Which of the following expressions is equal to
- x^2-36 ?

Which Of The Following Expressions Is Equal To - X^2-36 ?

Answers

Answer 1

Answer:

The correct  answer is the option "B":

B.(-x-6i)(x-6i)

Answer 2
Final answer:

The expression -x^2-36 can be factored as a difference of squares and is equivalent to -(x+6)(x-6).

Explanation:

The expression -x^2-36 can be equivalent to other algebraic forms depending on the manipulation or factoring techniques applied. To simplify or manipulate this expression, one can factor it as the difference of squares. The difference of squares is a pattern where you have an expression in the form of a^2 - b^2, which can be factored into (a+b)(a-b). In the case of -x^2-36, it can be written as -(x^2 - 36), which then can be factored as -(x+6)(x-6). This follows the pattern of a difference of squares since x^2 is the square of x, and 36 is the square of 6.

Learn more about Factoring Algebraic Expressions here:

https://brainly.com/question/15066474

#SPJ2


Related Questions

a) 3(2x + 3) = -3 (-30 +4)

Answers

Answer:

3(2x+3)=-3(-30+4)

6x+9=90+12

6x+9=102

6x=93

x=15.5

-please mark as brainliest-

Answer:

11½ = x

Step-by-step explanation:

6x + 9 = 78

- 9 - 9

-------------

6x = 69 [Divide by 6]

x = 11½ [3⁄6 = ½]

I hope this helps you out, and as always, I am joyous to assist anyone at any time.

A high school track is shaped as a rectangle with a half circle on either side . Jake plans on running four laps . How many meters will jake run ?

Answers

Answer:

[tex]1,207.6\ m[/tex]

Step-by-step explanation:

step 1

Find the perimeter of one lap

we know that

The perimeter of one lap is equal to the circumference of a complete circle (two half circles is equal to one circle) plus two times the length of 96 meters

so

[tex]P=\pi D+2(96)[/tex]

we have

[tex]D=35\ m[/tex]

[tex]\pi =3.14[/tex]

substitute

[tex]P=(3.14)(35)+2(96)[/tex]

[tex]P=301.9\ m[/tex]

step 2

Find the total meters of four laps

Multiply the perimeter of one lap by four

[tex]P=301.9(4)=1,207.6\ m[/tex]

Answer:

1207.6

Step-by-step explanation:

step 1

i got it right on the test

step 2

you get it right on the test

What is the midpoint of a line segment with the endpoints (-6, -3) and (9,-7)?

Answers

Answer: (1.5, -5)

Step-by-step explanation: a p e x

what is the area of the sector shown

Answers

Answer:

[tex] D.~ 34.2~cm^2 [/tex]

Step-by-step explanation:

An arc measure of 20 degrees corresponds to a central angle of 20 degrees.

Area of sector of circle

[tex] area = \dfrac{n}{360^\circ}\pi r^2 [/tex]

where n = central angle of circle, and r = radius

[tex] area = \dfrac{20^\circ}{360^\circ}\pi (14~cm)^2 [/tex]

[tex] area = \dfrac{1}{18}(3.14159)(196~cm^2) [/tex]

[tex] area = 34.2~cm^2 [/tex]

Please help and explain

Answers

Answer: Option A

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

Step-by-step explanation:

Use the quadratic formula to find the zeros of the function.

For a function of the form

[tex]ax ^ 2 + bx + c = 0[/tex]

The quadratic formula is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In this case the function is:

[tex]2x^2-6x+5=0[/tex]

So

[tex]a=2\\b=-6\\c=5[/tex]

Then using the quadratic formula we have that:

[tex]x=\frac{-(-6)\±\sqrt{(-6)^2-4(2)(5)}}{2(2)}[/tex]

[tex]x=\frac{6\±\sqrt{36-40}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{-4}}{4}[/tex]

Remember that [tex]\sqrt{-1}=i[/tex]

[tex]x=\frac{6\±\sqrt{4}*\sqrt{-1}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{4}i}{4}[/tex]

[tex]x=\frac{6\±2i}{4}[/tex]

[tex]x=\frac{3\±i}{2}[/tex]

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

Which of the following numbers are less than 9/4?

