Which of the two materials (brittle vs. ductile) usually obtains the highest ultimate strength and why?

Answers

Answer 1

Answer:

Explanation:

Ductile materials typically have a higher ultimate strength because they stretch absorbing more energy before breaking. While fragile materials snap in half before larger deformations due to larger loads occur.

It should be noted that when ductile materials stretch their section becomes smaller, and in that reduced section the stresses concentrate.


Related Questions

A strain gauge with a 5 mm gauge length gives a displacement reading of 1.25 um. Calculate the stress value given by this displacement if the material is structural steel.

Answers

Answer:

stress  = 50MPa

Explanation:

given data:

Length of strain guage is 5mm

displacement[tex] \delta = 1.25 \mu m =\frac{1.25}{1000} =  0.00125 mm[/tex]

stress due to displacement in structural steel can be determined by using following relation

[tex]E =\frac{stress}{strain}[/tex]

[tex]stress = E \times strain[/tex]

where E is young's modulus of elasticity

E for steel is 200 GPa

[tex]stress = 200\times 10^3 *\frac{1.25*10^{-3}}{5}[/tex]

stress  = 50MPa

Find the power production (in MW) of a 25 m radius wind turbine if the average wind speed is 12 m/s and the efficiency of this turbine in converting kinetic energy of air to mechanical work is 10%? The density of air is 1.20 kg/m^3

Answers

Answer:

shaft power 0.2034 MW

Explanation:

given details

radius of turbine = 25 m

average wind velocity = 12 m/s

density of air = 1.20 kg/m^2

Total power is calculated as

[tex]P = \frac{1}{2} \rho AV^3[/tex]

  [tex]= \frac{1}{1} \rho \pir^2 V^3[/tex]

  [tex]= \frac{1}{2} 1.20\times \pi \times 625\times 12^3 = 2034,720 watt[/tex]

P = 2.034 MW

shaft power [tex] = \eta \times P[/tex]

                    [tex]= 0.10 \times 2.034[/tex]

                    = 0.2034 MW

In a simple ideal Rankine cycle, water is used as the working fluid. The cycle operates with pressures of 2000 psi in the boiler and 4 psi in the condenser. What is the minimum temperature required at the turbine inlet, so that the quality of the steam at the turbine outlet is not less than 85%. What would be the thermal efficiency of the cycle?

Answers

Answer:

Explanation:

The pressures given are relative

p1 = 2000 psi

P1 = 2014 psi = 13.9 MPa

p2 = 4 psi

P2 = 18.6 psi = 128 kPa

Values are taken from the steam pressure-enthalpy diagram

h2 = 2500 kJ/kg

If the output of the turbine has a quality of 85%:

t2 = 106 C

I consider the expansion in the turbine to adiabatic and reversible,  therefore, isentropic

s1 = s2 = 6.4 kJ/(kg K)

h1 = 3500 kJ/kg

t2 = 550 C

The work in the turbine is of

w = h1 - h2 = 3500 - 2500 = 1000 kJ/kg

The thermal efficiency of the cycle depends on the input heat.

η = w/q1

q1 is  not a given, so it cannot be calculated.

An 800-kg drag racer accelerates from rest to 390 km/hr in 5.8 s. What is the net impulse applied to the racer in the first 5.8 seconds? If the net tangential force applied to the racer is constant, what is its value?

Answers

Answer:

Impulse =14937.9 N

tangential force =14937.9 N

Explanation:

Given that

Mass of car m= 800 kg

initial velocity u=0

Final velocity v=390 km/hr

Final velocity v=108.3 m/s

So change in linear momentum P= m x v

           P= 800 x 108.3

 P=86640 kg.m/s

We know that impulse force F= P/t

So F= 86640/5.8 N

F=14937.9 N

Impulse force F= 14937.9 N

We know that

v=u + at

108.3 = 0 + a x 5.8

[tex]a=18.66\ m/s^2[/tex]

So tangential force F= m x a

F=18.66 x 800

F=14937.9 N

A Carnot heat engine receives heat at 900 K and rejects the waste heat to the environment at 300 K. The entire work output of the heat engine is used to drive a Carnot refrigerator that removes heat from the cooled space at –15°C at a rate of 295 kJ/min and rejects it to the same environment at 300 K. Determine the rate of heat supplied to the heat engine. (Round the final answer to one decimal place. You must provide an answer before moving to the next part.).The rate of heat supplied to the engine is ___ kJ/min.

