Which of the following is an equation of a line that is parallel to y = 4 x + 9 ? (Choose all correct equations.)
y = 2 x + 9
y = 4 x − 7
12 x − 3 y = 6
− 20 x + 5 y = 45

Answers

Answer 1

Answer:

The second, third and fourth are parallel to the given equation

Step-by-step explanation:

In order to determine if the slopes are the same, put all of the equations in slope-intercept form:  y = mx + b.  In order for lines in this form to be parallel, the m values of each have to be the exact same number, in our case, 4.  Equation 2 has a 4 in the m position, just like the given, so that one is easy.  Equation 2 is parallel.

Let's solve the third equation for y:

12x - 3y = 6 so

-3y = -12x + 6 and

y = 4x - 2.  Equation 3 is parallel since there is a 4 in the m position.

Let's solve the fourth equation for y:

-20x + 5y = 45 so

5y = 20x + 45 and

y = 4x + 9.  Equation 4 is also parallel since there is a 4 in the m position.


Related Questions

Which expression is equal to f(x) + g(x)?


f(x)=x-16/x^2+6x-40x fo x /= -10 and x /= 4

g(x)=1/x+10x for x /= -10


(Answer choices given in photo)

Answers

Answer:

[tex]\frac{2x-20}{x^2+6x-40}[/tex]

Step-by-step explanation:

[tex]f(x)+g(x)[/tex]

[tex]\frac{x-16}{x^2+6x-40}+\frac{1}{x+10}[/tex]

I'm going to factor that quadratic in the first fraction's denominator to figure out what I need to multiply top and bottom of the other fraction or this fraction so that I have a common denominator.

I want a common denominator so I can write as a single fraction.

So since the leading coefficient is 1, all we have to do is find two numbers that multiply to be c and at the same thing add up to be b.

c=-40

b=6

We need to find two numbers that multiply to be -40 and add to be 6.

These numbers are 10 and -4 since (10)(-4)=-40 and 10+-4=6.

So the factored form of [tex]x^2+6x-40[/tex] is [tex](x+10)(x-4)[/tex].

So the way the bottoms will be the same is if I multiply top and bottom of my second fraction by (x-4).

This will give me the following sum so far:

[tex]\frac{x-16}{x^2+6x-40}+\frac{x-4}{x^2+6x-40}[/tex]

Now that the bottoms are the same we just need to add the tops and then we are truly done:

[tex]\frac{(x-16)+(x-4)}{x^2+6x-40}[/tex]

[tex]\frac{x+x-16-4}{x^2+6x-40}[/tex]

[tex]\frac{2x-20}{x^2+6x-40}[/tex]

he given measurements may or may not determine a triangle. If not, then state that no triangle is formed. If a triangle is formed, then use the Law of Sines to solve the triangle, if it is possible, or state that the Law of Sines cannot be used. C = 38°, a = 19, c = 10

Answers

Answer:

No, the triangle is not possible.

Step-by-step explanation:

Given,

A triangle ABC in which C = 38°, a = 19, c = 10,

Where, angles are A, B and C and the sides opposite to these angles are a, b and c respectively,

By the law Sines,

[tex]\frac{sin A}{a}=\frac{sin C}{c}[/tex]

[tex]\implies sin A = \frac{a sin C}{c}[/tex]

By substituting the values,

[tex]sin A = \frac{19\times sin 38^{\circ}}{10}[/tex]

[tex]=1.16975680312[/tex]

[tex]\implies A=sin^{-1}(1.16975680312)[/tex] = undefined

Hence, the triangle is not possible with the given measurement.

You just rode your bike for 45 minutes and burned 560 calories. How many calories did u burn per minute? plz hurry

Answers

If you burned the same number of calories every minute while you kept biking for 45 minutes, and burned a total of 560 calories, then the number of calories burned per minute is 560/45=112/9

Answer:

12.4 calories  / minute to the nearest tenth.

Step-by-step explanation:

That would be 560 / 45

= 12.44...  calories  / minute.

Use the standard normal distribution or the​ t-distribution to construct a 99​% confidence interval for the population mean. Justify your decision. If neither distribution can be​ used, explain why. Interpret the results. In a random sample of 42 ​people, the mean body mass index​ (BMI) was 28.3 and the standard deviation was 6.09.

Answers

Answer:

(25.732,30.868)

Step-by-step explanation:

Given that in a random sample of 42 ​people, the mean body mass index​ (BMI) was 28.3 and the standard deviation was 6.09.

Since only sample std deviation is known we can use only t distribution

Std error = [tex]\frac{s}{\sqrt{n} } =\frac{6.09}{\sqrt{42} } \\=0.9397[/tex]

[tex]df = 42-1 =41[/tex]

t critical for 99% two tailed [tex]= 2.733[/tex]

Margin of error[tex]= 2.733*0.9397=2.568[/tex]

Confidence interval lower bound = [tex]28.3-2.568=25.732[/tex]

Upper bound = [tex]28.3+2.568=30.868[/tex]

Answer:

i think its uh

Step-by-step explanation: carrot

Each investment matures in 3 years. The interest compounds annually.
Calculate the interest and the final amount.
a) $600 invested at 5%
b) $750 invested at 4 3/4%

Answers

bearing in mind that 4¾ is simply 4.75.

