Which statement best describes a polygon?
A. a closed plane figure with three or more sides that are straight
B. a closed plane figure with four or more sides
C. an open or closed plane figure
D. an open or closed plane figure with three or more sides Reset Next

Answers

Answer 1

The best statement that could be used describe a polygon is that it is a closed plane figure with three or more sides that are straight. Thus, the correct answer is A: a closed plane figure with three or more sides that are straight.

Hope this helps! :)

Answer 2
A polygon would be a closed plane figure with three or more sides that are straight. (A)

Related Questions

Asha invests rs 8000 at a certain rate for three yrs compounded annually . She finds at the end of the first year it amounts to rs 9200. Calculate(1) R%(2)interest acquired in second year (3)amount at the end of the third year

Answers

Answer:

 = 12169 rs

Step-by-step explanation:

Asha invest total=rs 8000  

Total years = 3

Amount after 1 year= 9200 rs

Interest on first year =9200-8000= 1200 rs

So for second and third years

A= P (1 + R/100)ⁿ

9200= 8000( 1+  R/100)¹

9200= 8000( 100+  R/100)  

115= 100 +R

R = 15  

So amount after second year  

A= 8000 (1 +15/100)²

A= 10580

Interest on second is = 10580 –P-interest on ist  

                                      =10580-8000-1200

                                   = 1380 rs

So total amount at the end  

A =  8000 ( 1 +15/100) ³

 =12169 rs

The doubling time of a population of flies is 4 hours . By what factor does the population increase in 48 hours?

Answers

Answer:

  4096

Step-by-step explanation:

The population doubles 12 times in that period, so is multiplied by 2^12 = 4096.

Shawn bought fruit last week, consisting of 2.26 pounds of bananas, ​ 1.5 pounds of grapes, and a watermelon that weighed 6.78 pounds. ​ ​ ​What is the total weight, in pounds, of the fruit that Shawn bought last ​week?

Answers

Answer:

10.54 pounds is right answer

Step-by-step explanation:

bananas 2.26  pounds

Grapes  1.5 pounds

water melon 6.78 pounds

total weight = 10.54 pounds

Answer:

10.54 pounds

Step-by-step explanation:

Which graph represents a quadratic function with a vertex at (0, 0)? On a coordinate plane, a parabola opens up. It goes through (negative 5, 6), has a vertex of (0, 1), and goes through (5, 6). On a coordinate plane, a parabola opens up. It goes through (negative 6, 6), has a vertex of (0, negative 1), and goes through (6, 6). On a coordinate plane, a parabola opens up. It goes through (negative 5, 6), has a vertex of (0, 0), and goes through (5, 6). On a coordinate plane, a parabola opens up. It goes through (negative 2.5, 6), has a vertex of (3, 0), and goes through (7.5, 4).

Answers

Answer:

  On a coordinate plane, a parabola opens up. It goes through (negative 5, 6), has a vertex of (0, 0), and goes through (5, 6).

Step-by-step explanation:

Since you want a graph with a vertex of (0, 0), choose the one that is described as having a vertex of (0, 0).

Answer:

Option C.

Step-by-step explanation:

We need to find the graph which represents a quadratic function with vertex at (0,0).

The graph of quadratic function is a parabola (either upward or downward) and the extreme point of the parabola is know as vertex.

All graphs represent different parabolas.

Vertex of first parabola = (0,1)

Vertex of second parabola = (0,-1)

Vertex of third parabola = (0,0)

Vertex of fourth parabola = (3,0)

In option C, a parabola opens up on a coordinate plane. It goes through (-5, 6), has a vertex of (0, 0), and goes through (5, 6).

Only third graph represents a quadratic function with a vertex at (0, 0).

Therefore, the correct option is C.

The average hourly wage of workers at a fast food restaurant is $6.75 with a standard deviation of $0.25. If the distribution is normal, what is the probability that a worker selected at random earns more than $7.00 an hour?

