Which atom bond in atomic interaction combines electrons, filling its valence zone a) Van der Vaals bond; b) a covalent bond; c) ionic bond; d) metallic bond.

Answers

Answer 1

Answer: Covalent bond

Explanation: Covalent bond is the bond that gets created when there is a sharing of electrons among atoms  and hence creating atomic interaction. The bond formed is from the shared pair because they allow the atoms or ions to achieve stability by completely filling the outer shell of the electron and thus form the covalent bond .Therefore, the correct option is the option(b) .


Related Questions

A dielectric is an insulating material or a very poor conductor of electric current. (True , False )

Answers

True.

Dielectric is a material with a low electrical conductivity (σ << 1); that is, an insulator, which has the property of forming electric dipoles inside it under the action of an electric field. Thus, all dielectric materials are insulators but not all insulating materials are dielectric.

Some examples of this type of materials are glass, ceramics, rubber, mica, wax, paper, dry wood, porcelain, some fats for industrial and electronic use and bakelite. As for the gases, the air, nitrogen and sulfur hexafluoride are used as dielectrics.

A container filled with a sample of an ideal gas at the pressure of 150 Kpa. The gas is compressed isothermally to one-third of its original volume. What is the new pressure of the gas a)-900 kpa b)- 300 kpa c)- 450 kpa d)- 600 kpa

Answers

Answer: c) 450 kPa

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

[tex]P\propto \frac{1}{V}[/tex]     (At constant temperature and number of moles)

[tex]P_1V_1=P_2V_2[/tex]  

where,

[tex]P_1[/tex] = initial pressure of gas  = 150 kPa

[tex]P_2[/tex] = final pressure of gas  = ?

[tex]V_1[/tex] = initial volume of gas   = v L

[tex]V_2[/tex] = final volume of gas  = [tex]\frac{v}{3}L[/tex]

[tex]150\times v=P_2\times \frac{v}{3}[/tex]  

[tex]P_2=450kPa[/tex]

Therefore, the new pressure of the gas will be 450 kPa.

Air with a mass flow rate of 2.3 kg/s enters a horizontal nozzle operating at steady state at 420 K, 350 kPa, and velocity of 3 m/s. At the exit, the temperature is 300 K and the velocity is 460 m/s. Using the ideal gas model for air with constant ep=1.011 k/kg. K, determine: (a) the area at the inlet, in m2 (b) the heat transfer to the nozzle from its surroundings, in kW.

Answers

Answer:

(a)[tex]A_1=0.26 m^2[/tex]

(b)Q= -35.69 KW

Explanation:

Given:

[tex]P_1=350 KPa,T_1=420 K,V_1=3 m/s,T_2=300 K,V_2=460 m/s[/tex]

We know that foe air [tex]C_p=1.011\frac{KJ}{kg-k}[/tex]

Mass flow rate for air =2.3 kg/s

(a)

By mass balancing [tex]\dot{m}=\dot{m_1}\dot{m_2}[/tex]

[tex]\dot{m}=\rho AV[/tex]

[tex]\rho_1A_1V_1=\rho_2A_2V_2[/tex]

[tex]\rho_1 =\dfrac {P_1}{RT_1},R=0.287\frac{KJ}{kg-K}[/tex]

[tex]\rho_1 =\dfrac {350}{0.287\times 420}[/tex]

[tex]\rho_1=2.9\frac{kg}{m^3}[/tex]

[tex]\dot{m}=\rho_1 A_1V_1[/tex]

[tex]2.3=2.9\times A_1\times 3[/tex]

[tex]A_1=0.26 m^2[/tex]

(b)

Now from first law for open(nozzle) system

[tex]h_1+\dfrac{V_1^2}{2}+Q=h_2+\dfrac{V_2^2}{2}[/tex]

Δh=[tex]C_p(T_2-T_1)\frac{KJ}{kg}[/tex]

[tex]1.011\times 420+\dfrac{3^2}{2000}+Q=1.011\times 300+\dfrac{460^2}{2000}[/tex]

Q=-15.52 KJ/s

⇒[tex]Q= -15.52\times 2.3[/tex] KW

  Q= -35.69 KW

If heat will loss from the system then we will take negative and if heat will incoming to the system we will take as positive.