Choose all that apply:

A= 11/4
B= 15/8
C= 2.201

Answers

Answer:

OPTION B.

OPTION C.

Step-by-step explanation:

In order to know which numbers are less than [tex]\frac{9}{4}[/tex], you can convert this fraction into a decimal number. To do this, you need to divide the numerator 9 by the denominator 4. Then:

 [tex]\frac{9}{4}=2.25[/tex]

 Now you need convert the fractions provided in the Options A and B into decimal numbers by applying the same procedure. This are:

Option A→ [tex]\frac{11}{4}=2.75[/tex] (It is not less than 2.25)

Option B→ [tex]\frac{15}{8}=1.875[/tex] (It is less than 2.25)

The number shown in Option C is already expressed in decimal form:

Option C→ [tex]2.201[/tex] (It is less than 2.25)

Its definitely c because i know

Match the identities to their values taking these conditions into consideration sinx=sqrt2 /2 cosy=-1/2 angle x is in the first quadrant and angle y is in the second quadrant. Information provided in the picture. PLEASE HELP

Answers

Answer:

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \cos(x+y)\quad }\longleftrightarrow \boxed{\quad \dfrac{-(\sqrt{6}+\sqrt{2})}{4}\quad }[/tex]

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \sin(x+y)\quad }\longleftrightarrow \boxed{\quad\dfrac{\sqrt{6}-\sqrt{2}}{4}\quad }[/tex]

[tex]\boxed{\quad \tan(x+y)\quad }\longleftrightarrow \boxed{\quad\sqrt{3} -2\quad }[/tex]

[tex]\boxed{\vphantom{\sqrt{3}}\quad \tan(x-y)\quad }\longleftrightarrow \boxed{\quad-(2+\sqrt{3})\quad }[/tex]

Step-by-step explanation:

To find the values of the given trigonometric identities, we first need to find the values of cos x and sin y using the Pythagorean identity, sin²x + cos²x ≡ 1.

Given values:

[tex]\sin x = \dfrac{\sqrt{2}}{2}\qquad \textsf{Angle $x$ is in Quadrant I}\\\\\\\cos y=-\dfrac{1}{2}\qquad \textsf{Angle $y$ is in Quadrant II}[/tex]

Find cos(x):

[tex]\sin^2 x+\cos^2 x=1\\\\\\\left(\dfrac{\sqrt{2}}{2}\right)^2+\cos^2 x=1\\\\\\\dfrac{1}{2}+\cos^2 x=1\\\\\\\cos^2 x=1-\dfrac{1}{2}\\\\\\\cos^2 x=\dfrac{1}{2}\\\\\\\cos x=\pm \sqrt{\dfrac{1}{2}}\\\\\\\cos x=\pm \dfrac{\sqrt{2}}{2}[/tex]

As the cosine of an angle is positive in quadrant I, we take the positive square root:

[tex]\cos x=\dfrac{\sqrt{2}}{2}[/tex]

Find sin(y):

[tex]\sin^2 y + \cos^2 y = 1 \\\\\\ \sin^2 y + \left(-\dfrac{1}{2}\right)^2 = 1 \\\\\\ \sin^2 y + \dfrac{1}{4} = 1 \\\\\\ \sin^2 y = 1-\dfrac{1}{4} \\\\\\ \sin^2 y = \dfrac{3}{4} \\\\\\ \sin y =\pm \sqrt{ \dfrac{3}{4}} \\\\\\ \sin y = \pm \dfrac{\sqrt{3}}{2}[/tex]

As the sine of an angle is positive in quadrant II, we take the positive square root:

[tex]\sin y = \dfrac{\sqrt{3}}{2}[/tex]

The tangent of an angle is the ratio of the sine and cosine of that angle. Therefore:

[tex]\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1[/tex]

[tex]\tan y=\dfrac{\sin y}{\cos y}=\dfrac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3}[/tex]

Now, we can use find the sum or difference of two angles by substituting the values of sin(x), cos(x), sin(y), cos(y), tan(x) and tan(y) into the corresponding formulas.