Answers

Answer:

25% would be the answer

Step-by-step explanation:

A certain list consists of 21 different numbers. If n is in the list and n is 4 times the average(arithmetic mean) of the other 20 numbers in the list, then n is what fraction of the sum of the 21 numbers in the list?
(A) 1/20
(B) 1/6
(C) 1/5
(D) 4/21
(E) 5/21

Answers

Answer:

B. [tex]\frac{1}{6}[/tex]

Step-by-step explanation:

Let x be the sum of the 21 numbers,

In which n is one of the numbers,

Since,

[tex]\text{Average}=\frac{\text{Sum of the observations}}{\text{Number of observations}}[/tex]

So, the average of 20 numbers excluded n = [tex]\frac{x-n}{20}[/tex]

According to the question,

[tex]n = 4\times \frac{x-n}{20}[/tex]

[tex]n = \frac{x-n}{5}[/tex]

[tex]5n = x - n[/tex]

[tex]6n = x[/tex]

[tex]\imples n = \frac{1}{6}x = \frac{1}{6}\text{ of the sum of the 21 numbers}[/tex]

Hence, OPTION 'B' is correct.

21. The parent function of the following graph is f(x) = 2^x. What is the equation of the following graph?

Answers

Answer:

5

Step-by-step explanation:

Plug x = 0 into f(x) to get

f(x) = 2^x

f(0) = 2^0

f(0) = 1

The y intercept (0,1) is on the graph of f(x).

The y intercept for the red curve shown is (0,3). It has been moved up two units compared to (0,1)

Therefore, g(x) = f(x)+2 where g(x) represents the red curve.

g(x) = f(x) + 2

[tex]g(x) = 2^x + 2[/tex] is the answer

Twenty-four blue socks and twenty-four red socks are lying in a drawer in a dark room. What is the minimum number of socks you need to pull out of the drawer so that you are sure to have at least two blue socks

Answers

Answer:

26 socks

Step-by-step explanation:

There are a total of 48 socks here. Let us assume you pulled out 24 socks at a go and all are red. Now, you would have exhausted the number of red socks here. You would be left with only blue socks which you can pull one after the other to give a total of  26 socks pulled out to have 2 blue socks at least.

A bakery decided to expand since business was going so well. Originally, the width was five times the length. Now they are adding 5 feet to the length. If the length was originally 15 feet, what will be the area of the new bakery?

Answers

New area of bakery = 1500 square feet.

Step-by-step explanation:

We need to find new area of bakery.

Old length = 15 feet

Old width = New width = 5 x  Old length = 5 x 15 = 75 feet

New length = Old length + 5 feet = 15 + 5 = 20 feet

New area = New length x New width

New area = 75 x 20 = 1500 square feet.

New area of bakery = 1500 square feet.

Mikayla is a waitress who makes a guaranteed $50 per day in addition to tips of 20% of all her weekly customer receipts, t. She works 6 days per week. Which of the following functions best represents the amount of money that Mikayla makes in one week?
A) f(t) = 50 + 20t
B) f(t) = 300 + 20t
C) f(t) = 50 + 0.2t
D) f(t) = 300 + 0.2t

Answers

Answer:

D. [tex]f(t)=300+0.20t[/tex]

Step-by-step explanation:

We have been given that Mikayla is a waitress who makes a guaranteed $50 per day.

Since Miklaya works  6 days per week, so the guaranteed income for one week would be [tex]\$50\times 6=\$300[/tex]  

We are also told that she gets tips of 20% of all her weekly customer receipts, t. So amount earned from tips would be 20% of t, that is [tex]\frac{20}{100}t=0.20t[/tex].

Total amount earned in one week would be guaranteed income for 1 week plus 20% of t:

[tex]300+0.20t[/tex]

Therefore, our required function is [tex]f(t)=300+0.20t[/tex] and option D is the correct choice.

Express each statement using an inequality involving absolute value: The height of the plant must be within 2 inches of the standard 13-inch show size

Answers

Answer:

  |h-13| ≤ 2

Step-by-step explanation:

The difference between the height of the plant (h) and show size (13 in) can be written as ...

  h - 13

This value is allowed to be positive or negative, but its absolute value must not exceed 2 inches. Thus, the desired inequality is ...

  |h -13| ≤ 2

To express the statement using an Inequality involving absolute value, use |height - 13| ≤ 2. This means the difference between the height of the plant and 13 inches must be less than or equal to 2 inches.

To express the statement using an inequality involving absolute value, we can use the inequality |height - 13| ≤ 2. This means that the difference between the height of the plant and 13 inches must be less than or equal to 2 inches.