Answers

Answer:

The rate of heat supplied to the engine is 71.7 kJ/min

Explanation:

Data

Engine hot temperature, [tex] T_H [/tex] = 900 K

Engine cold temperature, [tex] T_C [/tex] = 300 K

Refrigerator cold temperature, [tex] T'_C [/tex] = -15 C + 273 =  258 K

Refrigerator hot temperature, [tex] T'_H [/tex] = 300 K

Heat removed by refrigerator, [tex] Q'_{in} [/tex] = 295 kJ/min

Rate of heat supplied to the heat engine, [tex] Q_{in} [/tex] = ? kJ/min

See figure

From Carnot refrigerator coefficient of performance definition

[tex] COP_{ref} = \frac{T'_C}{T'_H - T'_C} [/tex]

[tex] COP_{ref} = \frac{258}{300 - 258} [/tex]

[tex] COP_{ref} = 6.14 [/tex]

Refrigerator coefficient of performance is defined as

[tex] COP_{ref} = \frac{Q'_{in}}{W} [/tex]

[tex] W = \frac{Q'_{in}}{COP_{ref}} [/tex]

[tex] W = \frac{295 kJ/min}{6.14} [/tex]

[tex] W = 48.04 kJ/min [/tex]

Carnot engine efficiency is expressed as

[tex] \eta = 1 - \frac{T_C}{T_H}[/tex]

[tex] \eta = 1 - \frac{300 K}{900 K}[/tex]

[tex] \eta = 0.67[/tex]

Engine efficiency is defined as

[tex] \eta = \frac{W}{Q_{in}} [/tex]

[tex] Q_{in} = \frac{W}{\eta} [/tex]

[tex] Q_{in} = \frac{48.04 kJ/min}{0.67} [/tex]

[tex] Q_{in} = 71.7 kJ/min [/tex]

Rounding to one decimal place, the rate of heat supplied to the engine is 147.5   kJ/min.

First, we need to calculate the coefficient of performance (COP) of the Carnot refrigerator using the formula:

[tex]\[ \text{COP} = \frac{T_C}{T_H - T_C} \][/tex]

where:

[tex]- \( T_C \)[/tex]  is the absolute temperature of the cold sink (300 K)

[tex]- \( T_H \)[/tex]  is the absolute temperature of the heat source (900 K)

Substituting the given values, we get:

[tex]\[ \text{COP} = \frac{300}{900 - 300} = \frac{300}{600} = 0.5 \][/tex]

Next, we use the COP of the refrigerator to find the rate of heat supplied to the engine:

[tex]\[ \text{Rate of heat supplied to the engine} = \text{COP} \times \text{Rate of heat removed by the refrigerator} \][/tex]

Given that the rate of heat removed by the refrigerator is 295 kJ/min, we can calculate the rate of heat supplied to the engine:

[tex]\[ \text{Rate of heat supplied to the engine} = 0.5 \times 295 = 147.5 \, \text{kW} \][/tex]

Rounding to one decimal place, the rate of heat supplied to the engine is 147.5 kJ/min.

The complete question is here.

A carnot heat engine receives heat at 900K and rejects the waste heat to the enviroment at 300K. The entire work output of the heat engine is used to drive a carnot refrigerator that removes heat from the cooled space at -150C at a rate of 250 kJ/min and rejects it to the same enviroment at 300 K. Determine (a) the rate of heat supplied to the heat engine and (b) the total rate of heat rejection to the enviroment.

Thermal conductivity of AISI 316 Stainless Steel at 90ºC is 14.54 W/m K. Convert this value to IP system.

Answers

Answer:

the value of conductivity in IP is [tex]8.406\dfrac{Btu}{ft.hr.F}[/tex]

Explanation:

Given that

Thermal conductivity K=14.54 W/m.K

This above given conductivity is in SI unit.

     SI unit                                           IP unit              Conversion factor

    m                                                      ft                      0.3048

   W                                                       Btu/hr               0.293          

 

The unit of conductivity in IP is Btu./ft.hr.F.

Now convert into IP divided by 1.73 factor.

[tex]0.57\dfrac{Btu}{ft.hr.F}=1 \dfrac{W}{m.K}[/tex]

So

[tex]0.57\times 14.54\dfrac{Btu}{ft.hr.F}=14.54 \dfrac{W}{m.K}[/tex]

[tex]8.406\dfrac{Btu}{ft.hr.F}=14.54 \dfrac{W}{m.K}[/tex]

So the value of conductivity in IP is [tex]8.406\dfrac{Btu}{ft.hr.F}[/tex]

 

How much extra water does a 21.5 ft, 175-lb concrete canoe displace compared to an ultra-lightweight 38-lb Kevlar canoe of the same size carrying the same load?

Answers

Answer:

The volume of the extra water is [tex]2.195 ft^{3}[/tex]

Solution:

As per the question:

Mass of the canoe, [tex]m_{c} = 175 lb + w[/tex]

Height of the canoe, h = 21.5 ft

Mass of the kevlar canoe, [tex]m_{Kc} = 38 lb + w[/tex]

Now, we know that, bouyant force equals the weight of the fluid displaced:

Now,

[tex]V\rho g = mg[/tex]

[tex]V = \frac{m}{\rho}[/tex]                                  (1)

where

V = volume

[tex]\rho = 62.41 lb/ft^{3}[/tex] = density

m = mass

Now, for the canoe,

Using eqn (1):

[tex]V_{c} = \frac{m_{c} + w}{\rho}[/tex]

[tex]V_{c} = \frac{175 + w}{62.41}[/tex]

Similarly, for Kevlar canoe:

[tex]V_{Kc} = \frac{38 + w}{62.41}[/tex]

Now, for the excess volume:

V = [tex]V_{c} - V_{Kc}[/tex]

V = [tex]\frac{175 + w}{62.41} - \frac{38 + w}{62.41} = 2.195 ft^{3}[/tex]

To 3 significant digits, what is the change of entropy of air in kJ/kgk if the pressure is decreased from 400 to 300 kPa and the temperature is increased from 300 to 900 K? DO NOT ASSUME constant specific heats.

