Which of the following theorems verifies that ABC=SPR?
LOOK AT PICTURE

Which Of The Following Theorems Verifies That ABC=SPR?LOOK AT PICTURE

Answers

Answer 1

Answer:

B. is correct

Answer 2

Answer:  B. HA

Step-by-step explanation:

The HA (Hypotenuse-Angle) theorem says that if the hypotenuse and an acute angle of two right triangles are congruent, then those triangles are congruent.

In the given picture we have two right triangles ΔABC and ΔSPR.

In ΔABC and ΔSPR, we have

AB≅SP     [Hypotenuse]

∠B≅∠P    [Angle]

Thus by HA theorem we have

ΔABC ≅ ΔSPR


Related Questions

The equations 3x-4y=-2, 4x-y=4, 3x+4y=2, and 4x+y=-4 are shown on a graph.

Which is the approximate solution for the system of equations 3x+4y=2 and 4x+y=-4?
A. (–1.4, 1.5)
B. (1.4, 1.5)
C. (0.9, –0.2)
D. (–0.9, –0.2)

i cant download the graph picture but please help.

Answers

Answer:

A (-1,4,1.5)

Step-by-step explanation:

Solve by graphing, the lines intersect near this point.

The perimeter of a bedroom is 88 feet. The ratio of the width to the length is 5:6. What are the dimensions of the bedroom?

Answers

Answer:

20 feet wide, 24 feet long

Step-by-step explanation:

Let x - width, y - length.

The perimeter is given by the formula:

P = 2*(width + length) or using x, y

P = 2*(x + y) = 88

x + y = 44

And we know that the ratio between the sides is 5/6:

x/y = 5/6. x is on top because the length is bigger than the width

x = 5y/6

Plug this in the first expression:

y + 5y/6 = 44. Muliply by 6

6y + 5y = 264

11y = 264

y = 264/11 = 24.

So x = 5(24)/6  = 20

Question 7 (5 points)
Find the first five terms of the sequence in which a1 =-10 and an = 4an - 1 + 7. if n
2.​

Answers

Answer:

-10, -33, -125, -493, -1965

Step-by-step explanation:

a_1 = -10

a_n = 4a_(n - 1) + 7

The first five terms of the sequence are

a_1 =                                             -10

a_2 = 4(-10) + 7     =   -40 + 7 =    -33

a_3 = 4(-33) + 7    =  -132 + 7 =   -125

a_4 = 4(-125) + 7  = -500 + 7 =   -493

a_5 = 4(-473) + 7 = -1972 + 7 = -1965

what is the value of x?

Answers

Answer:

x=35

Step-by-step explanation:

We have the two angles (6x -82)  and (3x + 23) that are equal. To find 'x' we need to solve the system of equations:

6x -82 = 3x + 23

Solving for 'x':

3x = 105

x = 35

[tex]6x-82=3x+23\\3x=105\\x=35[/tex]

1. Factor each of the following completely. Look carefully at the structure of each quadratic function and consider the best way to factor. Is there a GCF? Is it an example of a special case? SHOW YOUR WORK

Answers

Answer: 1) (x - 7)(x - 8)

               2) 2x(2x-7)(x + 2)

               3) (4x + 7)²

               4) (9ab² - c³)(9ab² + c³)

Step-by-step explanation:

1) x² - 15x + 56  → use standard form for factoring

                    ∧

                -7 + -8 = -15

  (x - 7) (x - 8)

************************************

2) 4x³ - 6x² - 28x      → factor out the GCF (2x)

2x(2x² - 3x - 14)         → factor using grouping

2x[2x² + 4x    - 7x - 14]    

2x[ 2x(x + 2)   -7(x + 2)]

2x(2x - 7)(x + 2)

*************************************

3) 16x² + 56x + 49     → this is the sum of squares

√(16x²) = 4x      √(49) = 7

              (4x + 7)²

******************************************************

4) 81a²b⁴ - c⁶          → this is the difference of squares

√(81a²b⁴) = 9ab²       √(c⁶) = c³

       (9ab² - c³)(9ab² + c³)

   

Match the identities to their values taking these conditions into consideration sinx=sqrt2 /2 cosy=-1/2 angle x is in the first quadrant and angle y is in the second quadrant. Information provided in the picture. PLEASE HELP

Answers

Answer:

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \cos(x+y)\quad }\longleftrightarrow \boxed{\quad \dfrac{-(\sqrt{6}+\sqrt{2})}{4}\quad }[/tex]

[tex]\boxed{\vphantom{\dfrac{\sqrt{2}}{2}}\quad \sin(x+y)\quad }\longleftrightarrow \boxed{\quad\dfrac{\sqrt{6}-\sqrt{2}}{4}\quad }[/tex]

[tex]\boxed{\quad \tan(x+y)\quad }\longleftrightarrow \boxed{\quad\sqrt{3} -2\quad }[/tex]

[tex]\boxed{\vphantom{\sqrt{3}}\quad \tan(x-y)\quad }\longleftrightarrow \boxed{\quad-(2+\sqrt{3})\quad }[/tex]

Step-by-step explanation:

To find the values of the given trigonometric identities, we first need to find the values of cos x and sin y using the Pythagorean identity, sin²x + cos²x ≡ 1.