[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$600\\ r=rate\to 5\%\to \frac{5}{100}\dotfill &0.05\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\dotfill &1\\ t=years\dotfill &3 \end{cases} \\\\\\ A=600\left(1+\frac{0.05}{1}\right)^{1\cdot 3}\implies A=600(1.05)^3\implies A=694.575 \\\\[-0.35em] ~\dotfill[/tex]

[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$750\\ r=rate\to 4.75\%\to \frac{4.75}{100}\dotfill &0.0475\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\dotfill &1\\ t=years\dotfill &3 \end{cases} \\\\\\ A=750\left(1+\frac{0.0475}{1}\right)^{1\cdot 3}\implies A=750(1.0475)^3\implies A\approx 862.032[/tex]

well, the interest for each is simply A - P

695.575 - 600 = 95.575.

862.032 - 750 = 112.032.

Find \cos\left(\dfrac{19\pi}{12}\right)cos( 12 19π ​ )cosine, left parenthesis, start fraction, 19, pi, divided by, 12, end fraction, right parenthesis exactly using an angle addition or subtraction formula.

Answers

Answer:

The value of given expression is [tex]-\frac{\sqrt{2}-\sqrt{6}}{4}[/tex].

Step-by-step explanation:

The given expression is

[tex]\cos\left(\dfrac{19\pi}{12}\right)[/tex]

The trigonometric ratios are not defined for [tex]\dfrac{19\pi}{12}[/tex].

[tex]\dfrac{19\pi}{12}[/tex] can be split into [tex]\frac{5\pi}{4}+\frac{\pi}{3}[/tex].

[tex]\cos\left(\dfrac{19\pi}{12}\right)=\cos (\frac{5\pi}{4}+\frac{\pi}{3})[/tex]

Using the addition formula

[tex]\cos (A+B)=\cos A\cos B-\sin A\sin B[/tex]

[tex]\cos (\frac{5\pi}{4}+\frac{\pi}{3})=\cos( \frac{\pi}{3})\cdot \cos (\frac{5\pi}{4})-\sin( \frac{\pi}{3})\cdot \sin (\frac{5\pi}{4})[/tex]

We know that, [tex]\cos(\frac{\pi}{3})=\frac{1}{2}[/tex] and [tex]\sin (\frac{\pi}{3})=\frac{\sqrt{3}}{2}[/tex]

[tex]\cos\left(\dfrac{19\pi}{12}\right)=\frac{1}{2}\cdot \cos (\frac{5\pi}{4})-\frac{\sqrt{3}}{2}\cdot \sin (\frac{5\pi}{4})[/tex]

[tex]\frac{5\pi}{4}[/tex] lies in third quadrant, by using reference angle properties,

[tex]\cos(\frac{5\pi}{4})=-\cos(\frac{\pi}{4})=-\frac{\sqrt{2}}{2}[/tex]

[tex]\sin(\frac{5\pi}{4})=-\sin(\frac{\pi}{4})=-\frac{\sqrt{2}}{2}[/tex]

[tex]\cos\left(\dfrac{19\pi}{12}\right)=\frac{1}{2}\cdot (-\frac{\sqrt{2}}{2})-\frac{\sqrt{3}}{2}\cdot (-\frac{\sqrt{2}}{2})[/tex]

[tex]\cos\left(\dfrac{19\pi}{12}\right)=-\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4}[/tex]

[tex]\cos\left(\dfrac{19\pi}{12}\right)=-\frac{(\sqrt{2}-\sqrt{6})}{4}[/tex]

Therefore the value of given expression is [tex]-\frac{\sqrt{2}-\sqrt{6}}{4}[/tex].

Final answer:

To find [tex]\(\cos(\frac{19\pi}{12})\),[/tex] we express the angle as the sum of  [tex]\(\frac{4\pi}{3}\) and \(\frac{\pi}{4}\)[/tex] and then use the cosine addition formula. Calculating the values of cosine and sine for these angles gives us the exact value of [tex]\(\cos(\frac{19\pi}{12})\) as \(\frac{\sqrt{6} - \sqrt{2}}{4}\).[/tex]

Explanation:

To find [tex]\(\cos\left(\frac{19\pi}{12}\right)\)[/tex] using an angle addition or subtraction formula, let's break down the angle [tex]\(\frac{19\pi}{12}\)[/tex] into the sum or difference of angles whose cosine values we know. We can express[tex]\(\frac{19\pi}{12}\) as \(\frac{16\pi}{12} + \frac{3\pi}{12}\)[/tex] which simplifies to[tex]\(\frac{4\pi}{3} + \frac{\pi}{4}\).[/tex] Now we use the cosine addition formula [tex], \(\cos(a+b) = \cos a \cos b - \sin a \sin b\)[/tex], to find the answer:

[tex]\(\cos\left(\frac{19\pi}{12}\right) = \cos\left(\frac{4\pi}{3} + \frac{\pi}{4}\right) = \cos\left(\frac{4\pi}{3}\right)\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{4\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)\)[/tex]

[tex]\(= (-\frac{1}{2})\cdot(\frac{\sqrt{2}}{2}) - (-\frac{\sqrt{3}}{2})\cdot(\frac{\sqrt{2}}{2})\)[/tex]

[tex]\(= -\frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}\)[/tex]

Combining these, we get:

[tex]\(\cos\left(\frac{19\pi}{12}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}\)[/tex]

In circle A below, if angle BAC measures 15 degrees, what is the measure of arc BC?

Answers

Answer:

15 degrees

Step-by-step explanation:

The arc measure of BC is equal to angle created by B, C and the central angle.  The angle created by B,C, and the central angle is 15 degrees so the arc measure is 15 degrees.

Answer: 15°

Step-by-step explanation:

It is important to remember that, by definition:

[tex]Central\ angle = Intercepted\ arc[/tex]

Therefore, in this case, knowing that the angle BAC  (which is the central angle) in the circle provided measures 15 degrees, you can conclude that the measure of arc BC (which is the intercepted arc) is 15 degrees.