Answers

Answer:

The change of entropy is 1.229 kJ/(kg K)

Explanation:

Data

[tex] T_1 = 300 K [/tex]

[tex] T_2 = 900 K[/tex]

[tex] p_1= 400 kPa[/tex]

[tex] p_2= 300 kPa[/tex]

[tex] R= 0.287 kJ/(kg K)[/tex] (Individual Gas Constant for air)  

For variable specific heats  

[tex]s(T_2, p_2) - s(T_1, p_1) = s^0(T_2) - s^0(T_1) - R \, ln \frac{p_2}{p_1}[/tex]

where [tex] s^0(T) [/tex] is evaluated from table  attached

[tex] s^0(900 K) = 2.84856 kJ/(kg K)[/tex]

[tex] s^0(300 K) = 1.70203 kJ/(kg K)[/tex]

Replacing in equation

[tex]s(900 K, 300 kPa) - s(300 K, 400 kPa) = 2.84856 kJ/(kg K) - 1.70203 kJ/(kg K) - 0.287 kJ/(kg K) \, ln \frac{300 kPa}{400 kPa}[/tex]

[tex]s(900 K, 300 kPa) - s(300 K, 400 kPa) = 1.229 kJ/(kg K)[/tex]

In electric heaters, electrical energy is converted to potential energy. a)-True b)-false?

Answers

Answer:

False

Explanation:

In electric heater electric energy is converted into heat energy. In heater wires are present which have resistance and current is flow in heater when we connect the heater to supply.

And we know that whenever current is flow in any resistance then heat is produced so in electric heaters electric energy is converted into heat energy

So this is a false statement

Why should a toolpath be verified on the screen of a CAM system prior to creating the program code?

Answers

Answer:

The tool's trajectory in a CAM program refers to the places where the tool will be during the work. It is important to review it before generating the program for the following reasons

1. analyze the machining strategy and identify which one is better for each piece.

2.Avoid the collision of the tool holder with the work piece.

3.Avoid the shock of the tool with the piece.

4. Prevent the collision of the tool with elements that are not displayed on the CAM such as clamping flanges or screws.

What is the ratio between the maximum elastic moment, MY, and the maximum plastic moment, MP, for a solid rectangular section made from a ductile, elastoplastic material? What is this ratio referred to?

Answers

Answer:

Shape factor

Explanation:

Shape factor is the ratio of maximum plastic moment to maximum elastic moment.Shape factor is denoted by K.

Shape factor can be given as

[tex]K=\dfrac{M_p}{M_y}[/tex]

[tex]K=\dfrac{\sigma _yZ_p}{\sigma _y Z}[/tex]

[tex]K=\dfrac{Z_p}{ Z}[/tex]

For a solid rectangular section made from ductile material shape factor is 1.5 .

Evaluate (204 mm)(0.004 57 kg) / (34.6 N) to three
significantfigures and express the answer in SI units using an
appropriateprefix.

Answers

Answer:

the evaluation in SI unit will be [tex]2.69\times 10^{-5}sec^{2}[/tex]

Explanation:

We have evaluate [tex]\frac{(204mm\times 0.00457kg)}{34.6N}[/tex]

We know that 1 mm [tex]=10^{-3}m[/tex]

So 240 mm [tex]=204\times 10^{-3}m[/tex]

Newton can be written as [tex]kgm/sec^2[/tex]

So [tex]\frac{(204\times 10^{-3}m)\times 0.00457kg}{34.6kgm/sec^2}=2.69\times 10^{-5}sec^{2}[/tex]

So the evaluation in SI unit will be [tex]2.69\times 10^{-5}sec^{2}[/tex]

Convert the velocity of a mower v = 7,943 cm/min to inches/s.

Answers

Answer:

Velocity in inch per second will be 52.11 inch/sec

Explanation:

We have given velocity = 7943 cm/min

We have to convert this velocity into inches/sec

We know that 1 cm = 0.3937 inch

So 7943 cm = 7943×0.3937=3127.1193inch

And 1 minute = 60 sec

So [tex]7943cm/min =\frac{7943\times 0.3937inch}{60sec}=52.11inch/sec[/tex]

So velocity in inch per second will be 52.11 inch/sec

Define ""acidity"" of an aqueous solution. How do you compare the strength of acidity of solutions ?