Given values:

[tex]\sin x = \dfrac{\sqrt{2}}{2}\qquad \textsf{Angle $x$ is in Quadrant I}\\\\\\\cos y=-\dfrac{1}{2}\qquad \textsf{Angle $y$ is in Quadrant II}[/tex]

Find cos(x):

[tex]\sin^2 x+\cos^2 x=1\\\\\\\left(\dfrac{\sqrt{2}}{2}\right)^2+\cos^2 x=1\\\\\\\dfrac{1}{2}+\cos^2 x=1\\\\\\\cos^2 x=1-\dfrac{1}{2}\\\\\\\cos^2 x=\dfrac{1}{2}\\\\\\\cos x=\pm \sqrt{\dfrac{1}{2}}\\\\\\\cos x=\pm \dfrac{\sqrt{2}}{2}[/tex]

As the cosine of an angle is positive in quadrant I, we take the positive square root:

[tex]\cos x=\dfrac{\sqrt{2}}{2}[/tex]

Find sin(y):

[tex]\sin^2 y + \cos^2 y = 1 \\\\\\ \sin^2 y + \left(-\dfrac{1}{2}\right)^2 = 1 \\\\\\ \sin^2 y + \dfrac{1}{4} = 1 \\\\\\ \sin^2 y = 1-\dfrac{1}{4} \\\\\\ \sin^2 y = \dfrac{3}{4} \\\\\\ \sin y =\pm \sqrt{ \dfrac{3}{4}} \\\\\\ \sin y = \pm \dfrac{\sqrt{3}}{2}[/tex]

As the sine of an angle is positive in quadrant II, we take the positive square root:

[tex]\sin y = \dfrac{\sqrt{3}}{2}[/tex]

The tangent of an angle is the ratio of the sine and cosine of that angle. Therefore:

[tex]\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1[/tex]

[tex]\tan y=\dfrac{\sin y}{\cos y}=\dfrac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3}[/tex]

Now, we can use find the sum or difference of two angles by substituting the values of sin(x), cos(x), sin(y), cos(y), tan(x) and tan(y) into the corresponding formulas.

[tex]\dotfill[/tex]

cos(x + y)

[tex]\cos(x+y)=\cos x \cos y - \sin x \sin y \\\\\\ \cos(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) - \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\ \cos(x+y)=-\dfrac{\sqrt{2}}{4} - \dfrac{\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-\sqrt{2}-\sqrt{6}}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{2}+\sqrt{6})}{4} \\\\\\ \cos(x+y)=\dfrac{-(\sqrt{6}+\sqrt{2})}{4}[/tex]

[tex]\dotfill[/tex]

sin(x + y)

[tex]\sin(x+y)=\sin x \cos y + \cos x \sin y \\\\\\\sin(x+y)=\left(\dfrac{\sqrt{2}}{2}\right) \left(-\dfrac{1}{2}\right) + \left(\dfrac{\sqrt{2}}{2}\right) \left(\dfrac{\sqrt{3}}{2}\right) \\\\\\\sin(x+y)=-\dfrac{\sqrt{2}}{4} + \dfrac{\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{-\sqrt{2}+\sqrt{6}}{4} \\\\\\ \sin(x+y)=\dfrac{\sqrt{6}-\sqrt{2}}{4}[/tex]

[tex]\dotfill[/tex]

tan(x + y)

[tex]\tan(x+y)=\dfrac{\tan x + \tan y}{1-\tan x \tan y} \\\\\\ \tan(x+y)=\dfrac{1 + (-\sqrt{3})}{1-(1) (-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1 -\sqrt{3}}{1+\sqrt{3}} \\\\\\ \tan(x+y)=\dfrac{(1 -\sqrt{3})(1 -\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} \\\\\\ \tan(x+y)=\dfrac{1-2\sqrt{3}+3}{1-\sqrt{3}+\sqrt{3}-3} \\\\\\ \tan(x+y)=\dfrac{4-2\sqrt{3}}{-2} \\\\\\ \tan(x+y)=-2+\sqsrt{3} \\\\\\ \tan(x+y)=\sqrt{3} -2[/tex]

[tex]\dotfill[/tex]

tan(x - y)