Then you get that the answer is:

[tex]BAC=BC[/tex]

[tex]BC=15\°[/tex]


A motorboat takes 4 hours to travel 128 km going upstream. The return trip takes 2
hours going downstream. What is the rate of the boat in still water and what is the rate of the current?

Answers

Step-by-step explanation:

Rate × time = distance

If x is the rate of the boat and y is the rate of the water:

(x − y) × 4 = 128

(x + y) × 2 = 128

Simplifying:

x − y = 32

x + y = 64

Solve with elimination (add the equations together):

2x = 96

x = 48

y = 16

The speed of the boat is 48 km/hr and the speed of the water is 16 km/hr.

Proportions in Triangles (9)

Answers

Answer:

3.6

Step-by-step explanation:

Divide 6 by 4

You get 1.5

Multiply 1.5 by 2.4

You get 3.6

Which equation represents a line parallel to the line shown on the graph?

3x-7
-3x+3
1/3x+7/9
-1/3x + 12

Also please explain why it's the correct answer.
For me, I thought it was 3x-7 because the slope shows that it goes up 3 times and right 1 time. It could be other way around, but I'm not sure. Please answer this quickly!

Answers

Answer:

-3x+3

Step-by-step explanation:

The equation to the line shown is formed as follows.

It passes through the points (-6,0) and (-8,6)

The gradient of the line=Δy/Δx

=(y₂-y₁)/(x₂-x₁)

=(6-0)/(-8--6)

=6/-2

=-3

The line parallel to the line shown has the same gradient i.e -3

Therefore the line in question is

-3x+3.

What translations occur when moving from
f(x) to g(x)?
f(x) = sin(x)
g(x) = 4 sin (3x – pi) +5

Answers

Step-by-step explanation:

The coefficient of the x is 3, so it is horizontally shrunk by factor of 3.

The coefficient of the sine is 4, so it is vertically stretched by factor of 4.

The constant inside the sine is -pi, so it is horizontally shifted pi units to the right.

The constant outside the sine is 5, so it is vertically shifted 5 units up.

A ball is dropped from a certain height. The function below represents the height f(n), in feet, to which the ball bounces at the nth bounce: f(n) = 9(0.7)n What does the number 9 in the function represent?

Answers

Answer:

Initial height or what the ball was originally bounced from a height of 9 feet

Step-by-step explanation:

9 represents the height that the ball was originally bounced from.

If you plug in 0 for [tex]n[/tex] into [tex]f(n)=9(0.7)^n[/tex], you get:

[tex]f(0)=9(0.7)^0=9(1)=9[/tex].

9 feet is the initial height since that is what happens at time zero.

Answer:

Initial height or what the ball was originally bounced from a height of 9 feet

Step-by-step explanation:

9 represents the height that the ball was originally bounced from.

If you plug in 0 for  into , you get:

.

9 feet is the initial height since that is what happens at time zero.

Ned some help with these questions

Answers

Answer:

  14a.  an = 149 -6(n -1)

  14b.  Evaluate the formula with n=8.

  15.  (no question content)

Step-by-step explanation:

14. Each week, sales decreases by 6, so the arithmetic sequence for sales has a first term of 149 and common difference of -6. The general formula for the n-th term is ...

  an = a1 + d·(n -1) . . . . . . where a1 is the first term, d is the common difference

Putting the numbers for this sequence into the general formula, we get ...

  an = 149 -6(n -1)

__

To predict the sales for the 8th week, put n=8 into the formula and do the arithmetic.

  a8 = 149 -6(8-1) = 107 . . . . predicted sales for week 8

_____

15. The graph is shown attached. There is no question content.

Heather has $45.71 in her savings account. She bought six packs of markers to donate to her school. If each pack of markers cost $3.99, how much money does she have in her bank account after the donation?

Answers

Answer:

21.77 After the donation

Step-by-step explanation:

3.99 Multiplied by 6 is 23.94

So 45.71 - 23.94 = 21.77

Find the mean, median, mode, and range of this data: 49, 49, 54, 55, 52, 49, 55. If necessary, round to the nearest tenth.

Answers

Answer:

Mean = 51.4.

Mode = 49.

Median = 52.

Range = 6.

Step-by-step explanation:

Mean = Sum of all observations / Number of observations.

Mean = (49+49+54+55+52+49+52)/7

Mean = 360/7

Mean = 51.4 (to the nearest tenth).

Mode = The most repeated values = 49 (repeated 3 times).

Range = Largest Value - Smallest Value = 55 - 49 = 6.

Median = The central value of the data.

First, arrange the data in the ascending order: 49, 49, 49, 52, 54, 55, 55.

It can be seen that the middle value is 52. Therefore, median = 52!!!

Jayne stopped to get gas before going on a road trip. The tank already had 4 gallons of gas in it. Which best describes why the graph relating the total amount of gasoline in the tank, y, to the number of gallons that she added to it, x, will be continuous or discrete? 

A: The graph will be continuous because the amount of gas that she added to the tank does not need to be an integer amount. 

B: The graph will be continuous because we are not told a maximum value for the amount of gas. 

C: The graph will be discrete because there are already exactly 4 gallons of gas in the tank, so to fill it up will take a whole number of gallons of gas. 

D: The graph will be discrete because there is an end to the amount of gas she can use, as the tank will be completely full at some point.


Read more on Brainly.in - https://brainly.in/question/5443625#readmore

Answers

Answer:

The correct option is A. The graph will be continuous because the amount of gas that she added to the tank does not need to be an integer amount.

Step-by-step explanation:

Consider the given information.

If the value of a function is integer then the graph will be discrete, otherwise it will be a continuous graph.