For example, if the height of the plant is 12 inches, then |12 - 13| = |-1| = 1, which is less than 2, so it satisfies the inequality. However, if the height of the plant is 16 inches, then |16 - 13| = |3| = 3, which is not less than 2, so it does not satisfy the inequality.

Learn more about Inequalities here:

brainly.com/question/256214

#SPJ2

Given: dp/dt = k(M- P)
where P(t) measures the performance of someone learning a skill after a training time t, M is the maximum level of performance, and k is a positive constant. Solve this differential equation to find an expression for P(t). (Use P for P(t). Assume that P(0) = 0.)

Answers

Answer:

[tex]P=M(1-e^{-kt})[/tex]

Step-by-step explanation:

The relation between the variables is given by

[tex]\frac{dP}{dt} = k(M- P)[/tex]

This is a separable differential equation. Rearranging terms:

[tex]\frac{dP}{(M- P)} = kdt[/tex]

Multiplying by -1

[tex]\frac{dP}{(P- M)} = -kdt[/tex]

Integrating

[tex]ln(P-M)=-kt+D[/tex]

Where D is a constant. Applying expoentials

[tex]P-M=e^{-kt+D}=Ce^{-kt}[/tex]

Where [tex]C=e^{D}[/tex], another constant

Solving for P

[tex]P=M+Ce^{-kt}[/tex]

With the initial condition P=0 when t=0

[tex]0=M+Ce^{-k(0)}[/tex]

We get C=-M. The final expression for P is

[tex]P=M-Me^{-kt}[/tex]

[tex]P=M(1-e^{-kt})[/tex]

Keywords: performance , learning , skill , training , differential equation

Final answer:

The differential equation dp/dt = k(M - P) can be solved via separating variables, integrating and applying the initial condition. Result provides the equation for performance over time: P(t) = M(1 - e-kt).

Explanation:

The subject of the question is around a differential equation. Firstly, you will rewrite the given equation dp/dt = k(M - P) in the form necessary for separation of variables: dp/(M - P) = k dt. Then, integrate both sides: ∫dp/(M - P) = ∫k dt. The left-hand side integral results in -ln|M - P|, and the right side is k*t + C, where C is the constant of integration. Finally, solve for P(t) by taking the exponential of both sides, and rearranging. The procedure results in the performance level equation.

P(t) = M - Ce-kt

Since we're given P(0) = 0, we can determine that C = M. Hence, we finally have the solution:

P(t) = M(1 - e-kt)

Learn more about Differential Equations here:

https://brainly.com/question/33433874

#SPJ11

The exponential model Upper A equals 104.8 e Superscript 0.001 t describes the​ population, A, of a country in​ millions, t years after 2003. Use the model to determine when the population of the country will be 106 million.

Answers

Answer:  The population of the country will be 106 millions in 2014.

Step-by-step explanation:

The exercise gives you the following exponential model, which describes the​ population "A" (in​ millions) of a country "t" years after 2003:

[tex]A=104.8 e^{0.001 t}[/tex]

In this case you must determine when the population of that country will be 106 millions, so you can identify that:

[tex]A=106[/tex]

Now you need to substitute this value into the exponential model given in the exercise:

[tex]106=104.8 e^{0.001 t}[/tex]

Finally, you must solve for "t", but first it is important to remember the following Properties of logarithms:

[tex]ln(a)^b=b*ln(a)\\\\ln(e)=1[/tex]

Then:

[tex]\frac{106}{104.8}=e^{0.001 t}\\\\ln(\frac{106}{104.8})=ln(e)^{0.001 t}\\\\ln(\frac{106}{104.8})=0.001 t(1)\\\\\frac{ln(\frac{106}{104.8})}{0.001}}=t\\\\t=11.38\\\\t\approx11[/tex]

Notice that in 11 years the population will be 106 millions, then the year will be:

[tex]2003+11=2014[/tex]

The population of the country will be 106 millions in 2014.

Please answer quick guys! 3. Given LJ ≅ MK, and LK ≅ MJ, prove ∠L ≅ ∠M (Picture is below)

Answers

Answer:

The Proof is given below.