[tex]\dotfill[/tex]

cos(x + y)

[tex]\cos(x+y)=\cos x \cos y - \sin x \sin y \\\\\\ \cos(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) - \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\ \cos(x+y)=-\dfrac{\sqrt{2}}{4} - \dfrac{\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-\sqrt{2}-\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{2}+\sqrt{6})}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{6}+\sqrt{2})}{4}[/tex]

[tex]\dotfill[/tex]

sin(x + y)

[tex]\sin(x+y)=\sin x \cos y + \cos x \sin y \\\\\\\sin(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) + \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\\sin(x+y)=-\dfrac{\sqrt{2}}{4} + \dfrac{\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{-\sqrt{2}+\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{\sqrt{6}-\sqrt{2}}{4}[/tex]

[tex]\dotfill[/tex]

tan(x + y)

[tex]\tan(x+y)=\dfrac{\tan x + \tan y}{1-\tan x \tan y} \\\\\\ \tan(x+y)=\dfrac{1 + (-\sqrt{3})}{1-(1) (-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1 -\sqrt{3}}{1+\sqrt{3}} \\\\\\ \tan(x+y)=\dfrac{(1 -\sqrt{3})(1 -\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1-2\sqrt{3}+3}{1-\sqrt{3}+\sqrt{3}-3} \\\\\\ \tan(x+y)=\dfrac{4-2\sqrt{3}}{-2} \\\\\\ \tan(x+y)=-2+\sqsrt{3} \\\\\\ \tan(x+y)=\sqrt{3} -2[/tex]

[tex]\dotfill[/tex]

tan(x - y)

[tex]\tan(x-y)=\dfrac{\tan x - \tan y}{1+\tan x \tan y} \\\\\\\tan(x-y)=\dfrac{1 - (-\sqrt{3})}{1+(1) (-\sqrt{3})} \\\\\\\tan(x-y)=\dfrac{1 +\sqrt{3}}{1-\sqrt{3}} \\\\\\\tan(x-y)=\dfrac{(1 +\sqrt{3})(1 +\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \\\\\\ \tan(x-y)=\dfrac{1+2\sqrt{3}+3}{1+\sqrt{3}-\sqrt{3}-3} \\\\\\ \tan(x-y)=\dfrac{4+2\sqrt{3}}{-2} \\\\\\ \tan(x-y)=-2-\sqrt{3}\\\\\\\tan(x-y)=-(2+\sqrt{3})[/tex]

A parallelogram has coordinates A(1,1), B(5,4), C(7,1), and D(3,-2) what are the coordinates of parallelogram A’BCD after 180 degree rotation about the origin and a translation 5 units to the right and 1 unit down ?

Answers

Answer:

The coordinates are  (4 , -2) , (0 , -5) , (-2 , -2) , (2 , 1)

Step-by-step explanation:

* Lets revise some transformation

- If point (x , y) rotated about the origin by angle 180°

 ∴ Its image is (-x , -y)

- If the point (x , y) translated horizontally to the right by h units

 ∴ Its image is (x + h , y)

- If the point (x , y) translated horizontally to the left by h units

 ∴ Its image is (x - h , y)

- If the point (x , y) translated vertically up by k units

 ∴ Its image is (x , y + k)

- If the point (x , y) translated vertically down by k units

 ∴ Its image is (x , y - k)

* Now lets solve the problem

∵ ABCD is a parallelogram

∵ Its vertices are A (1 , 1) , B (5 , 4) , C (7 , 1) , D (3 , -2)

∵ The parallelogram rotates about the origin by 180°

∵ The image of the point (x , y) after rotation 180° about the origin

   is (-x , -y)

∴ The images of the vertices of the parallelograms are

  (-1 , -1) , (-5 , -4) , (-7 , -1) , (-3 , 2)

∵ The parallelogram translate after the rotation 5 units to the right

   and 1 unit down

∴ We will add each x-coordinates by 5 and subtract each

   y-coordinates by 1

∴ A' = (-1 + 5 , -1 - 1) = (4 , -2)

∴ B' = (-5 + 5 , -4 - 1) = (0 , -5)

∴ C' = (-7 + 5 , -1 - 1) = (-2 , -2)

∴ D' = (-3 + 5 , 2 - 1) = (2 , 1)

* The coordinates of the parallelograms A'B'C'D' are:

  (4 , -2) , (0 , -5) , (-2 , -2) , (2 , 1)

The diagram represents three statements: p, q, and r. For what value is both p ∧ r true and q false?