The amount of gas that Jayne added does not need to be an integer. So, the graph will be continuous.

For example, 16.7 gallons of gas or 19.9 gallons of gas, etc. She can get amounts that are not integers.

This can be represent as:

y = x + 4

Where, y is total amount of gas in tank and x is number of gallons she added.

As it is a linear function which is continuous everywhere.

Thus, the correct option is A. The graph will be continuous because the amount of gas that she added to the tank does not need to be an integer amount.

Answer:

I want yo points

Step-by-step explanation:

Marlow Company purchased a point of sale system on January 1 for $10,000. This system has a useful life of 10 years and a salvage value of $1,000. What would be the depreciation expense for the first year of its useful life using the double-declining-balance method?

Answers

Answer:

Given:

POS system = 3,400

useful life = 10 years

salvage value = 400

double declining method means that the depreciation expense is higher in the early years than the later years of the asset.

Straight line depreciation = (3,400 - 400) / 10 yrs = 300 

300 / 3000 = 0.10 or 10%

10% x 2 = 20% double declining rate

Depreciation expense under the double declining method:

Year 1: 3,400 x 20% =  680 depreciation expense.

Year 1 book value = 3,400 - 680 = 2,720

Year 2 : 2,720 x 20% = 544 depreciation expense

Year 2 book value = 2,720 - 544 = 2,176

Jenny received a $70 gift card for a coffee store. She used it in buying some coffee that cost $8.01 per pound. After buying the coffee, she had $45.97 left on her card. How many pounds of coffee did she buy?

Answers

Answer:

3 pounds of coffee

Step-by-step explanation:

First you have to find how much Jenny spent on coffee.

To find this out subtract 70 by 45.97.

So, 70 - 45.97 = $24.03

Now you have to find how many pounds of coffee she bought, so to find this out you have to divide 24.03 by 8.01.

So, 24.03 divided by 8.01 = 3 pounds of coffee.

What is the area of a Reuleaux triangle that has a diameter of 4 in.? Round answer to the nearest hundredth.

Answers

Answer:

  11.28 in²

Step-by-step explanation:

The area of a Reuleaux triange is given by ...

  A = (1/2)(π -√3)d² . . . . . where d is the diameter of the triangle.

For a triangle of diameter 4 in, the area is ...

  A = (1/2)(π -√3)(4 in)² = (π -√3)8 in² ≈ 11.28 in²

_____

A Reuleaux triangle is the shape of smallest area that has a constant diameter. The diameter of the shape is the radius of each of the arcs between the vertices of the inscribed equilateral triangle.

Alexa pays 7/20 of a dollar for each minute she uses her pay-as-you-go phone for a call, and 2/5 of a dollar for each minute of data she uses. This month, she used a total of 85 minutes and the bill was $31. Which statements are true? Check all that apply.
The system of equations is x + y = 31 and 7/20x+2/5y=85
The system of equations is x + y = 85 and 7/20x+2/5y=31
To eliminate the y-variable from the equations, you can multiply the equation with the fractions by 5 and leave the other equation as it is.
To eliminate the x-variable from the equations, you can multiply the equation with the fractions by 20 and multiply the other equation by -7.
A-She used 25 minutes for calling and 60 minutes for data.
B-She used 60 minutes for calling and 25 minutes for data.
C-She used 20 minutes for calling and 11 minutes for data.
D-She used 11 minutes for calling and 20 minutes for data.

Answers

Answer:

The system of equations is x + y = 85 and 7/20x+2/5y=31To eliminate the x-variable from the equations, you can multiply the equation with the fractions by 20 and multiply the other equation by -7.B-She used 60 minutes for calling and 25 minutes for data.

Step-by-step explanation:

It is always a good idea to start by defining variables in such a problem. Here, we can let x represent the number of calling minutes, and y represent the number of data minutes. The the total number of minutes used is ...

  x + y = 85

The total of charges is the sum of the products of charge per minute and minutes used:

  7/20x + 2/5y = 31.00

We can eliminate the x-variable in these equations by multiplying the first by -7 and the second by 20, then adding the result.

  -7(x +y) +20(7/20x +2/5y) = -7(85) +20(31)

  -7x -7y +7x +8y = -595 +620 . . . . eliminate parentheses

  y = 25 . . . . . . . . simplify

Then the value of x is

  x = 85 -y = 85 -25

  x = 60

Answer:

The second, fourth and B option are correct.

Step-by-step explanation:

In order to solve this problem, we are going to define the following variables :

[tex]X:[/tex] ''Minutes she used her pay-as-you-go phone for a call''

[tex]Y:[/tex] ''Minutes of data she used''

Then, we are going to make a linear system of equations to find the values of [tex]X[/tex] and [tex]Y[/tex].

''This month, she used a total of 85 minutes'' ⇒

[tex]X+Y=85[/tex]  (I)

(I) is the first equation of the system.

''The bill was $31'' ⇒

[tex](\frac{7}{20})X+(\frac{2}{5})Y=31[/tex] (II)

(II) is the second equation of the system.