Step-by-step explanation:

Given:

LJ ≅ MK

LK ≅ MJ

To Prove:

∠ L ≅ ∠ M

Proof:

In  Δ LKJ  and Δ MJK

    LK ≅ MJ      ……….{Given}

    KJ ≅ KJ       ………..{Reflexive Property}

    LJ ≅ MJ       ……….{Given}

Δ LKJ ≅ Δ MJK  ....….{Side-Side-Side test}

∴∠ KLJ ≅ ∠ JMK  .....{corresponding angles of congruent triangles (c.p.ct)}

i.e ∠ L ≅ ∠ M ............Proved.

The bill is $330. We want to split it but a friend gave us $50 for it. Therefore we each owe $140 after the $50. Since I have the $50 in my possession I wok give him $165 since were splitting the $50. Correct?

Answers

I don't think that's correct

Step-by-step explanation:

Why are you splitting the $50? you'd end up paying more than the bill and he'd be getting back more money than he put in. Sounds like a rip off. If he had given you each $50 than maybe you'd each owe $140. I assume there is 3 friends, the original bill price would have been $110 for each of you. But then one friend gave $50 to help pay the bill, if you had split the $50 you'd still not be paying back that much. Also why are YOU paying so much more? Everyone else is paying $140 and you're paying $165? You would not be giving him that much, all of you would not be paying an extra $30 either. you'd be splitting it to where it equals $50 all around, so instead it'd be around $93.00. Not $140 or $165. $16.7 multipled by 3 = $50.1

But at the end of the day, just tell him to take his money back. He really didn't help pay the bill that much with his $50, he still owes you $60 if he too had participated in whatever you guys were doing. So instead of going through the trouble, just tell him to take back his money.

Please find the center of dialation given the information in the link. Real answers only.

Answers

Answer:

  (-4, 0)

Step-by-step explanation:

The scale factor of 1/2 means each "dilated" point is 1/2 the distance from the center of dilation that the original point is. That is, the dilated point is the midpoint between the original and the dilation center.

If O is the origin of the dilation, then ...

  (O + X)/2 = P . . . . . P is the dilation of point X

  O +X = 2P

  O = 2P -X = 2(0, 2) -(4, 4)

  O = (-4, 0)

The center of dilation is (-4, 0).

_____

Another way to find the center of dilation is to realize that dilation moves points along a radial line from the center. Hence the place where those radial lines converge will be the center of dilation. See the attachment for a solution that way.

Based on the Polynomial Remainder Theorem what is the value of the function below when x = 3.

Answers

Answer:

Remainder = 64

Step-by-step explanation:

Given equation,

[tex]x^4+3x^3-6x^2-12x-8[/tex]

Remainder theorem says a polynomial can be reset in terms of its divisor (a) by evaluating the polynomial at x=a

Plug x=3,

[tex]=3^4+3(3)^3-6(3)^2-12(3)-8\\=81+81-54-36-8\\=162-54-36-8\\=64[/tex]

Thus the remainder is 64 at x=3 ,using polynomial remainder theorem.

Find the positive number such that the sum of 8 times this number and 7 times its reciprocal is as small as possible.

Answers

Answer:

√56/8

Step-by-step explanation:

Let the number be x

f(x) = 8x + 7(1/x)

f(x) = 8x + 7/x

Differentiate f(x) with respect to x

f'(x) = 8x - 7/x = 0

8 - 7/x^2 = 0

(8x^2 - 7)/2 = 0

8x^2 - 7 = 0

8x^2 = 7

x^2 = 7/8

x = √7/8

x = √7 /√8

x = (√7/√8)(√8/√8)

x = (√7*√8) / √8*√8)

x = √56/8

Please help with these! I don't know how they work.

Answers

Answer:

1. all real numbers

2. y ≥ -8

3. It is all of the possible values of a function

4. Domain:{-4,-2,0,2,4} and Range:{-2,0,1,2,3}

Step-by-step explanation:

Let f:A→B be a function. In general sets A and B can be any arbitary non-empty sets.

Values in set A are the input values to the function and values in set B are the output values

Hence Set A is called the domain of the function f.

Set B is called co-domain or range of function f.

Now coming back to problem,

In first picture,

Given function is a straight line ⇒it can take any real number as its input

and for each value it gives a unique output value.

Hence output value is set of all real numbers, i.e. range of the function represented by the graph is set of all real numbers.