[tex]\tan(x-y)=\dfrac{\tan x - \tan y}{1+\tan x \tan y} \\\\\\\tan(x-y)=\dfrac{1 - (-\sqrt{3})}{1+(1) (-\sqrt{3})} \\\\\\\tan(x-y)=\dfrac{1 +\sqrt{3}}{1-\sqrt{3}} \\\\\\\tan(x-y)=\dfrac{(1 +\sqrt{3})(1 +\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \\\\\\ \tan(x-y)=\dfrac{1+2\sqrt{3}+3}{1+\sqrt{3}-\sqrt{3}-3} \\\\\\ \tan(x-y)=\dfrac{4+2\sqrt{3}}{-2} \\\\\\ \tan(x-y)=-2-\sqrt{3}\\\\\\\tan(x-y)=-(2+\sqrt{3})[/tex]

Write a function rule based on the table below.
x f(x)
1 5
2 10
3 15




f(x) = x + 4


f(x) = 5x + 2


f(x) = 5x


f(x) = 5

Answers

Answer:

[tex]\large\boxed{f(x)=5x}[/tex]

Step-by-step explanation:

[tex]\begin{array}{c|c}x&f(x)\\1&5\\2&10\\3&15\end{array}\\\\\\f(1)=5(1)=5\\f(2)=5(2)=10\\f(3)=5(3)=15\\\Downarrow\\f(x)=5x[/tex]

What is the sum of entries a32 and b32 in A and B? (matrices)

Answers

Answer:

The correct answer is option D.  13

Step-by-step explanation:

From the figure we can see two matrices A and B

To find the sum of a₃₂ and b₃₂

From the given attached figure we get

a₃₂ means that the third row second column element in the matrix A

b₃₂ means that the third row second column element in the matrix B

a₃₂ = 4 and b₃₂ = 9

a₃₂ + b₃₂ = 4 + 9

 = 13

The correct answer is option D.  13

[tex]A={\begin{bmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots &a_{2n}\\\vdots &\vdots &\ddots &\vdots \\a_{m1}&a_{m2}&\cdots &a_{mn}\end{bmatrix}}[/tex]

So

[tex]a_{32}=4\\b_{32}=9\\\\a_{32}+b_{32}=4+9=13[/tex]

Please help and explain

Answers

Answer: Option A

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

Step-by-step explanation:

Use the quadratic formula to find the zeros of the function.

For a function of the form

[tex]ax ^ 2 + bx + c = 0[/tex]

The quadratic formula is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

In this case the function is:

[tex]2x^2-6x+5=0[/tex]

So

[tex]a=2\\b=-6\\c=5[/tex]

Then using the quadratic formula we have that:

[tex]x=\frac{-(-6)\±\sqrt{(-6)^2-4(2)(5)}}{2(2)}[/tex]

[tex]x=\frac{6\±\sqrt{36-40}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{-4}}{4}[/tex]

Remember that [tex]\sqrt{-1}=i[/tex]

[tex]x=\frac{6\±\sqrt{4}*\sqrt{-1}}{4}[/tex]

[tex]x=\frac{6\±\sqrt{4}i}{4}[/tex]

[tex]x=\frac{6\±2i}{4}[/tex]

[tex]x=\frac{3\±i}{2}[/tex]

[tex]x=\frac{3+i}{2}[/tex] or [tex]x=\frac{3-i}{2}[/tex]

Whats the quotient for this? ​

Answers

Answer:

Step-by-step explanation:

Divide 4378 by 15

From 4378 lets take the first two digits for division:

43/ 15

We know that 43 does not come in table of 15

So we will take 15 *2 = 30

43-30 = 13

The quotient is 3 and the remainder is 13

Now take one more number which is 7 with 13

137/15.

Now 137 does not come in table of 15

15*9 = 135

135-137 = 2

It means quotient is 9 and remainder is 2

Now take one more number which is 8 with 2

28/15

28 does not come in table of 15

15*1 = 15

28-15 = 13/15

Now the quotient is 1 and remainder is 13

Hence, the quotient of 4,378 is 291 and remainder is 13 ....

Use the Quadratic Formula to solve the equation x2 - 4x = -7

Answers

Final answer:

The given quadratic equation x² - 4x = -7 is rearranged into standard form and then solved using the quadratic formula -b ± √(b² - 4ac) / (2a). The roots of the equation are realized from solving this formula.

Explanation:

The subject of this problem is a quadratic equation in the form of ax²+bx+c = 0. The given equation is x² - 4x = -7, which can be rearranged into standard form as x² - 4x + 7 = 0. Thus, in this case, a=1, b=-4, and c=7.

The solutions or roots for this quadratic equation can be calculated using the quadratic formula, which is -b ± √(b² - 4ac) / (2a). Substituting the values of a, b, and c into the formula will give the roots of the given equation.

Doing that, we get: x = [4 ± √((-4)² - 4*1*7)] / (2*1)

The values that solve the equation are the roots of the quadratic equation.