The system of equations will be :

[tex]\left \{ {{X+Y=85} \atop {(\frac{7}{20})X+(\frac{2}{5})Y=31}} \right.[/tex]

The second option ''The system of equations is [tex]X+Y=85[/tex] and [tex](\frac{7}{20})X+(\frac{2}{5})Y=31[/tex] .'' is correct

Now, to solve the system, we can eliminate the x-variable from the equations by multiplying the equation with the fractions by 20 and multiplying the other equation by -7. Then, we can sum them to obtain the value of [tex]Y[/tex] :

[tex]X+Y=85[/tex] (I)

[tex](\frac{7}{20})X+(\frac{2}{5})Y=31[/tex] (II) ⇒

[tex](-7)X+(-7)Y=-595[/tex] (I)'

[tex]7X+8Y=620[/tex] (II)'

If we sum (I)' and (II)' ⇒

[tex](-7)X+(-7)Y+7X+8Y=-595+620[/tex] ⇒ [tex]Y=25[/tex]

If we replace this value of [tex]Y[/tex] in (I) ⇒

[tex]X+Y=85\\X+25=85\\X=60[/tex]

The fourth option ''To eliminate the x-varible from the equations, you can multiply the equation with the fractions by 20 and multiply the other equation by -7'' is correct.

With the solution of the system :

[tex]\left \{ {{X=60} \atop {Y=25}} \right.[/tex]

We answer that the option ''B-She used 60 minutes for calling and 25 minutes for data'' is correct.

A print shop purchases a new printer for $25,000. The equipment depreciates at a rate of 5% each year. The relationship between the value of the printer, y, and the year number, x, can be represented by the equation, y = 25,000 • 0.95 x . Complete the table below with the value of the printer, to the nearest cent, in years 1, 2, and 3. Include proper commas and decimals in your answer.

Answers

Answer:

Part 1) For x=1 year, [tex]y=\$23,750[/tex]  

Part 2) For x=2 years, [tex]y=\$22,562.50[/tex]  

Part 3) For x=3 years, [tex]y=\$21,434.38[/tex]  

Step-by-step explanation:

we know that

The  formula to calculate the depreciated value  is equal to  

[tex]y=P(1-r)^{x}[/tex]  

where  

y is the depreciated value  

P is the original value  

r is the rate of depreciation  in decimal  

x  is the number of years  

in this problem we have  

[tex]P=\$25,000\\r=5\%=0.05[/tex]

substitute

[tex]y=25,000(1-0.05)^{x}[/tex]  

[tex]y=25,000(0.95)^{x}[/tex]  

Part 1) Find the value of the printer, to the nearest cent, in year 1

so

For x=1 year

substitute in the exponential equation

[tex]y=25,000(0.95)^{1}[/tex]  

[tex]y=\$23,750[/tex]  

Part 2) Find the value of the printer, to the nearest cent, in year 2

so

For x=2 years

substitute in the exponential equation

[tex]y=25,000(0.95)^{2}[/tex]  

[tex]y=\$22,562.50[/tex]  

Part 3) Find the value of the printer, to the nearest cent, in year 3

so

For x=3 years

substitute in the exponential equation

[tex]y=25,000(0.95)^{3}[/tex]  

[tex]y=\$21,434.38[/tex]  

I need help with this question! I already have part c figured out but I'm having a hard time understanding a and b...

Becky is building a square rabbit cage. The length and width are both 3 feet less than the square dog pen she built for her dog. The area of the rabbit cage is 25 ft.
 

a. Using D to represent the side of the square dog pen, write an expression to represent the area of the rabbit cage.


b. Use the expression and the given area to find the length of a side of the square dog pen.
Since each side of the rabbit pen is 5ft (25 squared=5ft) add 3ft to each side because the dog pen is 3 ft bigger in length and width, equaling 8ft. The dog pen is 8ft by 8ft= 36ft

c. How many feet of fencing is needed to enclose the 4 sides of the rabbit cage? (SHOW WORK)
The rabbit cage is a square, and the area is 25ft, which has a square room of 5. Since there are 4 sides of the rabbit cage which will be fenced, multiply 5 (which is 25 squared) by 4 (the sides) equalling 20. There needs to be 20 ft of fencing to enclose all 4 sides of the rabbit cage. (thats my answer for part c )

Answers

[tex]\bf \boxed{A}\\\\ \stackrel{\textit{3 less than D}}{D-3}~\hspace{5em}A=(D-3)(D-3)\implies A=(D-3)^2 \\\\[-0.35em] ~\dotfill\\\\ \boxed{B}\\\\ \stackrel{\textit{area of rabbits' pen}}{25=(D-3)^2}\implies \stackrel{\stackrel{\textit{same exponents}}{\textit{same base}}}{5^2=(D-3)^2}\implies 5=D-3\implies 8=D \\\\\\ \boxed{C}\\\\ 5+5+5+5=20[/tex]

Final answer:

To find the expression that represents the area of the rabbit cage, use (D - 3)². The side of the rabbit cage, given the area, is 25 square feet, is 5 feet, so the dog pen's side length is 8 feet. The rabbit cage requires 20 feet of fencing to be enclosed.

Explanation:

To solve for the expression that represents the area of the rabbit cage, we'll start by defining the side of the square dog pen as D. Since each side of the rabbit cage is 3 feet less than the dog pen, the side of the rabbit cage would be D - 3. Therefore, the area of the rabbit cage, which is a square, is given by the expression (D - 3)². This tells us that the area is the side length squared. Now, we know that the area of the rabbit cage is 25 square feet.

To find the side length of the rabbit cage, we would take the square root of the area, which gives us 5 feet. Hence, to find the side length of the dog pen, we would add the 3 feet back to the side length of the rabbit cage. This gives us D - 3 = 5, which means D = 5 + 3, so D = 8 feet.

For part c, to find out how many feet of fencing is needed to enclose the rabbit cage, we take the side length of the rabbit cage, which is 5 feet, and multiply it by 4, since a square has four equal sides. This means we would need 5 feet x 4 sides = 20 feet of fencing to enclose the rabbit cage.

What is the circumference and area of a circle with a radius of 4 meters? Round your answer to the nearest tenth. Circumference: m Area: m2 (Use 3.14 for Pi.)