Answer:

A) A1 ==0.2829 m^2

B) [tex]\frac{dQ}{dt} = -105.5 kW[/tex]

Explanation:

A) we know from continuity equation

[tex]\frac{dm}{dt} = \frac{A_1 v_1}{V_1}[/tex]

solving for A1

[tex]A_1 = \frac{\frac{dm}{dt} V_1}{v_1}[/tex]

we know V = \frac{RT}{P}  as per ideal gas equation, so we have

[tex]A_1 = = \frac{\frac{dm}{dt} \frac{RT_1}{P_1}}{v_1}[/tex]

       [tex]= \frac{2.3 \frac{0.287 \times 450}{350}}{3}[/tex]

        =0.2829 m^2

b) the energy balanced equation is

[tex]\frac{dQ}{dt} = \frac{dm}{dt} ( Cp(T_2 -T_1) + \frac{V_2^2 - V_1^2}{2})[/tex]

[tex]= 2.3 ( 1.011(300 - 450) + [\frac{460^2+3^2}{2}])[/tex]

[tex]\frac{dQ}{dt} = -105.5 kW[/tex]

A diesel engine with CR= 20 has inlet at 520R, a maximum pressure of 920 psia and maximum temperature of 3200 R. With cold air properties find the cutoff ratio, the expansion ratio v4/v3, and the exhaust temperature.

Answers

Answer:

Cut-off ratio[tex]\dfrac{V_3}{V_2}=6.15[/tex]

Cxpansion ratio[tex]\dfrac{V_4}{V_3}=3.25[/tex]

The exhaust temperature[tex]T_4=1997.5R[/tex]

Explanation:

Compression ratio CR(r)=20

[tex]\dfrac{V_1}{V_2}=20[/tex]

[tex]P_2=P_3=920 psia[/tex]

[tex]T_1=520 R ,T_{max}=T_3,T_3=3200 R[/tex]

We know that for air γ=1.4

If we assume that in diesel engine all process is adiabatic then

[tex]\dfrac{T_2}{T_1}=r^{\gamma -1}[/tex]

[tex]\dfrac{T_2}{520}=20^{1.4 -1}[/tex]

[tex]T_2=1723.28R[/tex]

[tex]\dfrac{V_3}{V_2}=\dfrac{T_3}{T_2}[/tex]

[tex]\dfrac{V_3}{V_2}=\dfrac{3200}{520}[/tex]

So cut-off ratio[tex]\dfrac{V_3}{V_2}=6.15[/tex]

[tex]\dfrac{V_1}{V_2}=\dfrac{V_4}{V_3}\times\dfrac{V_3}{V_2}[/tex]

Now putting the values in above equation

[tex]\dfrac20=\dfrac{V_4}{V_3}\times 6.15[/tex]

[tex]\dfrac{V_4}{V_3}=3.25[/tex]

So expansion ratio[tex]\dfrac{V_4}{V_3}=3.25[/tex].

[tex]\dfrac{T_4}{T_3}=(expansion\ ratio)^{\gamma -1}[/tex]

[tex]\dfrac{T_3}{T_4}=(3.25)^{1.4 -1}[/tex]

[tex]T_4=1997.5R[/tex]

So the exhaust temperature[tex]T_4=1997.5R[/tex]

Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the earth's air-soil surface. The outside diameter of the container is 2.0 m, and 500 W of heat are released as a result of radloactive decay. If the soll surface temperature is 25*C, what is the outslde surface temperature of the contalner?

Answers

Answer:

Outside temperature =88.03°C

Explanation:

Conductivity of air-soil from standard table

   K=0.60 W/m-k

To find temperature we need to balance energy

Heat generation=Heat dissipation

Now find the value

We know that for sphere

[tex]q=\dfrac{2\pi DK}{1-\dfrac{D}{4H}}(T_1-T_2)[/tex]

Given that q=500 W

so

[tex]500=\dfrac{2\pi 2\times .6}{1-\dfrac{2}{4\times 10}}(T_1-25)[/tex]

By solving that equation we get

[tex]T_2[/tex]=88.03°C

So outside temperature =88.03°C

The interactions between a closed system and its surroundings include energy transfer by heat, boundary work and flow work. a)True b) False

Answers

Answer:

b) False

Explanation:

In close system only energy transfer take place and mass transfer is zero.But on the other hand in open system energy as well mass transfer take place.

Energy transfer means work as well as heat transfer.But we know that in close system there is no any flow of mass so there will not be any flow work,only boundary work will associated with close system.But in open system flow work take place.

0.50 kg of air is heated at constant pressure from 25°C to 100°C. The source of the heat is at 200°C. What is the entropy generation for the process?

Answers

Solution:

Given:

mass of air, m = 0.50 Kg

[tex]T_{1}[/tex] = 25°C = 273+25 = 298 K

[tex]T_{2}[/tex] = 100°C = 273+100 = 373 K

[tex]T_{o}[/tex] = 200°C = 273+100 = 473 K

Solution:

Formulae used:

ΔQ = mCΔT                                          (1)

ΔS = [tex]\frac{\Delta Q}{T_{o}}[/tex]    (2)

where,

ΔQ = change in heat transfer

ΔS = chane in entropy

C = specific heat

ΔT = change in system temperature

Using eqn (1)

ΔQ = [tex]0.50\times 1.005\times (373-298)[/tex] = 36.687 kJ

Now, for entropy generation, using eqn (2)

ΔS = [tex]\frac{37.687}{473}[/tex] = 0.0796 kJ

The melting point of W (tungsten) is 3380°C, is the processing at 1100 C hot working or cold working?