2
4
5
9

Answers

Answer:

9

Step-by-step explanation:

From the diagram:

only p true in 8 cases;only q true in 7 cases;only r true in 6 cases;both p and q true, r false in 5 cases;both p and r true, q false in 9 cases;both q and r true, p false in 4 cases;all three p, q and r true in 2 cases.

So, correct option is 9 cases.

Answer:

The correct option is 4. For value 9 both p ∧ r true and q false.

Step-by-step explanation:

The diagram represents three statements: p, q, and r.

We need to find the value for which p ∧ r is true and q false.

p ∧ r true mean the intersection of statement p and r. It other words p ∧ r true means p is true and r is also true.

From the given venn diagram it is clear that the intersection of p and r is

[tex]p\cap r=9+2=11[/tex]

p ∧ r true and q false means intersection of p and r but q is not included.

From the given figure it is clear that for value 2 all three statements are true. So, the value for which both p ∧ r true and q false is

[tex]11-2=9[/tex]

Therefore the correct option is 4.

plz help meh wit dis question but I need to show work..... ​

Answers

Answer:

5

Step-by-step explanation:

16+24

--------------

30-22

Complete the items on the top of the fraction bar

40

----------

30-22

Then the items under the fraction bar

40

------------

8

Then divide

5

Step-by-step explanation:

First of all, solve the numerator.

16+24=40

Secondly, solve the denominator:

30-22 = 8

So now the fraction appear like this :

[tex] \frac{40}{8} [/tex]

40/8 = 5

What is the sum of entries a32 and b32 in A and B? (matrices)

Answers

Answer:

The correct answer is option D.  13

Step-by-step explanation:

From the figure we can see two matrices A and B

To find the sum of a₃₂ and b₃₂

From the given attached figure we get

a₃₂ means that the third row second column element in the matrix A

b₃₂ means that the third row second column element in the matrix B

a₃₂ = 4 and b₃₂ = 9

a₃₂ + b₃₂ = 4 + 9

 = 13

The correct answer is option D.  13

[tex]A={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}[/tex]

So

[tex]a_{32}=4\\b_{32}=9\\\\a_{32}+b_{32}=4+9=13[/tex]

Isabel is on a ride in an amusement park that Slidez the right or to the right and then it will rotate counterclockwise about its own center 60° every two seconds how many seconds pass before Isabel returns to her starting position

Answers

Final answer:

Isabel's ride rotates 60° every two seconds. It takes 6 intervals (360° divided by 60°) to make a full rotation. Multiplying 6 intervals by 2 seconds gives us 12 seconds for Isabel to return to the starting position.

Explanation:

To determine how many seconds will pass before Isabel returns to her starting position on the ride, we need to establish the total degrees of rotation that equate to a full circle, which is 360°. Since the ride rotates 60° every two seconds, we can calculate the number of two-second intervals required to complete a full 360° rotation.

Firstly, divide 360° by 60° to find the number of intervals:

360° / 60° = 6 intervals

Since each interval takes 2 seconds, multiply the number of intervals by 2 to find the total time:

6 intervals × 2 seconds/interval = 12 seconds.

Therefore, it will take Isabel 12 seconds to return to her starting position on the amusement park ride.