Learn more about Quadratic Equation here:

https://brainly.com/question/30098550

#SPJ12

Final answer:

To solve the equation x^2 - 4x = -7 using the Quadratic Formula, we follow the steps of plugging the values of a, b, and c into the formula, evaluating the square root and simplifying to find the solutions.

Explanation:

To solve the equation x2 - 4x = -7 using the Quadratic Formula, we first need to make sure the equation is in standard form, which is ax2 + bx + c = 0. In this case, a = 1, b = -4, and c = 7. Plugging these values into the Quadratic Formula, we get:

x = (-(-4) ± √((-4)2 - 4(1)(-7))) / (2(1))

x = (4 ± √(16 + 28))/2

x = (4 ± √44)/2

x = (4 ± 2√11)/2

x = 2 ± √11

So the solutions to the equation x2 - 4x = -7 are x = 2 + √11 and x = 2 - √11.

Learn more about Quadratic Equations here:

https://brainly.com/question/30098550

#SPJ12

Isabel is on a ride in an amusement park that Slidez the right or to the right and then it will rotate counterclockwise about its own center 60° every two seconds how many seconds pass before Isabel returns to her starting position

Answers

Final answer:

Isabel's ride rotates 60° every two seconds. It takes 6 intervals (360° divided by 60°) to make a full rotation. Multiplying 6 intervals by 2 seconds gives us 12 seconds for Isabel to return to the starting position.

Explanation:

To determine how many seconds will pass before Isabel returns to her starting position on the ride, we need to establish the total degrees of rotation that equate to a full circle, which is 360°. Since the ride rotates 60° every two seconds, we can calculate the number of two-second intervals required to complete a full 360° rotation.

Firstly, divide 360° by 60° to find the number of intervals:

360° / 60° = 6 intervals

Since each interval takes 2 seconds, multiply the number of intervals by 2 to find the total time:

6 intervals × 2 seconds/interval = 12 seconds.

Therefore, it will take Isabel 12 seconds to return to her starting position on the amusement park ride.

If 47400 dollars is invested at an interest rate of 7 percent per year, find the value of the investment at the end of 5 years for the following compounding methods, to the nearest cent.

(a) Annual: $______
(b) Semiannual: $ _____
(c) Monthly: $______
(d) Daily: $_______

Answers

Answer:

Part A) Annual [tex]\$66,480.95[/tex]  

Part B) Semiannual [tex]\$66,862.38[/tex]  

Part C) Monthly [tex]\$67,195.44[/tex]  

Part D) Daily [tex]\$67,261.54[/tex]  

Step-by-step explanation:

we know that    

The compound interest formula is equal to  

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]  

where  

A is the Final Investment Value  

P is the Principal amount of money to be invested  

r is the rate of interest  in decimal

t is Number of Time Periods  

n is the number of times interest is compounded per year

Part A)

Annual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=1[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{1})^{1*5}[/tex]  

[tex]A=47,400(1.07)^{5}[/tex]  

[tex]A=\$66,480.95[/tex]  

Part B)

Semiannual

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=2[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{2})^{2*5}[/tex]  

[tex]A=47,400(1.035)^{10}[/tex]  

[tex]A=\$66,862.38[/tex]  

Part C)

Monthly

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=12[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{12})^{12*5}[/tex]  

[tex]A=47,400(1.0058)^{60}[/tex]  

[tex]A=\$67,195.44[/tex]  

Part D)

Daily

in this problem we have  

[tex]t=5\ years\\ P=\$47,400\\ r=0.07\\n=365[/tex]  

substitute in the formula above  

[tex]A=47,400(1+\frac{0.07}{365})^{365*5}[/tex]  

[tex]A=47,400(1.0002)^{1,825}[/tex]  

[tex]A=\$67,261.54[/tex]  

The value of an investment of $47,400 at an interest rate of 7% per year was calculated at the end of 5 years for different compounding methods, reaching slightly different amounts, with the highest value obtained through daily compounding.

The value of the investment at the end of 5 years for different compounding methods would be:

(a) Annual: $62,899.68(b) Semiannual: $63,286.83(c) Monthly: $63,590.92(d) Daily: $63,609.29

write a point slope equation for the line that has slope 3 and passes through the point (5,21). do not use parenthesis on the y side

Answers

Answer:

y - 21 = 3(x - 5)

Step-by-step explanation:

The equation of a line in point- slope form is

y - b = m(x - a)

where m is the slope and (a, b) a point on the line

here m = 3 and (a, b) = (5, 21), hence

y - 21 = 3(x - 5) ← in point- slope form

Final answer:

The point slope form of an equation is y - y1 = m(x - x1). Substituting the given point (5,21) and slope 3 into the equation, we get y - 21 = 3(x - 5). To remove the parenthesis on the y side, we simplify the equation to be y = 3x + 6.