Answers

Answer:

cold working

Explanation:

Given data in question

melting point tungsten (W) = 3380°C = 3653 K

processing temperature = 1100°C = 1373 K

To find out

process is hot or cold working

solution

we know hot working and cold working process is depend upon the Recrystallization and Recrystallization is a process in which deformed grains of crystal structures are replace with stress-free grains that nucleate and grow till actual grains have been consumed fully

and we know that ratio of processing temperature and melting point tungsten is greater than 60% than the process is start of Recrystallization so we check ratio

ratio =  processing temperature / melting point tungsten

ratio =  1373 / 3653

ratio = 0.3758 = 37.58 %

we can see this is less than 60 % so our process is cold working

A direct contact heat exchanger (where the fluid mixes completely) has three inlets and one outlet. The mass flow rates of the inlets are 1kg/s, 1.5kg/s and 2 kg/s. The enthalpy of those inlets are the 100kJ/kg, 120kJ/kg, and 500kJ/kg, respectively. What is the enthalpy at the outlet?

Answers

Answer:

Enthalpy at outlet=284.44 KJ

Explanation:

[tex]m_1=1 Kg/s,m_2=1.5 Kg/s,m_3=22 Kg/s[/tex]

[tex]h_1=100 KJ/Kg,h_2=120 KJ/Kg,h_3=500 KJ/Kg[/tex]

We need to Find enthalpy of outlet.

Lets take the outlet mass m and outlet enthalpy h.

So from mass conservation

[tex]m_1+m_2+m_3=m[/tex]

   m=1+1.5+2 Kg/s

  m=4.5 Kg/s

Now from energy conservation

[tex]m_1h_1+m_2h_2+m_3h_3=mh[/tex]

By putting the values

[tex]1\times 100+1.5\times 120+2\times 500=4.5\times h[/tex]

So h=284.44 KJ

A piston-cylinder device contains 1.329 kg of nitrogen gas at 120 kPa and 27 degree C. The gas is now compressed slowly in a polytropic process during which PV^1.49 = constant. The process ends when the volume is reduced by one-half. Determine the entropy change of nitrogen during this process.

Answers

Answer:-0.4199 J/k

Explanation:

Given data

mass of nitrogen(m)=1.329 Kg

Initial pressure[tex]\left ( P_1\right )[/tex]=120KPa

Initial temperature[tex]\left ( T_1\right )=27\degree \approx[/tex] 300k

Final volume is half of initial

R=particular gas constant

Therefore initial volume of gas is given by

PV=mRT

V=0.986\times 10^{-3}

Using [tex]PV^{1.49}[/tex]=constant

[tex]P_{1}V^{1.49}[/tex]=[tex]P_2\left (\frac{V}{2}\right )[/tex]

[tex]P_2[/tex]=337.066KPa

[tex]V_2[/tex]=[tex]0.493\times 10^{-3} m^{3}[/tex]

and entropy is given by

[tex]\Delta s[/tex]=[tex]C_v \ln \left (\frac{P_2}{P_1}\right )[/tex]+[tex]C_p \ln \left (\frac{V_2}{V_1}\right )[/tex]

Where, [tex]C_v[/tex]=[tex]\frac{R}{\gamma-1}[/tex]=0.6059

[tex]C_p[/tex]=[tex]\frac{\gamma R}{\gamma -1}[/tex]=0.9027

Substituting values we get

[tex]\Delta s[/tex]=[tex]0.6059\times\ln \left (\frac{337.066}{120}\right )[/tex]+[tex]0.9027 \ln \left (\frac{1}{2}\right )[/tex]

[tex]\Delta s[/tex]=-0.4199 J/k

A bronze statue weighing 4 tonnes with a base of area 0.8 m2 is placed on a granite museum floor. The yield strength of the bronze is 240 MPa. What is the true area of contact, between the base and the floor?

Answers

Answer:

true area of contact is 1.7 * [tex]10^{-4}[/tex] m²

Explanation:

Given data

mass (m) = 4000 tonnes

yield strength = 240 MPa i.e. = 240 * [tex]10^{6}[/tex]

base area = 0.8 m²

To find out

the true area of contact

Solution

we have given yield strength and weight

so with we can find contact area directly we know that

area is equal to weight / yield strength

so we will put weight and yield strength value in this formula

and weight = mass * 9.81 = 4 * 9.81 = 39.24 tonnes = 39240 N

area = weight /  yield strength

area = 39240 / 240 * [tex]10^{6}[/tex]

true area of contact = 1.7 * [tex]10^{-4}[/tex] m²

A heat pump with refrigerant-134a as the working fluid is used to keep aspace at 25°C by absorbing heat from geothermal water that enters the evaporator at 60°C at a rate of 0.065 kg/s and leaves at 40°C. Refrigerant enters the evaporator at 12°C with a quality of 15 percent and leaves at the same pressure as saturated vapor.If the compressor consumes 1.6 kW of power, determine (a) the mass flow rate of the refrigerant, (b) the rate of heat supply, (c) the COP.