1. Factor each of the following completely. Look carefully at the structure of each quadratic function and consider the best way to factor. Is there a GCF? Is it an example of a special case? SHOW YOUR WORK

Answers

Answer: 1) (x - 7)(x - 8)

               2) 2x(2x-7)(x + 2)

               3) (4x + 7)²

               4) (9ab² - c³)(9ab² + c³)

Step-by-step explanation:

1) x² - 15x + 56  → use standard form for factoring

                    ∧

                -7 + -8 = -15

  (x - 7) (x - 8)

************************************

2) 4x³ - 6x² - 28x      → factor out the GCF (2x)

2x(2x² - 3x - 14)         → factor using grouping

2x[2x² + 4x    - 7x - 14]    

2x[ 2x(x + 2)   -7(x + 2)]

2x(2x - 7)(x + 2)

*************************************

3) 16x² + 56x + 49     → this is the sum of squares

√(16x²) = 4x      √(49) = 7

              (4x + 7)²

******************************************************

4) 81a²b⁴ - c⁶          → this is the difference of squares

√(81a²b⁴) = 9ab²       √(c⁶) = c³

       (9ab² - c³)(9ab² + c³)

   

what is the value of x?

Answers

Answer:

x=35

Step-by-step explanation:

We have the two angles (6x -82)  and (3x + 23) that are equal. To find 'x' we need to solve the system of equations:

6x -82 = 3x + 23

Solving for 'x':

3x = 105

x = 35

[tex]6x-82=3x+23\\3x=105\\x=35[/tex]

Use the Quadratic Formula to solve the equation x2 - 4x = -7

Answers

Final answer:

The given quadratic equation x² - 4x = -7 is rearranged into standard form and then solved using the quadratic formula -b ± √(b² - 4ac) / (2a). The roots of the equation are realized from solving this formula.

Explanation:

The subject of this problem is a quadratic equation in the form of ax²+bx+c = 0. The given equation is x² - 4x = -7, which can be rearranged into standard form as x² - 4x + 7 = 0. Thus, in this case, a=1, b=-4, and c=7.

The solutions or roots for this quadratic equation can be calculated using the quadratic formula, which is -b ± √(b² - 4ac) / (2a). Substituting the values of a, b, and c into the formula will give the roots of the given equation.

Doing that, we get: x = [4 ± √((-4)² - 4*1*7)] / (2*1)

The values that solve the equation are the roots of the quadratic equation.

Learn more about Quadratic Equation here:

https://brainly.com/question/30098550

#SPJ12

Final answer:

To solve the equation x^2 - 4x = -7 using the Quadratic Formula, we follow the steps of plugging the values of a, b, and c into the formula, evaluating the square root and simplifying to find the solutions.

Explanation:

To solve the equation x2 - 4x = -7 using the Quadratic Formula, we first need to make sure the equation is in standard form, which is ax2 + bx + c = 0. In this case, a = 1, b = -4, and c = 7. Plugging these values into the Quadratic Formula, we get:

x = (-(-4) ± √((-4)2 - 4(1)(-7))) / (2(1))

x = (4 ± √(16 + 28))/2

x = (4 ± √44)/2

x = (4 ± 2√11)/2

x = 2 ± √11

So the solutions to the equation x2 - 4x = -7 are x = 2 + √11 and x = 2 - √11.

Learn more about Quadratic Equations here:

https://brainly.com/question/30098550

#SPJ12

What is the equation of the graph below​

Answers

Answer:

y=-(x-3)^2+2

Step-by-step explanation:

since the curve is convex up so the coefficient of x^2 is negative

and by substituting by the point 3 so y = 2

Answer:

B

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

here (h, k) = (3, 2), hence

y = a(x - 3)² + 2

If a > 0 then vertex is a minimum

If a < 0 then vertex os a maximum

From the graph the vertex is a maximum hence a < 0

let a = - 1, then

y = - (x - 3)² + 2 → B

Which of the following is a geometric sequence? Help pleaseee!

Answers

Answer: B

Step-by-step explanation:

Division of components are consistent  - the same

Answer:

B. -3, 3, -3, 3...

Step-by-step explanation:

There's two types of sequences, arithmetic and geometric.

Arithmetic equations are sequences that increase or decrease by adding or subtracting the previous number.

For example, take a look at the following sequence:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20...

Here, the numbers are increasing by +2. [adding]

So, this the sequence is arithmetic, since its adding.

Geometric sequences are sequences that increase or decrease by multiplying or dividing the previous number.

For example, take a look at the following sequence:

2, 4, 16, 32, 64, 128, 256, 512...