Explanation:

The question asks for the writing of a point-slope equation of a line with a given slope of 3 that passes through a point (5,21). The point-slope form of an equation is generally denoted as:

y - y1 = m(x - x1)

Here, (x1, y1) = (5,21) and m (slope) = 3. Hence, substituting these values yields the equation:

y - 21 = 3(x - 5)

The asked equation without parenthesis on the y side would be:

y = 3x - 15 + 21

So, the final equation is:

y = 3x + 6

Learn more about Point-Slope Equation

https://brainly.com/question/35491058

#SPJ11

What is the equation of the graph below​

Answers

Answer:

y=-(x-3)^2+2

Step-by-step explanation:

since the curve is convex up so the coefficient of x^2 is negative

and by substituting by the point 3 so y = 2

Answer:

B

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

here (h, k) = (3, 2), hence

y = a(x - 3)² + 2

If a > 0 then vertex is a minimum

If a < 0 then vertex os a maximum

From the graph the vertex is a maximum hence a < 0

let a = - 1, then

y = - (x - 3)² + 2 → B

a) 3(2x + 3) = -3 (-30 +4)

Answers

Answer:

3(2x+3)=-3(-30+4)

6x+9=90+12

6x+9=102

6x=93

x=15.5

-please mark as brainliest-

Answer:

11½ = x

Step-by-step explanation:

6x + 9 = 78

- 9 - 9

-------------

6x = 69 [Divide by 6]

x = 11½ [3⁄6 = ½]

I hope this helps you out, and as always, I am joyous to assist anyone at any time.

How is the interquartile range calculated?
Minimum
Q1
Q1
Median
Median
Q3
Q3
Maximum
Maximum

Answers

Answer:

A

Step-by-step explanation:

The interquartile range is the difference between the upper quartile and the lower quartile, that is

interquartile range = [tex]Q_{3}[/tex] - [tex]Q_{1}[/tex]

Final answer:

The interquartile range (IQR) represents the spread of the middle 50 percent of a data set and is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). It also helps in identifying potential outliers in the data.

Explanation:

The interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the middle 50 percent of a data set. It is calculated by subtracting the first quartile (Q1) from the third quartile (Q3). To elaborate:


 First Quartile (Q1): This is the median of the lower half of the data set, not including the median if the number of data points is odd.
 Third Quartile (Q3): This is the median of the upper half of the data set, not including the median if the number of data points is odd.
 The IQR is found by the formula IQR = Q3 - Q1.

If, for example, Q1 is 2 and Q3 is 9, the IQR is calculated as 9 minus 2, resulting in an IQR of 7.

In addition to providing insight into the spread of the central portion of the data set, the IQR can also be used to identify potential outliers. These are values that fall more than 1.5 times the IQR above Q3 or below Q1.

What is the midpoint of a line segment with the endpoints (-6, -3) and (9,-7)?

Answers

Answer: (1.5, -5)

Step-by-step explanation: a p e x

Which of the following is a geometric sequence? Help pleaseee!

Answers

Answer: B

Step-by-step explanation:

Division of components are consistent  - the same

Answer:

B. -3, 3, -3, 3...

Step-by-step explanation:

There's two types of sequences, arithmetic and geometric.

Arithmetic equations are sequences that increase or decrease by adding or subtracting the previous number.

For example, take a look at the following sequence:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20...

Here, the numbers are increasing by +2. [adding]

So, this the sequence is arithmetic, since its adding.

Geometric sequences are sequences that increase or decrease by multiplying or dividing the previous number.

For example, take a look at the following sequence:

2, 4, 16, 32, 64, 128, 256, 512...

Here, the numbers are icnreasing by x2. [multiplying]

So, the sequence is geometric since its multiplying.

Based on this information, the correct answer is "B. -3, 3, -3, 3..." since its being multiplyed by -1.

plz help meh wit dis question but I need to show work..... ​

Answers

Answer:

5

Step-by-step explanation:

16+24

--------------

30-22

Complete the items on the top of the fraction bar

40

----------

30-22

Then the items under the fraction bar

40

------------

8

Then divide

5

Step-by-step explanation:

First of all, solve the numerator.

16+24=40

Secondly, solve the denominator:

30-22 = 8

So now the fraction appear like this :

[tex] \frac{40}{8} [/tex]

40/8 = 5

Helllllllppppp plzzzzzzzzz

Answers

Answer:

Hey, You have chosen the correct answer.

the correct answer is C.

The answer is C you got it right

Consider the function represented by 9x+3y= 12 with x as the independent variable. How can this function be written using
function notation?
o AV=-=x+
o 0) = -3x+4
o Px) =-x+
o F) = - 3y+ 4​

Answers

Answer:

f(x)=-3x+4

(can't see some of your choices)

Step-by-step explanation:

We want x to be independent means we want to write it so when we plug in numbers we can just choose what we want to plug in for x but y's value will depend on our choosing of x.