In the second picture,

The graph is x values are extending from -∞ to ∞ but the y values is the set of values of real numbers greater than -8 since we can see that the graph has global minimum of -8

Therefore range of the graph is y≥-8

in the third picture,

as we have already discussed the range of a function is the set of all possible output values of the function

In the fourth picture,

Let the function be 'f'.

from question we can tell that we can take only -4,-2,0,2,4 as the values for x and for corresponding x values we get 1,3,2,-2,0 as y values which are the output values.

hence we can tell that domain, which is set of input values, is {-4,-2,0,2,4}

and range, which is the of possible output values, is {-2,0,1,2,3}

A submarine was stationed 700 feet below sea level. It ascends 259 feet every hour. If the submarine continues to ascend at the same rate when will the submarine be at the surface?

Answers

Answer: it will take 2.7 hours to get to the surface

Step-by-step explanation:

A submarine was stationed 700 feet below sea level. It means that the height of the submarine from the surface is 700 feet.

It ascends 259 feet every hour.

If the submarine continues to ascend at the same rate, the time it will take for it to get to the surface will be the distance from the surface divided by its constant speed.

Time taken to get to the surface

700/259 = 2.7 hours

The workers at Sandbachian, Inc. took a random sample of 800 manhole covers and found that 40 of them were defective. What is the 95% CI for p, the true proportion of defective manhole covers, based on this sample?a) (37.26, 42.74)b) (.035, .065)c) (.047, .053)d) (.015, .085)

Answers

Answer: b) [tex](0.035,\ 0.065)[/tex]

Step-by-step explanation:

The confidence interval for proportion (p) is given by :-

[tex]\hat{p}\pm z^*\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

, where[tex]\hat{p}[/tex] = Sample proportion

n= sample size.

z* = Critical z-value.

Let p be the true proportion of defective manhole covers, based on this sample.

Given : The workers at Sandbachian, Inc. took a random sample of 800 manhole covers and found that 40 of them were defective.

Then , n= 800

[tex]\hat{p}=\dfrac{40}{800}=0.05[/tex]

Confidence interval = 95%

We know that the critical value for 95% Confidence interval : z*=1.96

Then, the 95% CI for p, the true proportion of defective manhole covers will be :-

[tex]0.05\pm (1.96)\sqrt{\dfrac{0.05(1-0.05)}{800}}\\\\=0.05\pm (1.96)(0.0077055)\\\\=0.05\pm0.01510278\\\\=(0.05-0.01510278,\ 0.05+0.01510278)\\\\=(0.03489722,\ 0.06510278)\approx(0.035,\ 0.065) [/tex]

Hence, the required confidence interval : b) [tex](0.035,\ 0.065)[/tex]

A certain car depreciates such that its value at the end of each year is p % less than its value at the end of the previous year. If that car was worth a dollars on December 31, 2010 and was worth b dollars on December 31, 2011, what was the car worth on December 31, 2013 in terms of a and b ?

Answers

Answer:

b(b/a)^2

Step-by-step explanation:

Given that the value of the car depreciates such that its value at the end of each year is p % less than its value at the end of the previous year and that car was worth a dollars on December 31, 2010 and was worth b dollars on December 31, 2011, then

b = a - (p% × a) = a(1-p%)

b/a = 1 - p%

p% = 1 - b/a = (a-b)/a

Let the worth of the car on December 31, 2012 be c

then

c = b - (b × p%) = b(1-p%)

Let the worth of the car on December 31, 2013 be d

then

d = c - (c × p%)

d = c(1-p%)

d = b(1-p%)(1-p%)

d = b(1-p%)^2

d = b(1- (a-b)/a)^2

d = b((a-a+b)/a)^2

d = b(b/a)^2 = b^3/a^2

The car's worth on December 31, 2013 =  b(b/a)^2 = b^3/a^2

A jogger runs around a circular track of radius 55 ft. Let (x,y) be her coordinates, where the origin is the center of the track. When the jogger's coordinates are (33, 44), her x-coordinate is changing at a rate of 15 ft/s. Find dy/dt.

Answers

Final answer:

Using related rates and the Pythagorean theorem, we can find that dy/dt, the rate of change of the y-coordinate, is 0 ft/s.