Answers

Answer with Explanation:

The acidity of an aqueous solution is a term used to identify how acidic the solution is. An acidic solution is a solution in which the concentration of hydrogen ions is greater than the concentration of hydroxide ions. In the other case around if  the concentration of hydrogen ions is lesser than the concentration of hydroxide ions the solution is termed to be basic or alkaline. For a solution with equal concentration of hydrogen and hydroxide ions the solution is termed to be neutral.

The acidity of solutions is compared on the basis of the concentration of the hydrogen ions reduced to log of base 10 to ease calculations. The comparison is made in terms of 'pH' value which is defined as

[tex]pH=-log[H^+][/tex]

where

 [tex][H^+][/tex] is the hydrogen ion concentration of the solution in moles per liter of solution.

If the pH is < 7 the solution is acidic and the closer the pH value to 1 the higher is the acidity of the solution.

If the total energy change of an system during a process is 15.5 kJ, its change in kinetic energy is -3.5 kJ, and its potential energy is unchanged, calculate its change in specificinternal energy if its mass is 5.4 kg. Report your answer in kJ/kg to one decimal place.

Answers

Answer:

The change in specific internal energy is 3.5 kj.

Explanation:

Step1

Given:

Total change in energy is 15.5 kj.

Change in kinetic energy is –3.5 kj.

Change in potential energy is 0 kj.

Mass is 5.4 kg.

Step2

Calculation:

Change in internal energy is calculated as follows:

[tex]\bigtriangleup E=\bigtriangleup KE+\bigtriangleup PE+\bigtriangleup U[/tex][tex]15.5=-3.5+0+\bigtriangleup U[/tex]

[tex]\bigtriangleup U=19[/tex] kj.

Step3

Specific internal energy is calculated as follows:

[tex]\bigtriangleup u=\frac{\bigtriangleup U}{m}[/tex]

[tex]\bigtriangleup u=\frac{19}{5.4}[/tex]

[tex]\bigtriangleup u=3.5[/tex] kj/kg.

Thus, the change in specific internal energy is 3.5 kj/kg.

A cannon ball is fired with an arching trajectory such that at the highest point of the trajectory the cannon ball is traveling at 98 m/s. If the acceleration of gravity is 9.81 m/s^2, what is the radius of curvature of the cannon balls path at this instant?

Answers

Answer:

The radius of curvature is 979 meter

Explanation:

We have given velocity of the canon ball v = 98 m/sec

Acceleration due to gravity [tex]g=9.81m/sec^2[/tex]

We know that at highest point of trajectory angular acceleration is equal to acceleration due to gravity

Acceleration due to gravity is given by [tex]a_c=\frac{v^2}{r}[/tex], here v is velocity and r is radius of curvature

So [tex]\frac{98^2}{r}=9.81[/tex]

r = 979 meter

So the radius of curvature is 979 meter

A water skier leaves the end of an 8 foot tall ski ramp with a speed of 20 mi/hr and at an angle of 250. He lets go of the tow rope immediately as he leaves the end of the ramp. Determine the maximum height he attains. Determine his velocity and direction of his velocity at that maximum height. Why is one of the components equal to zero at that point? How far does he travel before landing on the water? How long does it take him to land? What is his velocity when he lands? And finally, at what angle does he land?

Answers

Answer:

At highest point:

y1 = 10.4 ft

v1 = (26.5*i + 0*j) ft/s

When he lands:

x2 = 31.5 ft (distance he travels)

t2 = 1.19 s

V2 = (26.5*i - 25.9*j) ft/s

a2 = -44.3°

Explanation:

Since he let go of the tow rope upon leaving the ramp he is in free fall from that moment on. In free fall he is affected only by the acceleration of gravity. Gravity has a vertical component only, so the movement will be at constant acceleration in the vertical component and at constant speed in the horizontal component.

20 mi / h = 29.3 ft/s

If the ramp has an angle of 25 degrees, the speed is

v0 = (29.3 * cos(25) * i + 29.3 * sin(25) * j) ft/s

v0 = (26.5*i + 12.4*j) ft/s

I set up the coordinate system with the origin at the base of the ramp under its end, so:

R0 = (0*i + 8*j) ft

The equation for the horizontal position is:

X(t) = X0 + Vx0 * t

The equation for horizontal speed is:

Vx(t) = Vx0

The equation for vertical position is:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

The equation for vertical speed is:

Vy(t) = Vy0 + a * t

In this frame of reference a is the acceleration of gravity and its values is -32.2 ft/s^2.

In the heighest point of the trajectory the vertical speed will be zero because that is the point where it transitions form going upwards (positive vertical speed) to going down (negative vertical speed), and it crosses zero.

0 = Vy0 + a * t1

a * t1 = -Vy0

t1 = -Vy0 / a

t1 = -12.4 / -32.2 = 0.38 s

y1 = y(0.38) = 8 + 12.4 * 0.38 + 1/2 * (-32.2) * (0.38)^2 = 10.4 ft

The velocity at that moment will be:

v1 = (26.5*i + 0*j) ft/s

When he lands in the water his height is zero.