So we need to solve for y.

9x+3y=12

Subtract 9x on both sides

     3y=-9x+12

Divide both sides by 3:

     y=-3x+4

Replace y with f(x).

    f(x)=-3x+4

A high school track is shaped as a rectangle with a half circle on either side . Jake plans on running four laps . How many meters will jake run ?

Answers

Answer:

[tex]1,207.6\ m[/tex]

Step-by-step explanation:

step 1

Find the perimeter of one lap

we know that

The perimeter of one lap is equal to the circumference of a complete circle (two half circles is equal to one circle) plus two times the length of 96 meters

so

[tex]P=\pi D+2(96)[/tex]

we have

[tex]D=35\ m[/tex]

[tex]\pi =3.14[/tex]

substitute

[tex]P=(3.14)(35)+2(96)[/tex]

[tex]P=301.9\ m[/tex]

step 2

Find the total meters of four laps

Multiply the perimeter of one lap by four

[tex]P=301.9(4)=1,207.6\ m[/tex]

Answer:

1207.6

Step-by-step explanation:

step 1

i got it right on the test

step 2

you get it right on the test

what is the area of the sector shown

Answers

Answer:

[tex] D.~ 34.2~cm^2 [/tex]

Step-by-step explanation:

An arc measure of 20 degrees corresponds to a central angle of 20 degrees.

Area of sector of circle

[tex] area = \dfrac{n}{360^\circ}\pi r^2 [/tex]

where n = central angle of circle, and r = radius

[tex] area = \dfrac{20^\circ}{360^\circ}\pi (14~cm)^2 [/tex]

[tex] area = \dfrac{1}{18}(3.14159)(196~cm^2) [/tex]

[tex] area = 34.2~cm^2 [/tex]

Evaluate the function rule for the given value. y = 15 • 3^x for x = –3

Answers

Answer:

5/9

Step-by-step explanation:

y = 15 • 3^x

Let x = -3

y = 15 • 3^(-3)

The negative means the exponent goes to the denominator

y = 15 * 1/3^3

  = 15 * 1/27

  =15/27

Divide the top and bottom by 3

 =5/9

Which of the following numbers are less than 9/4?

Choose all that apply:

A= 11/4
B= 15/8
C= 2.201

Answers

Answer:

OPTION B.

OPTION C.

Step-by-step explanation:

In order to know which numbers are less than [tex]\frac{9}{4}[/tex], you can convert this fraction into a decimal number. To do this, you need to divide the numerator 9 by the denominator 4. Then:

 [tex]\frac{9}{4}=2.25[/tex]

 Now you need convert the fractions provided in the Options A and B into decimal numbers by applying the same procedure. This are:

Option A→ [tex]\frac{11}{4}=2.75[/tex] (It is not less than 2.25)

Option B→ [tex]\frac{15}{8}=1.875[/tex] (It is less than 2.25)

The number shown in Option C is already expressed in decimal form:

Option C→ [tex]2.201[/tex] (It is less than 2.25)

Its definitely c because i know

The diagram represents three statements: p, q, and r. For what value is both p ∧ r true and q false?

2
4
5
9

Answers

Answer:

9

Step-by-step explanation:

From the diagram:

only p true in 8 cases;only q true in 7 cases;only r true in 6 cases;both p and q true, r false in 5 cases;both p and r true, q false in 9 cases;both q and r true, p false in 4 cases;all three p, q and r true in 2 cases.

So, correct option is 9 cases.

Answer:

The correct option is 4. For value 9 both p ∧ r true and q false.

Step-by-step explanation:

The diagram represents three statements: p, q, and r.

We need to find the value for which p ∧ r is true and q false.

p ∧ r true mean the intersection of statement p and r. It other words p ∧ r true means p is true and r is also true.

From the given venn diagram it is clear that the intersection of p and r is

[tex]p\cap r=9+2=11[/tex]

p ∧ r true and q false means intersection of p and r but q is not included.

From the given figure it is clear that for value 2 all three statements are true. So, the value for which both p ∧ r true and q false is

[tex]11-2=9[/tex]

Therefore the correct option is 4.

What is the volume of a sphere that has a radius of 9?​

Answers

Answer:

V = 3053.63

Step-by-step explanation:

The volume of a sphere that has a radius of 9 is 3053.63.

V=4

3πr3=4

3·π·93≈3053.62806

Answer is provided in the image attached.

children play a form of hopscotch called jumby. the pattern for the game is as given below.

Find the area of the pattern in simplest form.​

Answers

Answer:

7t^2 + 21t

Step-by-step explanation:

You have 7 tiles of each t by t+3.