Answers

Answer:

(a) [tex]m_{R-134a}=0.0338kg/s[/tex]

(b) [tex]Q_H=7.03kW[/tex]

(c) [tex]COP=4.39[/tex]

Explanation:

Hello,

(a) In this part, we must know that the energy provided by the water equals the energy gained by the refrigerant-134a, thus:

[tex]m_{R-134a}(h_2-h1)=m_{H_2O}Cp_{H_2O}*\Delta T_{H_2O}[/tex]

Now, water's heat capacity is about 4.18kJ/kg°C and the enthalpies at both the first and second state for the refrigerant-134a are computed as shown below, considering the first state as a vapor-liquid mixture (VLM) at 12°C and the second state as a saturated vapor (ST) at the same conditions:

[tex]h_{1/12^0C/VLM}=68.18kJ/kg+0.15*189.09kJ/kg=96.54kJ/kg\\h_{2,SV}=257.27kJ/kg[/tex]

Next, solving the mass of water one obtains:

[tex]m_{R-134a}=\frac{m_{H_2O}Cp_{H_2O}*\Delta T_{H_2O}}{(h_2-h1)}=\frac{0.065kg/s*4.18kJ/kg^0C*(60^0C-40^0C)}{257.27kJ/kg-96.54kJ/kg} \\m_{R-134a}=0.0338kg/s[/tex]

(b) Now, the energy balance allows us to compute the heat supply:

[tex]Q_L+W_{in}=Q_H\\Q_H=0.0338kg/s*(257.27kJ/kg-96.54kJ/kg)+1.6kW\\Q_H=7.03kW[/tex]

(c) Finally, the COP (coefficient of performance) is computed via:

[tex]COP=\frac{Q_H}{W_{in}}=\frac{7.03kW}{1.6kW}\\COP=4.39[/tex]

Best regards.

Which of the following is not an example of heat generation? a)- Exothermic chemical reaction in a solid b)- Endothermic Chemical Reactions in a solid c)- Nuclear reaction in nuclear fuel rods d)- Electric resistance heater

Answers

Answer:

b) Endothermic Chemical Reactions in a solid

Explanation:

Endothermic reactions consume energy, which will result in a cooler solid when the reaction finishes.

Amorphous material is characterized by by a) organized crystalline structure; b) high hardness and ductility c)the chaotic arrangement of atoms or high hardness; d) excellent magnetic, electrical properties, atomic chaotic layout, high hardness.

Answers

Answer:

C.The chaotic arrangement of atoms or high hardness

Explanation:

We know that atomic arrangement in Solids are of two types

 1)Crystalline

 2)Amorphous

Crystalline arrangement have periodic arrangement where as Amorphous arrangement have random arrangement.

Generally all metal have Crystalline arrangement and material like wood ,glass have  random arrangement ,that is why wood and glass is called Amorphous.We know that wood act as a insulator for conductivity and glass is a brittle and hard material.

So from above we can say that Amorphous material have chaotic arrangement of atoms or have high harness,so our option c is right.

Define the difference between elastic and plastic deformation in terms of the effect on the crystal lattice structure.

Answers

Elastic deformation is a temporary, reversible change in a material's crystal lattice under stress, following Hooke's law, and is depicted as a linear response on a stress-strain graph. Plastic deformation results in permanent, irreversible changes in the crystal structure, typically involving dislocations and is characterized by the yield point and yield stress. Factors such as temperature and rate of stress application influence a rock's response to stress.

Deformation in materials can be categorized into two types: elastic deformation and plastic deformation. Elastic deformation refers to temporary changes in the crystal lattice that are reversible when the applied stress is removed. It follows Hooke's law, where the force is proportional to the displacement, and is shown as a linear region on a stress-strain graph. On the other hand, plastic deformation results in permanent changes to the lattice structure. Dislocations play a significant role in this process, where planes of atoms slip past one another. The moment when deformation transitions from elastic to plastic is known as the yield point, with associated yield stress. Beyond this point, deformation is irrevocable, and with continued stress, the material will eventually fracture.

At a microscopic level, plastic deformation involves the movement of dislocations and the introduction of an extra plane of atoms in the crystal structure, which allows atoms to move more easily under stress. This results in a permanently altered lattice configuration. Elastic deformation, by contrast, can be envisioned as if atoms were connected by springs that return to their original positions after the removal of stress.

The ability of rocks to deform elastically or plastically before breaking depends on several factors including temperature, water content in clay-bearing rocks, the rate at which stress is applied, and the inherent strength of the rock. A fundamental understanding of these principles is essential in geology and materials science.