0 = 8 + 12.4 * t2 + 1/2 * (-32.2) * t2^2

-16.1 * t2^2 + 12.4 * t2 + 8 = 0

Solving this equation electronically:

t2 = 1.19 s

Replacing this time on the position equation:

X(1.19) = 26.5 * 1.19 = 31.5 ft

The speed is:

Vx2 = 26.5 ft/s

Vy2 = 12.4 - 32.2 * 1.19 = -25.9 ft/s

V2 = (26.5*i - 25.9*j) ft/s

a2 = arctg(-25.9 / 26.5) = -44.3

Micrometers with a vernier graduation are capable of taking readings to the nearest 0.0001 in. a)- True b)- false

Answers

Answer:

The micrometer with vernier graduation can measure reading to the nearest 0.0001 inches.  So, the statement is true.

Explanation:

Micrometer is the measuring device that used to measure length with more accuracy. Micrometer can measure the length in metric as well as in English unit. Micrometer is generally used to measure diameter and length of the mechanical component.

Working:

Micrometer is a screwed device. It contains spindle, anvil and thimble. Object is placed between spindle and anvil. Thimble is rotated that rotates the spindle till it touches the component completely. Two types of scales are used to measure the reading of micrometer, one is sleeve scale and other is thimble scale. Spindle moves toward component by 0.5 mm in or 0.025 in on every one rotation of spindle. There are three types of micrometer

Least count of micrometer:

Minimum measurement of any measuring device is the least count of that device. So, the least count for normal micrometer is 0.01 mm or 0.001 inches.

The micrometer is called vernier micrometer if the micrometer is provided with the vernier scale. The least count of vernier micrometer scale is 0.0001 inches.

Hence the micrometer with vernier graduation can measure reading to the nearest 0.0001 inches.

Thu, the statement is true.

A container ship is 240 m long and 22 m wide. Assume that the shape is like a rectangular box. How much mass does the ship carry as load if it is 10 m down in the water and the mass of the ship itself is 30 000 tonnes?

Answers

Answer:

22800 tonne

Explanation:

Given:

Length of the container, L = 240 m

Width of the container, B = 22 m

Depth inside the water, H = 10 m

Mass of the ship, m = 30000 tonnes

Now,

Total immersed volume of the ship = LBH = 240 × 22 × 10 = 52800 m³

From the Archimedes principle, we have

Total mass of the ship (i.e mass of the ship along with the load carried)

= Mass of the volume of water displaced by ship

= 52800 × Density of water

also,

Density of water = 1000 kg/m³

thus,

Total mass of the ship (i.e mass of the ship along with the load carried)

= 52800 × 1000 kg

also,

1 tonne = 1000 kg

thus,

Total mass of the ship (i.e mass of the ship along with the load carried)

= 52800 tonne

Therefore,

the load carried by the ship = Total mass of the ship  - mass of ship

or

the load carried by the ship = 52800 - 30000 = 22800 tonne

Can you carry 1 m3 of liquid water? Why or why not? (provide the weight to support your answer)

Answers

Answer:

No we cannot carry 1 cubic meter of liquid water.

Explanation:

As we know that density of water is 1000 kilograms per cubic meter of water hence we infer that 1 cubic meter of water will have a weight of 1000 kilograms of 1 metric tonnes which is beyond the lifting capability of strongest man on earth let alone a normal human being who can just lift a weight of 100 kilograms thus we conclude that we cannot lift 1 cubic meter of liquid water.

No, I cannot carry 1 cubic meter (1 m³) of liquid water. To understand why, let's calculate the weight of 1 cubic meter of water.

1 cubic meter (m³) of water is equivalent to 1000 liters (L). The density of water is approximately 1 kilogram per liter (kg/L). Therefore, the weight of 1 cubic meter of water can be calculated as:

[tex]\[ 1 \, \text{m}^3 \times 1000 \, \text{L/m}^3 \times 1 \, \text{kg/L} = 1000 \, \text{kg} \][/tex]

So, 1 cubic meter of water weighs 1000 kilograms, or about 2204.62 pounds.

This weight is far beyond the carrying capacity of an average human. For comparison, most people can carry only a few tens of kilograms comfortably for a short period, so carrying 1000 kilograms is not feasible for any human.

Define a) Principal Plane b) Principal Stress c) anelasticity d) yield point e) ultimate tensile stress f) hardness g) toughness h) elastic limit

Answers

Answer:

Principal Plane: It is that plane in a stressed body over which no shearing stresses act. As we know that in a stressed body on different planes 2 different kind of stresses act normal stresses acting normal to the plane ans shearing stresses acting in the plane. The special planes over which no shearing stresses act and only normal stresses are present are termed as principal planes.

Principal Stress: The stresses in the principal planes are termed as normal stresses.