Here, the numbers are icnreasing by x2. [multiplying]

So, the sequence is geometric since its multiplying.

Based on this information, the correct answer is "B. -3, 3, -3, 3..." since its being multiplyed by -1.

How is the interquartile range calculated?
Minimum
Q1
Q1
Median
Median
Q3
Q3
Maximum
Maximum

Answers

Answer:

A

Step-by-step explanation:

The interquartile range is the difference between the upper quartile and the lower quartile, that is

interquartile range = [tex]Q_{3}[/tex] - [tex]Q_{1}[/tex]

Final answer:

The interquartile range (IQR) represents the spread of the middle 50 percent of a data set and is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). It also helps in identifying potential outliers in the data.

Explanation:

The interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the middle 50 percent of a data set. It is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). To elaborate:


 First Quartile (Q1): This is the median of the lower half of the data set, not including the median if the number of data points is odd.
 Third Quartile (Q3): This is the median of the upper half of the data set, not including the median if the number of data points is odd.
 The IQR is found by the formula IQR = Q3 - Q1.

If, for example, Q1 is 2 and Q3 is 9, the IQR is calculated as 9 minus 2, resulting in an IQR of 7.

In addition to providing insight into the spread of the central portion of the data set, the IQR can also be used to identify potential outliers. These are values that fall more than 1.5 times the IQR above Q3 or below Q1.

Evaluate the function rule for the given value. y = 15 • 3^x for x = –3

Answers

Answer:

5/9

Step-by-step explanation:

y = 15 • 3^x

Let x = -3

y = 15 • 3^(-3)

The negative means the exponent goes to the denominator

y = 15 * 1/3^3

  = 15 * 1/27

  =15/27

Divide the top and bottom by 3

 =5/9

What is the volume of a sphere that has a radius of 9?​

Answers

Answer:

V = 3053.63

Step-by-step explanation:

The volume of a sphere that has a radius of 9 is 3053.63.

V=4

3πr3=4

3·π·93≈3053.62806

Answer is provided in the image attached.

write a point slope equation for the line that has slope 3 and passes through the point (5,21). do not use parenthesis on the y side

Answers

Answer:

y - 21 = 3(x - 5)

Step-by-step explanation:

The equation of a line in point- slope form is

y - b = m(x - a)

where m is the slope and (a, b) a point on the line

here m = 3 and (a, b) = (5, 21), hence

y - 21 = 3(x - 5) ← in point- slope form

Final answer:

The point slope form of an equation is y - y1 = m(x - x1). Substituting the given point (5,21) and slope 3 into the equation, we get y - 21 = 3(x - 5). To remove the parenthesis on the y side, we simplify the equation to be y = 3x + 6.

Explanation:

The question asks for the writing of a point-slope equation of a line with a given slope of 3 that passes through a point (5,21). The point-slope form of an equation is generally denoted as:

y - y1 = m(x - x1)

Here, (x1, y1) = (5,21) and m (slope) = 3. Hence, substituting these values yields the equation:

y - 21 = 3(x - 5)

The asked equation without parenthesis on the y side would be:

y = 3x - 15 + 21

So, the final equation is:

y = 3x + 6

Learn more about Point-Slope Equation

https://brainly.com/question/35491058

#SPJ11

Helllllllppppp plzzzzzzzzz

Answers

Answer:

Hey, You have chosen the correct answer.

the correct answer is C.

The answer is C you got it right

Write a function rule based on the table below.
x f(x)
1 5
2 10
3 15




f(x) = x + 4


f(x) = 5x + 2


f(x) = 5x


f(x) = 5

Answers

Answer:

[tex]\large\boxed{f(x)=5x}[/tex]

Step-by-step explanation:

[tex]\begin{array}{c|c}x&f(x)\\1&5\\2&10\\3&15\end{array}\\\\\\f(1)=5(1)=5\\f(2)=5(2)=10\\f(3)=5(3)=15\\\Downarrow\\f(x)=5x[/tex]

Whats the quotient for this? ​

Answers

Answer:

Step-by-step explanation:

Divide 4378 by 15

From 4378 lets take the first two digits for division:

43/ 15

We know that 43 does not come in table of 15

So we will take 15 *2 = 30

43-30 = 13

The quotient is 3 and the remainder is 13

Now take one more number which is 7 with 13

137/15.