Elastic deformation is reversible, maintaining lattice structure. Plastic deformation is irreversible, causing permanent lattice rearrangement.

Elastic and plastic deformation are two different responses of materials to applied stress, and they affect the crystal lattice structure differently:

1. Elastic Deformation :

  - Elastic deformation occurs when a material is subjected to stress, but it returns to its original shape and size once the stress is removed.

  - In elastic deformation, the atomic or molecular bonds within the crystal lattice are stretched or compressed, causing the material to temporarily change shape.

  - Within the elastic limit, the crystal lattice structure remains intact, and the atoms or molecules maintain their relative positions.

  - The deformation is reversible, meaning the material returns to its original state when the applied stress is released.

2. Plastic Deformation :

  - Plastic deformation occurs when a material is subjected to stress beyond its elastic limit, causing permanent changes in shape or size even after the stress is removed.

  - In plastic deformation, the atomic or molecular bonds within the crystal lattice undergo significant rearrangement or sliding.

  - Plastic deformation leads to the permanent displacement of atoms or molecules within the lattice structure, resulting in the material maintaining a new shape or size.

  - The material undergoes irreversible changes in its crystal lattice structure due to dislocation movement, grain boundary sliding, or other mechanisms.

  - Plastic deformation is characteristic of materials undergoing permanent deformation, such as metals being shaped or formed through processes like forging, rolling, or extrusion.

In summary, the difference between elastic and plastic deformation lies in the extent of the changes to the crystal lattice structure and whether the deformation is reversible or permanent. Elastic deformation involves temporary changes within the elastic limit, whereas plastic deformation involves permanent changes beyond the elastic limit.

A piston-cylinder assembly has initially a volume of 0.3 m3 of air at 25 °C. Mass of the air is 1 kg. Weights are put on the piston until the air reaches to 0.1 m3 and 1,000 °C, in which the air undergoes a polytropic process (PV" const). Assume that heat loss from the cylinder, friction of piston, kinetic and potential effects are negligible. 1) Determine the polytropic constant n. 2) Determine the work transfer in ki for this process, and diseuss its direction. 3) sketch the process in T-V (temperature-volume) diagram.

Answers

Answer:

n=2.32

w= -213.9 KW

Explanation:

[tex]V_1=0.3m^3,T_1=298 K[/tex]

[tex]V_2=0.1m^3,T_1=1273 K[/tex]

Mass of air=1 kg

For polytropic process  [tex]pv^n=C[/tex] ,n is the polytropic constant.

  [tex]Tv^{n-1}=C[/tex]

  [tex]T_1v^{n-1}_1=T_2v^{n-1}_2[/tex]

[tex]298\times .3^{n-1}_1=1273\times .1^{n-1}_2[/tex]

n=2.32

Work in polytropic process given as

       w=[tex]\dfrac{P_1V_1-P_2V_2}{n-1}[/tex]

      w=[tex]mR\dfrac{T_1-T_2}{n-1}[/tex]

Now by putting the values

w=[tex]1\times 0.287\dfrac{289-1273}{2.32-1}[/tex]

w= -213.9 KW

Negative sign indicates that work is given to the system or work is done on the system.

For T_V diagram

  We can easily observe that when piston cylinder reach on new position then volume reduces and temperature increases,so we can say that this is compression process.

Which of the following is not a fuel? a)- RP-1 b)- Nitrogen Tetroxide c)- Liquid Hydrogen d)- Methane

Answers

Answer: B- Nitrogen Tetroxide

Explanation: Except for the nitrogen tetroxide , other given all options are fuel .Nitrogen Tetroxide is a chemical compound having brownish-red color which is in liquid form having a unpleasant smell, therefore it does not belong to the category of fuel because it cannot be used as a substance for production of heat or power .

If 65 gallons of hydraulic oil weighs 350lb, what is the specific weight of the oil in lb/ft^3?

Answers

Answer:

55.655 lb/ft³

Explanation:

Given data in question

oil weight i.e. w  = 350 lb    

oil volume i.e. v = 65 gallons = 6.68403 ft³

               

To find out

the specific weight of the oil

Solution

We know the specific weight formula is weight / volume    

we have given both value so we will put weight and volume value in

specific weight formula i.e.  

specific weight  =  weight / volume    

specific weight  =  372 / 6.68403 = 55.6550    

specific weight  =  55.655 lb/ft³

With increases in magnification, which of the following occur? a. The field of view decreases. b. The ambient illumination decreases. c. The larger parts can be measured. d. The eyepiece must be raised.

Answers

By increasing magnification you decrease the field of view.

The answer is A.