Anelasticity: It is the behavior of a material in which no definite relation can found to exist between stress and strain at any point in the stressed body.

Yield Point: It is the point in the stress-strain curve of a body at which the stress in the body reaches it's yield value or the object is just about to undergo plastic deformation if we just increase value of stress above this value. It is often not well defined in high strength materials or in some materials such as mild steel 2 yield points are observed.

Ultimate tensile strength: It is the maximum value of stress that a body can develop prior to fracture.

Hardness: it is defined as the ability of the body to resist scratches or indentation or abrasion.

Toughness: It is the ability of the body to absorb energy and deform without fracture when it is loaded. The area under the stress strain curve is taken as a measure of toughness of the body.

Elastic limit: The stress limit upto  which the body regains it's original shape upon removal of the stresses is termed as elastic limit of the body.

When is it appropriate to model a structural element as a beam?

Answers

It is convenient to model a structural element like a beam when a significant amount of forces produce the stress called flexion.

Flexion occurs when an element is supported on one or more supports and a force is presented between them, driving a bending moment in the element.

What is the weight in pounds of a gallon of oil that has a specific gravity of .86

Answers

Answer:

Mass of oil will be 7.176 pound

Explanation:

We have given specific gravity of oil  = 0.86

We know that specific gravity is given by [tex]specific\ gravity=\frac{density\ of\ oil}{density\ of\ water}[/tex]

[tex]0.86=\frac{density\ of\ oil}{1000}[/tex]

Density of oil = [tex]860kg/m^3[/tex]

We have given volume of oil = 1 gallon

We know that 1 gallon = 0.003785 [tex]m^3[/tex]

So mass of oil = volume ×density

mass = 0.003785×860 = 3.2551 kg

We know that 1 kg = 2.2046 pound

So 3.2551 kg = 3.2551×2.2046 = 7.176 pound

why HF (hydrogen fluoride) has higher boiling temperature than HCl (hydrogen chloride), even thought HF has lower molecular weight?

Answers

Answer:

Boiling point of HF is higher as compared to HCl because of presence of hydrogen bonding in it.

Explanation:

In HF, intermolecular force of attraction is hydrogen bonding.

Hydrogen bonding is a type of electrostatic force of attraction existing between H atom and electronegative atom.

For a molecule to have hydrogen bonding, H atom must be bonded to electronegative atom, O, N and F.

Hydrogen bonding can be intermolecular and intramolecular.

So, in HF hydrogen bonding present.

In HCl, only van der Waals force exists. van der Waals forces are weak as compared to hydrogen bonding.

Because of presence of hydrogen bonding, HF molecules are held tightly and so requires more heat to boil.

Therefore, boiling point of HF is more as compared to HCl.

Why does an object under forced convection reach a steady-state faster than an object subjected to free-convection?

Answers

Answer:

Free convection:

   When heat transfer occurs due to density difference between fluid then this type of heat transfer is know as free convection.The velocity of fluid is zero or we can say that fluid is not moving.

Force convection:

   When heat transfer occurs due to some external force then this type of heat transfer is know as force convection.The velocity of fluid is not zero or we can say that fluid is moving in force convection.

Heat transfer coefficient of force convection is high as compare to the natural convection.That is why heat force convection reach a steady-state faster than an object subjected to free-convection.

We know that convective heat transfer given as

 q = h  A ΔT

h=Heat transfer coefficient

A= Surface area

ΔT = Temperature difference

A 4,000-km^2 watershed receives 102cm of precipitation in one
year.The avg. flow of the river draining the watershed is 34.2
m^3/s.Infiltration is est. to be 5.5 x 10^(-7) cm/s
andevapotranspiration is est. to be 40 cm/y. Determine the change
instorage in the watershed over one year. The ratio of runoff
toprecipitation (both in cm) is termed the runoff
coefficient.Compute the runoff coefficient for this
watershed.

Answers

Answer:

1) The change in storage of the catchment is 707676800 cubic meters.

2) The runoff coefficient of the catchment is 0.83.

Explanation:

The water budget equation of the catchment can be written as

[tex]P+Q_{in}=ET+\Delta Storage+Q_{out}+I[/tex]

where

'P' is volume of  precipitation in the catchment =[tex]Area\times Precipitation[/tex]

[tex]Q_{in}[/tex] Is the water inflow

ET is loss of water due to evapo-transpiration

[tex]\Delta Storage[/tex] is the change in storage of the catchment

[tex]Q_{out}[/tex] is the outflow from the catchment

I is losses due to infiltration

Applying the values in the above equation and using the values on yearly basis (Time scale is taken as 1 year) we get

[tex]4000\times 10^{6}\times 1.02+0=0.40\times 4000\times 10^{6}+\Delta Storage+34.2\times 3600\times 24\times 365\times 5.5\times 10^{-9}\times 4000\times 10^{6}\times 3600\times 24\times 365[/tex]

[tex]\therefore \Delta Storage=707676800m^3[/tex]

Part b)

The runoff coefficient  C is determined as

[tex]C=\frac{P-I}{P}[/tex]

where symbols have the usual meaning as explained earlier

[tex]\therefore C=\frac{102-5.5\times 10^{-7}\times 3600\times 24\times 365}{102}=0.83[/tex]

Water has a density of 1.94 slug/ft^3. What is the density expressed in SI units? Express the answer to three significant figures

Answers

Final answer:

The density of water in SI units, converted from 1.94 slug/ft^3, is approximately 998.847 kg/m^3 when expressed to three significant figures.