One tile has an area of

t * (t+3) = t^2 + 3t

So in total the area is

7* (t^2 + 3t)

7t^2 + 21t

A parallelogram has coordinates A(1,1), B(5,4), C(7,1), and D(3,-2) what are the coordinates of parallelogram A’BCD after 180 degree rotation about the origin and a translation 5 units to the right and 1 unit down ?

Answers

Answer:

The coordinates are  (4 , -2) , (0 , -5) , (-2 , -2) , (2 , 1)

Step-by-step explanation:

* Lets revise some transformation

- If point (x , y) rotated about the origin by angle 180°

 ∴ Its image is (-x , -y)

- If the point (x , y) translated horizontally to the right by h units

 ∴ Its image is (x + h , y)

- If the point (x , y) translated horizontally to the left by h units

 ∴ Its image is (x - h , y)

- If the point (x , y) translated vertically up by k units

 ∴ Its image is (x , y + k)

- If the point (x , y) translated vertically down by k units

 ∴ Its image is (x , y - k)

* Now lets solve the problem

∵ ABCD is a parallelogram

∵ Its vertices are A (1 , 1) , B (5 , 4) , C (7 , 1) , D (3 , -2)

∵ The parallelogram rotates about the origin by 180°

∵ The image of the point (x , y) after rotation 180° about the origin

   is (-x , -y)

∴ The images of the vertices of the parallelograms are

  (-1 , -1) , (-5 , -4) , (-7 , -1) , (-3 , 2)

∵ The parallelogram translate after the rotation 5 units to the right

   and 1 unit down

∴ We will add each x-coordinates by 5 and subtract each

   y-coordinates by 1

∴ A' = (-1 + 5 , -1 - 1) = (4 , -2)

∴ B' = (-5 + 5 , -4 - 1) = (0 , -5)

∴ C' = (-7 + 5 , -1 - 1) = (-2 , -2)

∴ D' = (-3 + 5 , 2 - 1) = (2 , 1)

* The coordinates of the parallelograms A'B'C'D' are:

  (4 , -2) , (0 , -5) , (-2 , -2) , (2 , 1)