Answers

Answer:

Circumference = 25m

Area = 50 m2

Step-by-step explanation:

formula for circumference of a circle is π(d)

when radius is 4m, diameter is 8m

3.14(8)= 25.13

nearest tenth = 25m

formula for area of circle is 2πr or π(r)(r)

when radius is 4m

3.14(4)(4)=50.27 m2

nearest tenth =50m

Answer: circumference of the circle is 25.12 m  and the area of the circle is 50.2 m²

Step-by-step explanation:

To find the circumference of the circle of radius  4 meters, we simply use the formula;

area of a circumference = 2πr

                      π is given to be 3.14 and radius r=4 meter, we will substitute this variable into the formula

area of a circumference = 2πr

                                          = 2 × 3.14 × 4

                                          =25.12

                                           ≈25.1  to the nearest tenth

Therefore, the circumference of the circle is is 25.1 meters

To find the area of the circle, we simply use the formula:

area of circle = π[tex]r^{2}[/tex]

                     =  3.14 × (4)²

                      =3.14 × 16

                        =50.24

                        ≈50.2   to the nearest tenth

Therefore, the area of the circle is 50.2 m²

                     

Which of the following shows the division problem below in synthetic division form?

Answers

Answer:

     -------------------------------------

-4  |  3     -10       7

Step-by-step explanation:

Take the coefficients of the numerator inside the division bar

Take the opposite of the number in the denominator

     -------------------------------------

-4  |  3     -10       7

Answer:

The correct option is B.

Step-by-step explanation:

The given expression is

[tex]\frac{3x^2-10x+7}{x+4}[/tex]

Here the numerator is

[tex]3x^2-10x+7[/tex]

So, the coefficients of numerator are 3, -10 and 7.

If the denominator of an expression is (x+c), then in synthetic division form -c is written on outside and coefficients of numerator are written under the sign of division(descending order of degree of terms).

The denominator of the expression is (x+4), so -4 is written outside the sign of division.

[tex]-4\overline{|3\quad -10\quad 7}[/tex]

Therefore the correct option is B.

Write an equation for the problem and then solve.

The perimeters of two rectangles are equal. The dimensions of one rectangle are 2x and x while the dimensions of the other rectangle are x + 12 and x - 3. What are the numerical dimensions of the rectangles? (Solve for x)



Answer: x =

Answers

Answer:

first rectangle: 18 by 9second rectangle 21 by 6x = 9

Step-by-step explanation:

The perimeter in each case is double the sum of the side dimensions. Since the perimeters are equal, the sum of side dimensions will be equal:

  2x +x = (x +12) +(x -3)

  3x = 2x +9 . . . . . . . . collect terms

  x = 9 . . . . . . . . . . . . . subtract 2x

Given this value of x, the dimensions of the first rectangle are ...

  {2x, x} = {2·9, 9} = {18, 9}

And the dimensions of the second rectangle are ...

  {x+12, x-3} = {9+12, 9-3} = {21, 6}

The probability that house sales will increase in the next 6 months is estimated to be 0.25. The probability that the interest rates on housing loans will go up in the same period is estimated to be 0.74. The probability that house sales or interest rates will go up during the next 6 months is estimated to be 0.89. Find the probability that house sales will increase but interest rates will not during the next 6 months.

Answers

Answer:

P(house)+P(interest)-P(both)=probability of P. Both subtracts the double counting.

0.25+0.74-P(Both)=0.89

P=0.10

 

P(neither) is the complement of P(either), which is OR. That is 1-0.89=0.11

If I can assume independence, which probably is not correct since the two are related, it is P(H)*P(not I)=0.25*0.26=0.065. Not I is 1-P(I)=0.26

Final answer:

The probability that house sales will increase but interest rates will not during the next 6 months is calculated using the addition rule for probabilities and is found to be 0.15 or 15%.

Explanation:

We are given three probabilities:

The probability that house sales will increase in the next 6 months (P(House Sales Increase)) = 0.25.The probability that the interest rates on housing loans will go up in the same period (P(Interest Rates Increase)) = 0.74.The probability that house sales or interest rates will go up during the next 6 months (P(House Sales Increase or Interest Rates Increase)) = 0.89.

To find the probability that house sales will increase but interest rates will not during the next 6 months (P(House Sales Increase and Interest Rates Not Increase)), we can use the formula that relates the probability of the union of two events to the probability of each event and the probability of their intersection:

P(House Sales Increase or Interest Rates Increase) = P(House Sales Increase) + P(Interest Rates Increase) - P(House Sales Increase and Interest Rates Increase)

We rearrange the formula to solve for P(House Sales Increase and Interest Rates Not Increase):

P(House Sales Increase and Interest Rates Increase) = P(House Sales Increase) + P(Interest Rates Increase) - P(House Sales Increase or Interest Rates Increase)

Hence, the probability that interest rates will not increase when house sales increase is equal to 1 minus the probability that interest rates will increase. So:

P(House Sales Increase and Interest Rates Not Increase) = P(House Sales Increase) - P(House Sales Increase and Interest Rates Increase)

Plugging in the values we get:

P(House Sales Increase and Interest Rates Not Increase) = 0.25 - (0.25 + 0.74 - 0.89)

This simplifies to:

P(House Sales Increase and Interest Rates Not Increase) = 0.25 - 0.10 = 0.15

The probability that house sales will increase but interest rates will not during the next 6 months is 0.15 or 15%.

Which series of transformations will NOT map figure L onto itself?