Explanation:

To find dy/dt, we need to determine the rate of change of the y-coordinate of the jogger. Since the jogger is running on a circular track, we can use the concept of related rates to solve this problem.

Let's assume that the jogger completes a full lap around the track in a time interval of Δt. During this time interval, the x-coordinate of the jogger changes by Δx, the y-coordinate changes by Δy, and the distance traveled along the track is Δs.

Since the jogger is running at a constant speed, the distance Δs is equal to the distance traveled in a straight line, which is the hypotenuse of a right triangle with legs Δx and Δy. Using the Pythagorean theorem, we have:

Δs^2 = Δx^2 + Δy^2

Taking the derivative with respect to time, we have:

2Δs(dΔs/dt) = 2Δx(dΔx/dt) + 2Δy(dΔy/dt)

Substituting the given values, Δx is 15 ft/s, Δy is 0 (since the y-coordinate is not changing), and Δs is the distance around the circular track, which is equal to the circumference of the circle:

2π(55ft) = 2(15ft)(dΔx/dt) + 2(0)(dΔy/dt)

Simplifying, we have:

dΔx/dt = π(55ft)/15s = 11π/3 ft/s

Therefore, dy/dt = dΔy/dt = 0 ft/s, since the y-coordinate is not changing.

A bag contains 222 red marbles, 222 green marbles, and 444 blue marbles.
If we choose a marble, then another marble without putting the first one back in the bag, what is the probability that the first marble will be red and the second will be green?

Answers

Answer:

1/14

Step-by-step explanation:

Assuming you mean that there are 2 red, 2 green, and 4 blue marbles, there are a total of 8 marbles.

On the first draw, the probability the marble is red is 2/8.

On the second draw, there's one less marble, so the probability of selecting a green marble is 2/7.

The total probability is:

2/8 × 2/7 = 1/14

The probability that the first marble is red and the second is green is approximately 0.0626 or 6.26%.

To find the probability we need to follow these steps:

Calculate the total number of marbles: 222 (red) + 222 (green) + 444 (blue) = 888 marbles.Determine the probability of drawing a red marble first.

The probability of drawing a red marble first is:

P(Red) = Number of Red Marbles / Total Number of Marbles = 222 / 888 = 1/4 or 0.25.

After drawing a red marble, there are now 887 marbles left and still 222 green marbles in the bag.Calculate the probability of then drawing a green marble.

The probability of drawing a green marble after a red one has been drawn is:

P(Green | Red) = Number of Green Marbles / Remaining Marbles = 222 / 887.

Finally, multiply these probabilities together to find the overall probability.

The overall probability is:

P(Red then Green) = P(Red) * P(Green | Red) = (222 / 888) * (222 / 887) = (1/4) * (222 / 887).

Therefore, the probability that the first marble is red and the second is green is approximately 0.0626 or 6.26%.

Complete the sentence below The​ _____ _____, denoted Modifying Above p with caret​, is given by the formula Modifying Above p with caret equals​_____, where x is the number of individuals with a specified characteristic in a sample of n individuals. The _____ _____ mean proportion error variance deviation ​, denoted Modifying Above p with caret​, ________is given by the formula Modifying Above p with caretequals Start Fraction n Over x End Fraction xn Start Fraction x Over n End Fraction ​, where x is the number of individuals with a specified characteristic in a sample of n individuals.

Answers

Answer:down t

Step-by-step explanation: j this is world. Theo t sit with this

find one positive and one negative angle coterminal with an angle of 166 Question 4 options:

526°, –194°

516°, –14°

526°, –76

256°,-76

Answers

Answer: Choice A) 526 degrees,  -194 degrees

==============================

Work Shown:

A coterminal angle points in the same exact direction as the original angle.

Because there are 360 degrees in a circle, this means we can add 360 to the original angle to get 166+360 = 526, which is one positive coterminal angle to 166 degrees.

Subtract 360 from the original angle and we'll get a negative coterminal angle

166 - 360 = -194

Rita purchased a prepaid phone card for $30. Long distance cost 16 cents a minute using the card. Rita used her card only once to make a long distance call. If the remaining credit on her card if $26.48, how many minutes did her call last?