Explanation:

The student has asked to convert the density of water from slug/ft3 to SI units. To convert from slug/ft3 to kg/m3, we need to use the appropriate conversion factors. One slug is equivalent to 14.5939 kilograms, and there are 0.3048 meters in a foot. Therefore, the conversion is as follows:

(1.94 slug/ft3)
* (14.5939 kg/slug)
* ((1 ft/0.3048 m)3)

This equals 1.94 * 14.5939 * (1/0.3048)3 kg/m3, which simplifies to 998.847 kg/m3 when rounded to three significant figures. This is the density of water in SI units.

Water's density conversion to SI units is 1000 kg/m³.

The density of water in SI units can be expressed as 1000 kg/m³. This conversion is based on the fact that the density of water is exactly 1 g/cm³, equivalent to 1000 kg/m³.

Water's density conversion to SI units is 1000 kg/m³.

The density of water in SI units can be expressed as 1000 kg/m³. This conversion is based on the fact that the density of water is exactly 1 g/cm³, equivalent to 1000 kg/m³.

The student has asked to convert the density of water from slug/ft3 to SI units. To convert from slug/ft3 to kg/m3, we need to use the appropriate conversion factors. One slug is equivalent to 14.5939 kilograms, and there are 0.3048 meters in a foot. Therefore, the conversion is as follows:

(1.94 slug/ft3) * (14.5939 kg/slug) * ((1 ft/0.3048 m)3)

This equals 1.94 * 14.5939 * (1/0.3048)3 kg/m3, which simplifies to 998.847 kg/m3 when rounded to three significant figures. This is the density of water in SI units.

The student has asked to convert the density of water from slug/ft3 to SI units. To convert from slug/ft3 to kg/m3, we need to use the appropriate conversion factors. One slug is equivalent to 14.5939 kilograms, and there are 0.3048 meters in a foot. Therefore, the conversion is as follows:

(1.94 slug/ft3)
* (14.5939 kg/slug)
* ((1 ft/0.3048 m)3)

This equals 1.94 * 14.5939 * (1/0.3048)3 kg/m3, which simplifies to 998.847 kg/m3 when rounded to three significant figures. This is the density of water in SI units.

Calculate the surface temperature of a black surface, 1.6 m^2 in area if the rate of heat transfer is 632 kW. The Stefan-Boltzmann constant is σ = 5.67 x 10^-8 W/m^2 K^4 a) 1734 °C b) 273 °C c) 1625 K d) 1640 K e) 1682 K

Answers

Explanation:

From Stefan's formula

P=A&T^4

T=(P/A&)^1/4

T=(632000W/1.6m^2 x 5.67E-8W/m^2K^4)^1/4

T=

Two standard spur gears have a diametrical pitch of 10, a center distance 3.5 inches and a velocity ratio of 2.5. How many teeth are on each gear?

Answers

Answer:50 , 20

Explanation:

Given

Diametrical Pitch[tex]\left ( P_D\right )=\frac{T}{D}[/tex]

where T= no of teeths

D=diameter

module(m) of gears must be same

[tex]m=\frac{D}{T}=\frac{1}{P_D}=0.1[/tex]

Let [tex]T_1 & T_2[/tex]be the gears on two gears

Therefore Center distance is given by

[tex]m\frac{\left ( T_1+T_2\right )}{2}=3.5[/tex]

thus

[tex]0.1\frac{\left ( T_1+T_2\right )}{2}=3.5[/tex]

[tex]T_1+T_2=70----1[/tex]

and Velocity ratio is given by

[tex]VR=\frac{No\ of\ teeths\ on\ Driver\ gear}{No.\ of\ teeths\ on\ Driven\ gear} [/tex]

[tex]2.5=\frac{T_1}{T_2}----2[/tex]

From 1 & 2 we get

[tex]T_1=50, T_2=20[/tex]

Given the latent heat of fusion (melting) and the latent heat of vaporisation for water are Δhs = 333.2 kJ/kg and Δhv = 2257 kJ/kg, respectively. Use these values to estimate the total energy required to melt 100 kg of ice at 0 °C and boil off 40 kg of water at 100 °C. a) 239,028 kJ b) 95,250 kJ c) 185,500 kJ d) 362,628 kJ e) 123,600 kJ

Answers

Answer:

C)185,500 KJ

Explanation:

Given that

Latent heat fusion = 333.23 KJ/kg

Latent heat vaporisation = 333.23 KJ/kg

Mass of ice = 100 kg

Mass of water = 40 kg

Mass of vapor=60 kg

Ice at 0°C ,first it will take latent heat of vaporisation and remain at constant temperature 0°C and it will convert in to water.After this water which at 0°C will take sensible heat and gets heat up to 100°C.After that at 100°C vapor will take heat as heat of  vaporisation .