A. (x + 1, y − 4), reflection over y = x − 4
B. (x − 4, y − 4), reflection over y = −x
C. (x + 3, y − 3), reflection over y = x − 4
D. (x + 4, y + 4), reflection over y = −x + 8

Answers

Answer:

A. (x + 1, y − 4), reflection over y = x − 4

Step-by-step explanation:

You must perform all the composed transformations to spot the one in which the coordinates of the preimage and the image are not the same.

The coordinates of the preimage are A(0,1), B(3,4), C(5,2) , and D(2,-1)

Option A is a translation (x + 1, y − 4), followed by a reflection over y = x − 4.

[tex]A(0,1)\to(1,-3)\to A'(1,-3)[/tex]

[tex]B(3,4)\to(4,0)\to B'(4,0)[/tex]

[tex]C(5,2)\to(6,-2)\to C'(2,2)[/tex]

[tex]D(2,-1)\to(3,-5)\to D'(-1,-1)[/tex]

Option B is a translation  (x − 4, y − 4), followed by a reflection over y = −x

[tex]A(0,1)\to(-4,-3)\to A'(0,1)[/tex]

[tex]B(3,4)\to(-1,0)\to B'(3,4)[/tex]

[tex]C(5,2)\to(1,-2)\to C'(5,2)[/tex]

[tex]D(2,-1)\to(-2,-5)\to D'(2,-1)[/tex]

Option C is a translation  (x +3, y − 3), followed by a reflection over y = x-4

[tex]A(0,1)\to(3,-2)\to A'(0,1)[/tex]

[tex]B(3,4)\to(6,1)\to B'(3,4)[/tex]

[tex]C(5,2)\to(8,-1)\to C'(5,2)[/tex]

[tex]D(2,-1)\to(5,-4)\to D'(2,-1)[/tex]

Option D is a translation  (x +4, y + 4), followed by a reflection over y = −x+8

[tex]A(0,1)\to(4,5)\to A'(0,1)[/tex]

[tex]B(3,4)\to(7,8)\to B'(3,4)[/tex]

[tex]C(5,2)\to(9,6)\to C'(5,2)[/tex]

[tex]D(2,-1)\to(6,3)\to D'(2,-1)[/tex]

The correct choice is A.

Answer:

A. (x + 1, y − 4), reflection over y = x − 4

Step-by-step explanation:

The answer A. (x + 1, y − 4), reflection over y = x − 4 is right because I got it right on my test!! :)))

The volumes of soda in quart soda bottles are normally distributed with a mean of 32.3 oz and a standard deviation of 1.2 oz. What is the probability that the volume of soda in a randomly selected bottle will be less than 32​ oz? Round your answer to four decimal places. ti84

Answers

Answer:  0.4013

Step-by-step explanation:

Given : The volumes of soda in quart soda bottles are normally distributed with : [tex]\mu=32.3\text{ oz}[/tex]

[tex]\sigma=1.2\text{ oz}[/tex]

Let x be the volume of randomly selected quart soda bottle.

z-score : [tex]z=\dfrac{x-\mu}{\sigma}[/tex]

[tex]z=\dfrac{32-32.3}{1.2}=-0.25[/tex]

The probability that the volume of soda in a randomly selected bottle will be less than 32​ oz = [tex]P(x<32)=P(z<-0.25)[/tex]

[tex]=0.4012937\approx0.4013[/tex]

Hence, the probability that the volume of soda in a randomly selected bottle will be less than 32​ oz is 0.4013

Final answer:

The probability that a randomly selected bottle of soda will be less than 32 oz is approximately 40.13%. This is calculated using the z-score and a standard normal distribution.

Explanation:

To find the probability that the volume of soda in a randomly selected bottle will be less than 32 oz, we can use the concept of z-score in statistics. The z-score is a measurement of how many standard deviations a data point is from the mean.

First, we need to calculate the z-score associated with 32 oz. The formula for the z-score is (X - μ) / σ, where X is the data point, μ is the mean, and σ is the standard deviation. Plugging our values in, we get (32 - 32.3) / 1.2 = -0.25.

Next, we consult a standard normal distribution table or use a calculator function to find the probability associated with this z-score. Using a TI-84 calculator, we perform the following steps: Go to the distribution menu ('2nd' then 'VARS'), choose '2: normalcdf(', input the following values: (-1E99, -0.25, 32.3, 1.2). Press 'ENTER' to get the result, which is approximately 0.4013. Thus, the probability that a randomly selected bottle of soda will be less than 32 oz is approximately 0.4013 or 40.13%.

Learn more about Probability Distribution here:

https://brainly.com/question/14210034

#SPJ11

Can someone please help me with this math question PLEASE HELP THIS IS URGENT

Answers

Answer:

(- 1, 4 )

Step-by-step explanation:

x = 1 is a vertical line passing through all points with an x- coordinate of 1

The point P(3, 4) is to units to the right of x = 1.

Hence the refection will be 2 units to the left of x = 1

P' = (1 - 2, 4 ) = (- 1, 4 )

I REALLY NEED HELP!!!
The diagram shows a telescope fitted with parabolic, hyperbolic, and elliptical mirrors. The focus of the parabola coincides with one of the foci of the hyperbola. The second focus of the hyperbola coincides with one of the foci of the ellipse, and the other focus of the ellipse is located at the eyepiece. A ray of light parallel to the parabolic axis enters the telescope, as shown, and hits the parabolic surface.

Draw lines on the diagram to show how the light ray will be reflected by each conic surface.

Answers

Answer:

  see below

Step-by-step explanation:

Each reflection is along a line through the other focus of the conic. The two foci of the parabola are the one shown and the one at infinity (the source of light rays).