Answers

Answer: her call lasted for 22 minutes

Step-by-step explanation:

Rita purchased a prepaid phone card for $30. This means that the total credit on her card is $30. Long distance cost 16 cents a minute using the card. Converting to dollars, it costs 16/100 = $0.16

Rita used her card only once to make a long distance call. If the number of minutes if long distance call that she made is x, total cost of x minutes long distance calls will be 0.16 × x = $0.16x

The remaining credit on her card would be 30 - 0.16x

If the remaining credit on her card if $26.48, it means that

30 - 0.16x = 26.48

0.16x = 30 - 26.48 = 3.52

x = 3.52/0.16 = 22 minutes.

A boat leaves the entrance to a harbor and travels 150 miles on a bearing of Upper N 56 degrees Upper E. How many miles north and how many miles east from the harbor has the boat​ traveled?

Answers

Answer:

83.9 miles north124.4 miles east

Step-by-step explanation:

It can be helpful to draw a diagram. In the attached diagram, point H represents the harbor, point B represents the position of the boat, and point N represents a point directly north of the harbor and west of the boat.

The bearing N56E means the direction of travel is along a path that is 56° clockwise (toward the east) from north.

__

The mnemonic SOH CAH TOA reminds you of the relationships between the sides of a right triangle. Here, we are given the length of the hypotenuse, and we want to know the lengths of the sides opposite and adjacent to the angle. One of the useful relations is ...

  Sin = Opposite/Hypotenuse

In our diagram, this would be ...

  sin(56°) = BN/BH

We want to find length BN, so we can multiply by BH to get ...

  BN = BH·sin(56°) = 150·0.829038 = 124.4 . . . . miles (east)

__

For the adjacent side, we use the relation ...

  Cos = Adjacent/Hypotenuse

  cos(56°) = HN/HB

  HN = HB·cos(56°) = 150·0.559193 = 83.9 . . . . miles (north)

The boat has traveled 124.4 miles north and 83.9 miles east of the harbor entrance.

A​ government's congress has 376 ​members, of which 44 are women. An alien lands near the congress building and treats the members of congress as as a random sample of the human race. He reports to his superiors that a​ 95% confidence interval for the proportion of the human race that is female has a lower bound of 0.085 and an upper bound of 0.149. What is wrong with the​ alien's approach to estimating the proportion of the human race that is​ female?

Answers

Answer:

Alien does not take the sample because alien choose the data of a Government's congress and congress contain less women.

On the other hand general population contain women greater than congress

So as compared to general population confidence interval is not representative.

Answer: The sample is not a simple random sample

Step-by-step explanation:

A 3 by 3 matrix Bis known to have eigenvalues 0, 1, 2. This information is enough to find three of these (give the answers where possible) : (a) the rank of B (b) thedeterminantofBTB (c) theeigenvaluesofBTB (d) the eigenvalues of (B2 + J)-1.

Answers

Answer with Step-by-step explanation:

We are given that a matrix B .

The eigenvalues of matrix are 0, 1 and 2.

a.We know that

Rank of matrix B=Number of different eigenvalues

We have three different eigenvalues

Therefore, rank of matrix B=3

b.

We know that

Determinant of matrix= Product of eigenvalues

Product of eigenvalues=[tex]0\times 1\times 2=0[/tex]

After transpose , the value of determinant remain same.

[tex]\mid B^TB\mid=\mid B^T\mid \mid B\mid =0\times 0=0[/tex]

c.Let  

B=[tex]\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&2\end{array}\right][/tex]

Transpose of matrix:Rows change into columns or columns change into rows.

After transpose of matrix B

[tex]B^T=\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&2\end{array}\right][/tex]

[tex]B^TB=\left[\begin{array}{ccc}0^2&-&-\\-&1^2&-\\-&-&2^2\end{array}\right][/tex]

[tex]B^TB=\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&4\end{array}\right][/tex]

Hence, the eigenvalues of [tex]B^TB[/tex] are 0, 1 and 4.

d.Eigenvalue of Identity matrix are 1, 1 and 1.

