is divided by x-7, and so _[blank 2]_ a factor of p(x)What is blank 1 and 2?options:a)7b)isc)is notd)0e)3 Randolf is a 24-year-old college graduate who was just accepted into medical school. He has just ended a year-long romantic relationship due to concerns about maintaining a long-distance relationship and the demands of medical school. In today's developmental terms, Randolf is a(n) _____. In a bowl, the ratio of red jelly beans to yellow jelly beans is 4:5. the ratio of yellow to blue jelly beans is 3:7 if there were 35 blue jelly beans how many red jelly beans are there Is mechanical energy conserved as a playground swing moves? Why or why not? The product shown is a difference of squares. What is the missing constant term in the second factor?(5x 3)(5x + ) In triangle ABC, BG = 24 mm. What is the length of segmentGE?12 mm24 mm36 mm48 mm Suppose an airline determines that its customers traveling for business have inelastic demand and its customers traveling for vacations have an elastic demand. If the airline's objective is to increase total revenue, it should A. decrease the price charged to vacationers and increase the price charged to business travelers. B. decrease the price to both groups of customers. C. increase the price charged to vacationers and decrease the price charged to business travelers. D. increase the price for both groups of customers. How were French wars over religion during the 16th century similar to Charles Vs struggles against Protestants in the Holy Roman Empire?? A model for the basal metabolism rate, in kcal/h, of a young man is R(t) = 95 0.18 cos(t/12), where t is the time in hours measured from 5:00 AM. What is the total basal metabolism of this man, 24 R(t) dt, 0 over a 24-hour time period? The frequency of a wave is 1) A) measured in cycles per second. B) measured in hertz (Hz). C) the number of peaks passing by any point each second. D) equal to the speed of the wave divided by the wavelength of the wave. E) all of the above Both molecules and compounds are made up of what Testing and Configuration Management Which of the following correctly arranges the planets by the length of their year in increasing order? Venus < Earth < Mars < Saturn Saturn < Mars < Earth < Venus Mercury < Mars < Earth < Neptune Neptune < Earth < Mars < Mercury In the equation Ca(s) + 2H2O(l) -->Ca(OH)2(aq) + H2(g), list each element used as a reactant, and tell how many atoms of each are needed for this reaction. in triange ABC, AB=5 and AC=14. Find The measure of angle c to the nearest degree Shown work to help me make sense would be greatly appreciated.1. Convert the 8-binary binary expansion (1010 0110)2 to a decimal expansion.2. Convert the following decimal expansion (145)10 to an 8-bit binary expansion.3. Convert the following hexadecimal expansion (A3C)16 to an octal expansion.4. Convert the following binary expansion (1111 1100 0011 0110)2 to a hexadecimal expansion.