Final answer:

The light ray in the telescope will be reflected by each conic surface in a specific manner: converging at the parabolic mirror, diverging at the hyperbolic mirror, and converging again at the elliptical mirror.

Explanation:

The diagram shows a telescope fitted with different types of mirror surfaces, including parabolic, hyperbolic, and elliptical mirrors. When a ray of light parallel to the parabolic axis enters the telescope, it will be reflected by each conic surface in a certain way.

The light ray will be reflected by the parabolic mirror surface and converge to a single point called the focus. This is due to the property of the parabola that all incoming parallel rays are reflected to a common focal point.

The reflected ray will then strike the hyperbolic mirror surface, where it will be reflected in such a way that it diverges outwards. Hyperbolic mirrors have a property that makes them reflect incoming parallel rays into diverging rays.

Finally, the diverging ray from the hyperbolic mirror will enter the elliptical mirror surface. The elliptical mirror will reflect the ray in such a way that it converges to a point located at the eyepiece of the telescope. Elliptical mirrors have a property that makes them reflect incoming parallel rays to a focal point.

In summary, the light ray will be reflected by the parabolic mirror surface, then the hyperbolic mirror surface, and finally, the elliptical mirror surface, converging and diverging in different ways along the way.

Learn more about Reflecting Light Rays here:

https://brainly.com/question/32184600

#SPJ11

Other Questions
Casey sustained an injury after lifting weights. What can she do to overcome this barrier and prevent further injury? Check all that apply. A. Create or revise a safety plan to prevent further injuries Gibbons, small Asian apes, move by brachiation, swinging below a handhold to move forward to the next handhold. A 9.0 kg gibbon has an arm length (hand to shoulder) of 0.60 m. We can model its motion as that of a point mass swinging at the end of a 0.60-m-long, massless rod. At the lowest point of its swing, the gibbon is moving at 3.2 m/s .What upward force must a branch provide to support the swinging gibbon?Express your answer to two significant figures and include the appropriate units.(Textbook is College Physics by:Knight, Jones, and Field.) Point T is reflected over the y-axis. Determine the coordinates of its image. T (2, 5)a(2, -5)b(2, 5)c(-2, -5)d(-2, 5) Which cranial nerve carries motor commands to the chewing muscles? a. facial nerve b. hypoglossal nerve c. trigeminal nerve d. glossopharyngeal nerve Proteoglycans are part of the extracellular matrix; they provide structure, viscosity and lubrication, and adhesiveness. They are composed of proteins conjugated to carbohydrate components called glycosaminoglycans. The glycosaminoglycan component makes up the majority of the mass of a proteoglycan. Which of the following are possible components of glycosaminoglycans? Select all that apply. Determine which of the following statements about glycosaminoglycans are true. There is more than one true statement; select all the true statements. Dermatan sulfate and keratan sulfate are examples of glycosaminoglycans. Because glycosaminoglycans consist of only two residues, they generally have low molecular weights. Dextran is an example of a glycosaminoglycan. Glycosaminoglycans are heteropolysaccharides composed of repeating disaccharide units. The amino groups of the amino sugar derivatives provide a positive charge that offsets the negative charges from the sulfate or carboxylate groups. Mrs. Smithers, an 83-year-old established patient, is in today for follow-up after falling and breaking her arm 2 weeks ago. Her daughter is with her and insists on going back to the exam room. During the patient interview, you notice that each time you ask Mrs. Smithers a question her daughter answers before she is able to. How should you handle this situation A ; 1/2. B ; 1/3. C ; 2/3 D ; 4/9 Maria earns $60.00 for 8 hours of work and Marc earns $46.50 for 6 hours of work. Which person earns the most per hour? A. Maria. B. Marc. C. They earn the same amount. D. It cannot be determined. What is the sum of two vectors?A. addition vectorB. displacement vectorc. distance vectorD. resultant vector If $14,000 is invested at 4% compounded quarterly, what is the amount after 8 years?The amount after 8 years will be PLZ HELPPre-calculus The World View article in the text titled "China Sets Big Stimulus Plan in Bid to Jump-Start Growth" states that China's plan includes spending in housing, infrastructure, and agriculture, as well as a tax deduction for capital spending by companies. This is an example of The Supplies account had a balance at the beginning of year 3 of $8900 (before the reversing entry). Payments for purchases of supplies during year 3 amounted to $53300 and were recorded as expense. A physical count at the end of year 3 revealed supplies costing $14900 were on hand. Reversing entries are used by this company. The required adjusting entry at the end of year 3 will include a debit to: Resistors R1, R2, and R3 are connected in parallel. R1 is 68 ohm and R2 is 93 ohm. The equivalent resistance of the parallel combination is 26-ohm. What is the resistance of R3?please show work! :) Which of the following describes the nervous system integrative function? A. responds to stimuli by gland secretion or muscle contraction B. analyzes sensory information, stores information, makes decisions C. senses changes in the environment If you subtract my number from 300, or if you add my number to 220, you will get the same result. What is my number? The scientific name of brewer's yeast, which is an excellent experimental organism used to study eukaryotic cells, is __________.(a) E. coli (b) D. melanogaster (c)S. cerevisiae(d) C. elegans A client on hospice home care is taking sips of water but refusing food. Family members appear distressed and insist that the personal care worker "force feed" the client. What is the priority nursing action? 1. Explain to the family that this is a normal physiological response to dying 2. Explore the family's thoughts and concerns about the client's refusal of food 3. Recommend a feeding tube 4. Tell the family that "force feeding" the client could cause the client to choke on the food Boyle's law state that pressure of a gas is directly proportionate to its volume under c (T/F) Describe diffusion and osmosis, as well as comparing hypotonic, hypertonic and isotonic solutions.