Now 137 does not come in table of 15

15*9 = 135

135-137 = 2

It means quotient is 9 and remainder is 2

Now take one more number which is 8 with 2

28/15

28 does not come in table of 15

15*1 = 15

28-15 = 13/15

Now the quotient is 1 and remainder is 13

Hence, the quotient of 4,378 is 291 and remainder is 13 ....

If 47400 dollars is invested at an interest rate of 7 percent per year, find the value of the investment at the end of 5 years for the following compounding methods, to the nearest cent.

(a) Annual: $______
(b) Semiannual: $ _____
(c) Monthly: $______
(d) Daily: $_______

Answers

Answer:

Part A) Annual [tex]\$66,480.95[/tex]  

Part B) Semiannual [tex]\$66,862.38[/tex]  

Part C) Monthly [tex]\$67,195.44[/tex]  

Part D) Daily [tex]\$67,261.54[/tex]  

Step-by-step explanation:

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

Part A)

Annual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=1[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{1})^{1*5}[/tex]  

[tex]A=47,400(1.07)^{5}[/tex]  

[tex]A=\$66,480.95[/tex]  

Part B)

Semiannual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=2[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{2})^{2*5}[/tex]  

[tex]A=47,400(1.035)^{10}[/tex]  

[tex]A=\$66,862.38[/tex]  

Part C)

Monthly

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=12[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{12})^{12*5}[/tex]  

[tex]A=47,400(1.0058)^{60}[/tex]  

[tex]A=\$67,195.44[/tex]  

Part D)

Daily

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=365[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{365})^{365*5}[/tex]  

[tex]A=47,400(1.0002)^{1,825}[/tex]  

[tex]A=\$67,261.54[/tex]  

The value of an investment of $47,400 at an interest rate of 7% per year was calculated at the end of 5 years for different compounding methods, reaching slightly different amounts, with the highest value obtained through daily compounding.

The value of the investment at the end of 5 years for different compounding methods would be:

(a) Annual: $62,899.68(b) Semiannual: $63,286.83(c) Monthly: $63,590.92(d) Daily: $63,609.29

The equations 3x-4y=-2, 4x-y=4, 3x+4y=2, and 4x+y=-4 are shown on a graph.

Which is the approximate solution for the system of equations 3x+4y=2 and 4x+y=-4?
A. (–1.4, 1.5)
B. (1.4, 1.5)
C. (0.9, –0.2)
D. (–0.9, –0.2)

i cant download the graph picture but please help.

Answers

Answer:

A (-1,4,1.5)

Step-by-step explanation:

Solve by graphing, the lines intersect near this point.

Question 7 (5 points)
Find the first five terms of the sequence in which a1 =-10 and an = 4an - 1 + 7. if n
2.​

Answers

Answer:

-10, -33, -125, -493, -1965

Step-by-step explanation:

a_1 = -10

a_n = 4a_(n - 1) + 7

The first five terms of the sequence are

a_1 =                                             -10

a_2 = 4(-10) + 7     =   -40 + 7 =    -33

a_3 = 4(-33) + 7    =  -132 + 7 =   -125

a_4 = 4(-125) + 7  = -500 + 7 =   -493

a_5 = 4(-473) + 7 = -1972 + 7 = -1965

The perimeter of a bedroom is 88 feet. The ratio of the width to the length is 5:6. What are the dimensions of the bedroom?

Answers

Answer:

20 feet wide, 24 feet long

Step-by-step explanation:

Let x - width, y - length.

The perimeter is given by the formula:

P = 2*(width + length) or using x, y

P = 2*(x + y) = 88

x + y = 44

And we know that the ratio between the sides is 5/6:

x/y = 5/6. x is on top because the length is bigger than the width

x = 5y/6

Plug this in the first expression:

y + 5y/6 = 44. Muliply by 6

6y + 5y = 264

11y = 264

y = 264/11 = 24.