Hope this helps.

r3t40

A piston-cylinder assembly contains ammonia, initially at a temperature of-20°C and a quality of 70%. The ammonia is slowly heated to a final state where the pressure is 6 bar and the temperature is 180°C. While the ammonia is heated, its pressure varies linearly with specific volume. For the ammonia, determine the work and heat transfer, each in kJ/kg.

Answers

Answer:

w =  -28.8 kJ/kg

q = 723.13 kJ/kg

Explanation:

Given :

Initial properties of piston  cylinder assemblies

Temperature, [tex]T_{1}[/tex] = -20°C

Quality, x = 70%

           = 0.7

Final properties of piston  cylinder assemblies

Temperature, [tex]T_{2}[/tex] = 180°C

Pressure, [tex]P_{2}[/tex] = 6 bar

From saturated ammonia tables at [tex]T_{1}[/tex] = -20°C  we get

[tex]P_{1}[/tex] = [tex]P_{sat}[/tex] = 1.9019 bar

[tex]v_{f}[/tex] = 0.001504 [tex]m^{3}[/tex] / kg

[tex]v_{g}[/tex] = 0.62334 [tex]m^{3}[/tex] / kg

[tex]u_{f}[/tex] = 88.76 kJ/kg

[tex]u_{g}[/tex] = 1299.5 kJ/kg

Therefore, for initial state 1 we can find

[tex]v_{1}[/tex] = [tex]v_{f}[/tex]+x ([tex]v_{g}[/tex]-[tex]v_{f}[/tex]

                       = 0.001504+0.7(0.62334-0.001504)

                       = 0.43678 [tex]m^{3}[/tex] / kg

[tex]u_{1}[/tex] = [tex]u_{f}[/tex]+x ([tex]u_{g}[/tex]-[tex]u_{f}[/tex]

                       = 88.76+0.7(1299.5-88.76)

                       =936.27 kJ/kg

Now, from super heated ammonia at 180°C, we get,

[tex]v_{2}[/tex] = 0.3639 [tex]m^{3}[/tex] / kg

[tex]u_{2}[/tex] = 1688.22 kJ/kg

Therefore, work done, W = area under the curve

           [tex]w = \left (\frac{P_{1}+P_{2}}{2}  \right )\left ( v_{2}-v_{1} \right )[/tex]

           [tex]w = \left (\frac{1.9019+6\times 10^{5}}{2} \right )\left ( 0.3639-0.43678\right )[/tex]

           [tex]w = -28794.52[/tex] J/kg

                       = -28.8 kJ/kg

Now for heat transfer

[tex]q = (u_{2}-u_{1})+w[/tex]

[tex]q = (1688.2-936.27)-28.8[/tex]

          = 723.13 kJ/kg

At winter design conditions, a house is projected to lose heat at a rate of 60,000 Btu/h. The internal heat gairn from people, lights, and appliances is estimated to be 6000 Btuh Ifthis house is to be heated by electric resistance heaters, determine the required rated power of these heaters in kW to maintain the house at constant temperature.

Answers

Answer:

15.8529 kW

Explanation:

Rate of heat loss = 60000 Btu/h

Internal heat gain = 6000 Btu/h

Rate of heat required to be supplied

[tex]P_{Sup}=\text{Rate of heat loss}-\text{Internal heat gain}\\\Rightarrow P_{Sup}=60000-6000\\\Rightarrow P_{Sup}=54000\ Btu/h[/tex]

Converting 54000 Btu/h to kW (kJ/s)

1 Btu = 1.05506 kJ

1 h = 3600 s

[tex]P_{Sup}=54000\times \frac{1.05506}{3600}\\\Rightarrow P_{Sup}=15.8529\ kW[/tex]

∴ Required rated power of these heaters is 15.8529 kW

Answer:

Q = 15.8 kW

Explanation:

Given data:

Heat loss rate is 60,000 Btu/h

Heat gain is 6000 Btu/h

Rate of heat required is computed as

Q = (60000 - 6000) Btu/h

Q = 54000 Btu/h

change Btu/h to Kilo Watts

[tex]Q = 54000 Btu/h (\frac{1W}{3.412142\ Btu/h})[/tex]

[tex]Q = 15825.8 W(\frac{1 kW}{1000 W})[/tex]

Q = 15.8 kW

An air conditioner unit uses an electrical power input of 100W to drive the system and rejects 440W of heat to the kitchen air. Calculate the air conditioner's cooling rate and its coefficient of performance β.??

Answers

Answer:

Cooling Rate=340 W

Coefficient of Performance β=3.4

Explanation:

[tex]Desired\ effect= Cooling\ Rate=Q_L= 440-100=340\ W\\ W_{net,in}=Work\ in=100\ W[/tex]

[tex]Coefficient\ of\ performance (\beta) =\frac {Desired\ Out}{Required\ In}=\frac {Cooling\ {Effect}}{Work\ In}=\frac {Q_L}{W_{net,in}}[/tex]

[tex]Coefficient\ of\ performance (\beta) =\frac {440-100}{100}=3.4[/tex]

Air initially at 15 psla and 60 F is compressed to 75 psia and 400 F. The power input to air under steady state condition is 5 hp and heat loss of 4 Btu/lbm occurs during the process. If the change in Potential energy and kinetic energles are neglected, what will be the mass flowrate in lbm/min.?