Eigenvalues of [tex]B^2+I=(0+1),(1+1),(2^2+1)=1,2,5[/tex]

We know that if eigenvalue of A is [tex]\lambda[/tex]

Then , the eigenvalue of [tex]A^{-1}[/tex] is [tex]\frac{1}{\lambda}[/tex]

Therefore, the eigenvalues of [tex](B^2+I)^{-1}[/tex] are  

[tex]\frac{1}{1},\frac{1}{2},\frac{1}{5}[/tex]

The eigenvalues of [tex](B^2+I)^{-1}[/tex] are 1,[tex]\frac{1}{2}[/tex] and [tex]\frac{1}{5}[/tex]

Other Questions
What is judicial review? Sixteen-year-old Alex got his hair trimmed shorter than he wanted, and he is very upset and can't stop thinking about his hair. He tells himself that everyone in school is going to notice how ugly his hair looks. This example illustrates adolescents' belief in:________. What percentage of extracellular fluid is accounted for by interstitial fluid and plasma? a) 20% b) 40% c) 80% d) 100%. 74.Once the specific item mentioned in a search warrant isfound:a. the search must stop.b. the officers must take a break.c. the officers can keep looking; they might find more items.d. none of the above. All of the following decisions were reached at the Second Continental Congress EXCEPT? Group of answer choices to demand a repeal of the Tea Act print more paper money to declare independence to form an army and chose George Washington to lead it The residents of a city voted on whether to raise property taxes. The ratio of yes votes to no votes was 3 to 5. If there were 4360 no votes, what was the totalnumber of votes?total votes A simple game goes as follows: you pay one dollar and roll a die. If the roll is either a 1 or 2, you get your dollar back. If it is greater than 3 you lose the dollar you paid. If it is a 3, you get your dollar back and an additional dollar. What is the expected value of the net amount of money you win/lose? The memory card on Melchers digital camera can hold about 430 pictures make sure used 18% of the mirror memory card while taking pictures at family reunion about how many pictures did Melcher take out the family room and round to the nearest whole number In Chicago's Southside (and other places), auto mechanics (who work outside the formal sector, without a business license, advertising, or even a garage) will do work for gang members without charging them. In exchange, gang members chase away other mechanics who wish to operate in the area. These auto mechanics have monopoly power; what type of source does it come from? You invest $15,000 in a savings account with an annual interest rate of 2.5% inwhich the interest is compounded quarterly. How much money should you expect tohave in the account after 5 years? Show your work to receive full credit! Division A manufactures electronic circuit boards. The boards can be sold either to Division B of the same company or to outside customers. Last year, the following activity occurred in Division A:Selling price per circuit board $125Variable cost per circuit board $90Number of circuit boards:Produced during the year 20,000Sold to outside customers 16,000Sold to Division B 4,000Sales to Division B were at the same price as sales to outside customers. The circuit boards purchased by Division B were used in an electronic instrument manufactured by that division. (one board per instrument). Division B incurred $100 in additional variable cost per instrument and then sold the instruments for $300 each.Prepare income statements for Division A, Division B, and the company as a whole:Division A Division B Total CompanySales $ $ $Expenses:Added by the divisionTransfer price paidTotal expensesNet operating income how are GMOs beneficial to society? Sahir took 1 h 22 min to do his english homework 45 min to do his maths homework, and 10 min to do his urdu. How long did he take to complete all his homework? Given: g(x) = 2x2 + 3x + 10k(x) = 2x+16Solve the equation g(x) = 2x(x) algebraically for x, to the nearest tenth. Explain why youshose the method you used to solve this quadratic equation. Complete the table. In the row with x as the input, write a rule as an algebraic expression for the output. Then complete the last row of the table using the rule.Input OutputTicketsCost ($)2 606 1809 270x10 A sealed isothermal container initially contained 2 moles of CO gas and 3 moles of H2 gas. The following reversible reaction occured: CO(g) + 2H2(g) ---> CH3OH(g). At equilibrium, there was 1 mole of CH3OH in the container. What was the total number of moles of gas present in the container at equilibrium. A.) 1 B.) 2 C.) 3 D.) 4 4. Why are transcription and translation two separate but necessary steps for proteinsynthesis? In other words, why can't the DNA code be read and translated directly? 4(3b-1)=9b what is the answer? Last friday the atmospheric pressure in our 2nd year lab was measured as 731 mmhg. Calculate the temperature at which water would boil at this pressure. If a teacher set out to install a variation of formative assessment in which assessment-elicited evidence was being used chiefly to permit students to modify learning tactics, which level of formative assessment would be the teacher's dominant focus?a. Level 4b. Level 3c. Level 2d. Level 1