Other Questions
Fields Cutlery, a manufacturer of gourmet knife sets, produced 20,000 sets and sold 23,000 units during the current year. Beginning inventory under absorption costing consisted of 3,000 units valued at $66,000 (Direct materials $12 per unit; Direct labor, $3 per unit; Variable Overhead, $2 per unit, and Fixed overhead, $5 per unit.) All manufacturing costs have remained constant over the 2-year period. At year-end, the company reported the following income statement using absorption costing: Sales (23,000 $45)$1,035,000 Cost of goods sold (23,000 $22) 506,000 Gross margin$529,000 Selling and administrative expenses 115,000 Net income$414,000 60% of total selling and administrative expenses are variable. Compute net income under variable costing. Is x^2 = 144 rational or irrational Choose seven transitional words used to aid coherence in this paragraph. Having a daily quiet time is important. First, it helps us get to know God in a more personal way as a friend. Since any friendship thrives on communication, the more we talk with God the more we learn about Him and His will for our lives. Second, time spent reading the Bible prepares us for the day. Next is the time spent in prayer. Indeed, without prayer, our Christian lives are actually in disobedience to God's Word and, therefore, empty. Finally, a day started with the Lord will bless each of us and help us to be a blessing to those with whom we meet during the day. How does the Binomial Theorems use Pascals triangle to expand binomials raised to positive integer powers? Alpha Company was preparing its month-end bank reconciliation. The cash balance per the general ledger was $1,645. Alpha's accountant discovered that the bank had charged $15 in service charges for the month, that outstanding checks were $60, and that there were no deposits in transit. What is the correct adjusted ending cash balance? Two slits are illuminated by a 602 nm light. The angle between the zeroth-order bright band at the center of the screen and the fourth-order bright band is 17.4 . If the screen is 138 cm from the double-slit, how far apart is this bright? What is the tallest building in south america? -I just need help knowing what are the rhetorical strategies being used in this speech-plzzz help 98 points and will mark brainiest!In 1872, Susan B. Anthony cast a vote during an election in her hometown of Rochester, New York, despite the fact that women had not yet been granted voting rights in America. For her transgression, she was fined $100, a fine which she refused to pay. Shortly after her arrest and much publicized trial, Anthony made the following speech. Read the speech carefully. Then, in a well-developed essay, analyze the rhetorical strategies Susan B. Anthony uses to argue that women should have the right to vote. Friends and Fellow Citizens: I stand before you tonight under indictment for the alleged crime of having voted at the last presidential election, without having a lawful right to vote. It shall be my work this evening to prove to you that in thus voting, I not only committed no crime, but, instead, simply exercised my citizen's rights, guaranteed to me and all United States citizens by the National Constitution, beyond the power of any State to deny. The preamble of the Federal Constitution says: "We, the people of the United States, in order to form a more perfect union, establish justice, insure domestic tranquility, provide for the common defense, promote the general welfare, and secure the blessings of liberty to ourselves and our posterity, do ordain and establish this Constitution for the United States of America." It was we, the people; not we, the white male citizens; nor yet we, the male citizens; but we, the whole people, who formed the Union. And we formed it, not to give the blessings of liberty, but to secure them; not to the half of ourselves and the half of our posterity, but to the whole people--women as well as men. And it is a downright mockery to talk to women of their enjoyment of the blessings of liberty while they are denied the use of the only means of securing them provided by this democratic-republican government--the ballot. For any State to make sex a qualification that must ever result in the disfranchisement of one entire half of the people is to pass a bill of attainder, or an ex post facto law, and is therefore a violation of the supreme law of the land. By it the blessings of liberty are forever withheld from women and their female posterity. To them this government has no just powers derived from the consent of the governed. To them this government is not a democracy. It is not a republic. It is an odious aristocracy; a hateful oligarchy of sex; the most hateful aristocracy ever established on the face of the globe; an oligarchy of wealth, where the right govern the poor. An oligarchy of learning, where the educated govern the ignorant, or even an oligarchy of race, where the Saxon rules the African, might be endured; but this oligarchy of sex, which makes father, brothers, husband, sons, the oligarchs over the mother and sisters, the wife and daughters of every household--which ordains all men sovereigns, all women subjects, carries dissension, discord and rebellion into every home of the nation. Webster, Worcester and Bouvier all define a citizen to be a person in the United States, entitled to vote and hold office. The only question left to be settled now is: Are women persons? And I hardly believe any of our opponents will have the hardihood to say they are not. Being persons, then, women are citizens; and no State has a right to make any law, or to enforce any old law, that shall abridge their privileges or immunities. Hence, every discrimination against women in the constitutions and laws of the several States is today null and void, precisely as in every one against Negroes. Define a class Complex for complex numbers. A complex number is a number of the form: ???? + ???? ???? where a and b are real and imaginary part of a complex number and i is a number that represents the quantity 1 . Addition of two complex numbers: (???? +???????? )+(???? +????????) = (???? +????) + (???? +????)???? Subtraction of two complex numbers: (???? +????????)(???? +????????) = (???? ????)+(???? ????)???? Create a class Complex that contains: Two private variables real and imaginary of type double. Define accessor and mutator functions of real and imaginary variables. Overload the following operators "+" and "" so that they apply correctly to the type Complex. Test your program with inputs (5+4i) and (2+2i).b A model of a rectangular patio at a landscaping business will be enlarged by a scale factor of 2 when it is installed in a customers back yard. The area of the new enlarged patio will be 160 square feet. Which is the area of the landscapers model? An electron enters a magnetic field of 0.66 T with a velocity perpendicular to the direction of the field. At what frequency does the electron traverse a circular path? ( m el = 9.11 10-31 kg, e = 1.60 10-19 C) A security alarm requires a four digit code the code can use the digits 0-9 and the digits cannot be repeated what is the approximate probability that the code contains only odd numbers Which of the following is not true about myths?A.Myths that tell stories about animals and modes of transportation are likely to reveal beliefs about how a culture was born.B.Myths that tell stories of characters with exceptional characteristics are likely to reveal characteristics the culture admired or feared.C.Myths that explain the origins of natural events are likely to reveal the beliefs of ancient cultures.D.Myths that tell about transgressions are likely to reveal the values of a culture Matching1retinaresponsible for taste transduction2. cochlearesponsible for smell transduction3. taste budsresponsible for sight transductionresponsible for hearing4. olfactory epitheliumtransduction A 0.12-kg ball is moving at 6 m/s when it is hit by a bat, causing it to reverse direction and have a speed of 14 m/s. What is the change in the magnitude of the momentum of the ball? A. 0.39 kg*m/s B. 0.42 kg*m/s C. 1.3 kg*m/s D. 2.4 kg*m/s Consider a periodic review system. The target inventory level is 1000 units. It is time to review the item, and the on-hand inventory level is 200 units. How many units should be ordered?a) 800b) 1000c) 1200d) the EOQ amounte) the safety stock amount A music Web site announced that over4 X 10^9 songs were downloaded by 5 X 10^7registered users. What is the average numberof downloads per user? The Big Burger recipe calls for 3 meat patties, 2 slices of cheese, and four pickles. How many meat patties are needed if 52 pickles are used? Omega Instruments has budgeted $300,000 per year to pay for certain ceramic parts over the next 5 years. If the company expects the cost of the parts to increase uniformly according to an arithmetic gradient of $10,000 per year, what is it expecting the cost to be in year 1, if the interest rate is 10% per year? What do strong and weak acids have in common? A. Electrical current conduction B. Reaction with magnesium C. pH paper test D. Litmus paper test