Answers

Answer:[tex]\dot{m}=3.46lbm/min[/tex]

Explanation:

Initial conditions

[tex]P_1=15 psia[/tex]

[tex]T_1=60 F^{\circ}[/tex]

Final conditions

[tex]P_2=75 psia[/tex]

[tex]T_2=400F^{\circ}[/tex]

Steady flow energy equation

[tex]\dot{m}\left [ h_1+\frac{v_1^2}{2}+gz_1\right ]+\dot{Q}=\dot{m}\left [ h_2+[tex]\frac{v_2^2}{2}+gz_2\right ]+\dot{W}[/tex]

[tex]\dot{m}\left [ c_pT_1+\frac{0^2}{2}+g0\right ]+\dot{Q}=\dot{m}\left [ c_pT_2+\frac{0^2}{2}+g0\right ]+\dot{W}[/tex]

[tex]\dot{m}c_p\left [ T_1-T_2\right ]+\left [ -5hp\right ]=\dot{W} -5\times 746\times 3.4121[/tex]

[tex]-4\dot{m}-\dot{m}\times 0.24\times \left [ 400-60\right ][/tex]

[tex]-81.6\dot{m}-4\dot{m}=-4.949 BTU/sec[/tex]

[tex]\dot{m}=0.057821lbm/sec[/tex]

[tex]\dot{m}=3.46lbm/min[/tex]

The exhaust steam from a power station turbine is condensed in a condenser operating at 0.0738 bar(abs). The surface of the heat transfer surface is held at 20°C. What percentage change does the inclusion of the sensible heat correction term make to the estimated heat transfer condensing film coefficient?

Answers

Answer:

Percentage change 5.75 %.

Explanation:Given ;

Given

 Pressure of condenser =0.0738 bar

Surface temperature=20°C

Now from steam table

Properties of steam at 0.0738 bar  

Saturation temperature corresponding to saturation pressure =40°C      

 [tex]h_f= 167.5\frac{KJ}{Kg},h_g= 2573.5\frac{KJ}{Kg}[/tex]

So Δh=2573.5-167.5=2406 KJ/kg

Enthalpy of condensation=2406 KJ/kg

So total heat=Sensible heat of liquid+Enthalpy of condensation

[tex]Total\ heat\ =C_p\Delta T+\Delta h[/tex]

Total heat =4.2(40-20)+2406

Total heat=2,544 KJ/kg

Now film coefficient before inclusion of sensible heat

  [tex]h_1=\dfrac{\Delta h}{\Delta T}[/tex]

  [tex]h_1=\dfrac{2406}{20}[/tex]

[tex]h_1=120.3\frac{KJ}{kg-m^2K}[/tex]

Now film coefficient after inclusion of sensible heat

 [tex]h_2=\dfrac{total\ heat}{\Delta T}[/tex]

 [tex]h_2=\dfrac{2,544}{20}[/tex]

[tex]h_2=127.2\frac{KJ}{kg-m^2K}[/tex]

[tex]So\ Percentage\ change=\dfrac{h_2-h_1}{h_1}\times 100[/tex]

             [tex]=\dfrac{127.2-120.3}{120.3}\times 100[/tex]

                   =5.75 %

So Percentage change 5.75 %.

In thermodynamicsedependent properties means?

Answers

Answer:

Explanation:

Thermodynamics properties are the properties which defined the state of any system.

some of the thermodynamics properties are pressure, temperature etc

thermodynamics are broadly divided into two type

1)intensive and

2)extensive properties

Dependent properties are the properties that are dependent on other properties. Extensive property are those which are dependent on the extent of system. Example volume. if size of the system increase or decrease then volume also have same effect according to the changes

Name one aluminium alloy used in low pressure die casting and one in high pressure die casting? Explain the major reasons why one is different to the other?

Answers

Answer:

Explanation:

Low pressure die casting -

Also called the cold chamber die casting .

Example is -

A380 - having the composition , Al ( > 80% ) , Cu( 3 - 4% ) , Si ( 7.5 - 9.5% )

High Pressure die casting -

Also called hot chamber die casting .

Example is -  

ZAMAK 2 - having composition , Al ( 3.5 - 4.3% ) , Cu ( 2.5 - 3.5% ) , Zn( > 90% )

Low pressure die casting -

This type of die casting is perfect for the metals with  high melting point , for example aluminium . during this process , the metal is liquefied by very high temperature in the furnace  and then loaded in to the cold chamber to be injected to the die.