So x = 5(24)/6  = 20

Consider the function represented by 9x+3y= 12 with x as the independent variable. How can this function be written using
function notation?
o AV=-=x+
o 0) = -3x+4
o Px) =-x+
o F) = - 3y+ 4​

Answers

Answer:

f(x)=-3x+4

(can't see some of your choices)

Step-by-step explanation:

We want x to be independent means we want to write it so when we plug in numbers we can just choose what we want to plug in for x but y's value will depend on our choosing of x.

So we need to solve for y.

9x+3y=12

Subtract 9x on both sides

     3y=-9x+12

Divide both sides by 3:

     y=-3x+4

Replace y with f(x).

    f(x)=-3x+4

children play a form of hopscotch called jumby. the pattern for the game is as given below.

Find the area of the pattern in simplest form.​

Answers

Answer:

7t^2 + 21t

Step-by-step explanation:

You have 7 tiles of each t by t+3.

One tile has an area of

t * (t+3) = t^2 + 3t

So in total the area is

7* (t^2 + 3t)

7t^2 + 21t

Other Questions
A sample of water with a mass of 123.00 kg is heated from 25 C to 97 C. If the specific heat of water is 1 J-1 kg K-1 then how much energy is required? what kinds of conflicts resulted from the global confrontation between the two superpowers? ndicate the equation of the line through (2, -4) and having slope of 3/5. put is a function to __________.Ex:cout.put(aChar);A)get one next character from the input streamB)input one next character to the input streamC)put one next character to the output streamD)output one next character from the input stream s spiked so that its incoming velocity of +3.27 m/s is changed to an outgoing velocity of -23.9 m/s. The mass of the volleyball is 0.350 kg. What is the magnitude of the impulse that the player applies to the ball? How many moles of Fe304 are required to supply enough iron to prepare 0.171 mol Fe203? Find the first 2 terms of each of two power series solutions: y" + x^2 y'+ xy = 0 A new organism has been discovered. This organism has a bilaterally symmetric unsegmented body. It's capable of moving on its own with a muscular appendage and is encased in a large shell that seems to be attached to its body. Based on this evidence, which phylum would this new animal likely be classified into? A. Mollusca B. Echinodermata C. Nematoda D. Arthropoda What was the purpose of mendels experiments with dihybrid crosses A flywheel made of Grade 30 cast iron (UTS = 217 MPa, UCS = 763 MPa, E = 100 GPa, density = 7100 Kg/m, Poisson's ratio = 0.26) has the following dimensions: ID = 150mm, OD = 250 mm and thickness = 37 mm. What is the rotational speed in rpm that would lead to the flywheel's fracture? The expression 40x2 65x + 50 represents the sum of the interior angles of a regular pentagon in degrees. If the interior angles of the pentagon are equal, which expression represents the measure of two angles?2x2(20 32x + 25x2)2(8x2 13x +10)5x2(8x2 13x + 10)5(3x2 8x + 5) The length of a rectangle is given by the function l(x)=2x+1, and the width of the rectangle is given by the function w(x)=x+4.Which function defines the area of the rectangle?Hint: A=lwa(x)=2x^2+5x+4a(x)=3x+5a(x)=2x^2+9x+4a(x)=x3 Which of the following is true of conifers? The sporophytes grow directly from the gametophyte The spores release from the gametophyte The gametophytes grow directly from the sporophyte The spores release from the male conesI NEED HELP ASAP the perimeter of a square is 20 feet how long is each side What company was founded in 1964 as blue ribbon sports? Write an expression for "the quotient of 2 and 4." A tour boat left the dock and traveled west at an average speed of 10 mph. A smaller fishing boat left some time later traveling in the same direction but at an average speed of 12 mph. After traveling for 10 hours, the fishing boat caught up to the tour boat. The tour boat left _______ hours earlier than the fishing boat. The arithmetic mean of any two nonnegative real numbers a and b is greater than or equal to their geometric mean vab. [Hint: consider (Va - vb) 0.] Find the angle measure C in the parallelogram ABCD. After graduating from college, Carlos receives a job offer for $62000 per year with a raise of 5% after one year what is his pay