Sensible heat for water Q

[tex]Q=mC_p\Delta T[/tex]

For water

[tex]C_p=4.178\ KJ/Kg.K[/tex]

Q=4.178 x 40 x 100 KJ

Q=16,712 KJ

So total heat

Total heat =100 x 333.23+16,712 + 60 x 2257 KJ

Total heat =185,455 KJ

Approx Total heat = 185,500 KJ

So the answer C is correct.

Other Questions
inverse laplace transform of H(s) = 1/(s+4)^2 Solve for x in the expression using the quadratic formula. 2x2+31x4.9=0 Which element would have this representation: 43? 21 Question 4 options: Technetium Scandium Titanium Cobalt (-14) = ((-2) (3 + (+2))] - 7Help me (2a+5b-7)+(a-9b-6) need help What is 73.04 times 1.2 We think that dwarfism in river birch might be a simple Mendelian trait. We have taken a pure breeding normal plant and crossed it with a a pure breeding dwarf plant. The resulting F1 plants were normal height. The F1 plants were selfed and the F2 data is presented below: Normal River Birch 811 Dwarf River Birch 261 Perform a chi square analysis on this data using the following hypothesis: The mode of inheritance for height in river birch is simple Mendelian. What is the calculated chi-square value? Round to three decimal places. Check my answers please!!!!Spring Morning by A.E. HousemanStar and coronal and bellApril underfoot renews,And the hope of man as wellFlowers among the morning dews.Now the old come out to look,Winter past and winter's pains.How the sky in pool and brookGlitters on the grassy plains.Easily the gentle airWafts the turning season on;Things to comfort them are there,Though 'tis true the best are gone.Now the scorned unlucky ladRousing from his pillow gnawnMans his heart and deep and gladDrinks the valiant air of dawn.Half the night he longed to die,Now are sown on hill and plainPleasures worth his while to tryEre he longs to die again.Blue the sky from east to westArches, and the world is wide,Though the girl he loves the bestRouses from another's side.1.) In the first stanza, the metaphor best supports the theme ofA.) rebirth (my answer)B.) injusticeC.) loveD.) identityE.) fate2.) Which textual detail from the poem is an example of imagery?A.) "And the hope of man as well"B.) "Things to comfort them are there"C.) "Rousing from his pillow gnawn" (my answer)D.) "Mans his heart and deep and glad"E.) "Though the girl he loves the best"3.) Considering the imagery and word choice of this poem, the poet's style is best described asA.) academic and complexB.) ambiguous and philosophical (my answer)C.) elegant and understatedD.) rustic and accessibleE.) righteous and sarcastic4.) In the fourth stanza, the poet compares air and a beverage. This is an example ofA.) simileB.) metaphorC.) aspostropheD.) metonymy (my answer)E.) personification Which direct object pronoun correctly completes the conversation? Fernando: Tuve que comprar unas sillas. Vctor: Dnde ______ compraste? A. Los B. La C. Las D. Lo and a list of numbers the pattern increases by 0.001 as you move to the right if the third number list is 0.0 64 what is the first number in the list answer How many grams of precipitate can be formed in the reaction between 6.00 mL of 0.10 M silver nitrate and 5.00 mL of 0.15 M potassium chloride? Hint: Start with a balanced chemical equation. Do not enter units with your answer. Sailed - is that a proper or a common noun A charge q1= 3nC and a charge q2 = 4nC are located 2m apart. Where on the line passing through these charges is the total electric field zero? Without graphing, classify each system as independent, dependent, or inconsistenty = 4x+61-8x+2y=12a. independentb. dependentc. inconsistentplease help A parachutist descending at a speed of 15.1 m/s loses a shoe at an altitude of 41.2 m. What is the speed of the shoe just before it hits the ground? The acceleration due to gravity is 9.81 m/s^2. When does the shoe reach the ground? Answer in units of s. help please!!!!;;;;;;;;;;;;;;;;;;;; An object contains data and the instructions that manipulate the data (Points : 2) True False What is the Ka of a weak acid (HA) if the initial concentration of weak acid is 4.5 x 10-4 M and the pH is 6.87? (pick one)5.5 x 10-54.0 x 10-66.9 x 10-43.5 x 10-104.0 x 10-11 Consider the solutions, 0.04 m urea [(NH2)2C=O)], 0.04 m AgNO3 and 0.04 m CaCl2. Which has (i) the highest osmotic pressure, (ii) the lowest vapor pressure, (iii) the highest boiling point? Rewrite the text 'Deep Water' from the point of view of a third person or observer.