High Pressure die casting -

The metal is melted in a container and then a piston injects the liquid metal under high pressure into the die . low melting point metals that don not chemically attack are ideal for this die casting , example Zinc.

What do you understand by the term redundant work?

Answers

Answer:

 Redundant work refers to the work done during the process of deformation due to friction. It happens during the wire drawing. Redundant work per unit volume increases when the radial position becomes higher. The redundant work factor is defined as increased strain of the deformation to the stress. It is basically related to the deformation area geometry.

How does a 2.5 MW wind turbine costing $ 4 million compare to a 5-kw wind turbine $3 /W? a) Same $/w b) Smaller $/w c) Larger $/w

Answers

MW means megawatt, and one megawatt is a million Watts.
The 2.5 MW turbine is 4/2.5=1.6 $/w
Answer B

A(n)______ is a device used to ensure positive position of a valve or damper actuator A. calibrator B. positioner C. actuator D. characteristic cam

Answers

Answer: C) actuator

Explanation:

Actuator is the device that used to provides the power and manipulate the motion of the moving parts of the valve and damper is used to control the flow of the fluid. Actuator is the device or the mechanism which are used to control valve automatically and valve is a device which is used to control and regulate the fluid by rotating the flow.

The most advantage of fuel cells is that it can produce electrical energy directly (___)

Answers

Answer:The most advantage of fuel cells is that can produce electrical energy directly from chemical energy of hydrogen or other fuel.

Explanation: Fuel cell utilizes the chemical energy from the hydrogen or any other fuel and then converts it to the electrical energy. A fuel like hydrogen is supplied to the anode part and air is supplied to the cathode part . For hydrogen fuel cell there is a catalyst at anode side which divides hydrogen molecules in protons and electrons, which split and take go in different direction to cathode side. Thus the fuel cell works and generate the electrical energy

Other Questions
Select all that apply.Personality traits include:patientrelationshipstensecontrolling If enzymatic reactions could actually be carried out at high temperatures, what would you expect for the rate of the catalyzed reaction at 100 C as compared to that at 21 C? A certain part of the electromagnetic spectrum ranges from 200 nm to 400 nm. What is the lowest frequency associated with this portion of the spectrum? At Southern States University (SSU) there are 399 students taking Finite Mathematics or Statistics. 238 are taking Finite Mathematics, 184 are taking Statistics, and 23 are taking both Finite Mathematics and Statistics. How many are taking Finite Mathematics but not Statistics? If x= 6 is the only x-intercept of the graph of a quadratic equation, which statement best describes the discriminant of theequation? Solve to get brainliest ( Need 2 people ) TIME LIMIT 8:00 MINUTESIf 12% of the number is 24, what is the number?Good luck! What is the length of BC in the right triangle 9 and 12 below What was indentured servitude What is the second stage of the bodys response to stress? simplify (square root 3)(5 square root 3) Blood enters the right atrium of the heart from the Find the area of the equilateral triangle whose sides are 4 yd. When you encounter an impaired road user, you should stay _____.A. to their side B. behind them C. ahead of them D. in their blind spot On October 1, Eder Fabrication borrowed $79 million and issued a nine-month, 11% promissory note. Interest was payable at maturity. Prepare the journal entry for the issuance of the note and the appropriate adjusting entry for the note at December 31, the end of the reporting period. Which of the following statements is TRUE of restriction enzymes? (A)they are not naturally produced by bacteria, but are bioengineered by humans. (B)they cleave DNA only at sites of adjacent thymine bases. (C)there are less than 10 restriction enzymes known. (D)they cut at random sites within a genome. they protect bacterial cells from invasion by foreign DNA. Genex Dynamics is a ballistics company that uses the unity of command, scalar chain, and division of work principles. These are part of which management philosophy? Which is the second largest nation? Please help!The table and the graph below each show a different relationship between the same two variables, x and y:A table with two columns and 5 rows is shown. The column head for the left column is x, and the column head for the right column is y. The row entries in the table are 4,80 and 5,100 and 6,120 and 7,140. On the right of this table is a graph. The x-axis values are from 0 to 10 in increments of 2 for each grid line. The y-axis values on the graph are from 0 to 350 in increments of 70 for each grid line. A line passing through the ordered pairs 2, 70 and 4, 140 and 6, 210 and 8, 280 is drawn.How much more would the value of y be on the graph than its value in the table when x = 12? 20 90 150 180 The distance between my house and Memphis is 150 km. If I drive in my car, it takes me 72 min to make the first 100 km of the drive. If I keep traveling at the same rate, how many more minutes will it take to drive the remaining distance? Round your answer to the nearest tenth. Which statement is an example of an inference you can make about "To Build a Fire," based on information from the text? A. The dog leaves the man to search for a warm fire. B. The man dies after he is unable to keep a fire lit. C. The dog survives the cold, while the man does not. D. The man dies because of his lack of imagination.