Why do we need the metering devices? List the basic types.

Answers

Answer 1

Answer:para comprar terreno por ejemplo

to buy land for example

Explanation: meter, centimeter


Related Questions

A compressed-air drill requires an air supply of 0.25 kg/s at gauge pressure of 650 kPa at the drill. The hose from the air compressor to the drill has a 40 mm diameter and is smooth. The maximum compressor discharge gauge pressure is 690 kPa. Neglect changes in air density and any effects of hose curvature. Air leaves the compressor at 40° C. What is the longest hose that can be used?

Answers

Answer:

L = 46.35 m

Explanation:

GIVEN DATA

\dot m  = 0.25 kg/s

D = 40 mm

P_1 = 690 kPa

P_2 = 650 kPa

T_1 = 40° = 313 K

head loss equation

[tex][\frac{P_1}{\rho} +\alpha \frac{v_1^2}{2} +gz_1] -[\frac{P_2}{\rho} +\alpha \frac{v_2^2}{2} +gz_2] = h_l +h_m[/tex]

where[tex] h_l = \frac{ flv^2}{2D}[/tex]

[tex]h_m minor loss [/tex]

density is constant

[tex]v_1 = v_2[/tex]

head is same so,[tex] z_1 = z_2 [/tex]

curvature is constant so[tex] \alpha = constant[/tex]

neglecting minor losses

[tex]\frac{P_1}{\rho}  -\frac{P_2}{\rho} = \frac{ flv^2}{2D}[/tex]

we know[tex] \dot m[/tex] is given as[tex] = \rho VA[/tex]

[tex]\rho =\frac{P_1}{RT_1}[/tex]

[tex]\rho =\frac{690 *10^3}{287*313} = 7.68 kg/m3[/tex]

therefore

[tex]v = \frac{\dot m}{\rho A}[/tex]

[tex]V =\frac{0.25}{7.68 \frac{\pi}{4} *(40*10^{-3})^2}[/tex]

V = 25.90 m/s

[tex]Re = \frac{\rho VD}{\mu}[/tex]

for T = 40 Degree, [tex]\mu = 1.91*10^{-5}[/tex]

[tex]Re =\frac{7.68*25.90*40*10^{-3}}{1.91*10^{-5}}[/tex]

Re = 4.16*10^5 > 2300 therefore turbulent flow

for Re =4.16*10^5 , f = 0.0134

Therefore

[tex]\frac{P_1}{\rho}  -\frac{P_2}{\rho} = \frac{ flv^2}{2D}[/tex]

[tex]L = \frac{(P_1-P_2) 2D}{\rho f v^2}[/tex]

[tex]L =\frac{(690-650)*`10^3* 2*40*10^{-3}}{7.68*0.0134*25.90^2}[/tex]

L = 46.35 m

A solar panel measures 80 cm by 50 cm. In direct sunlight, the panel delivers 4.8 A at 15 V. If the intensity of sunlight is 1 000 W/m2, what is the efficiency of the solar panel in converting solar energy into electrical energy?

Answers

Answer:

The solar panel efficiency in converting solar energy in electrical energy is 18%.

Explanation:

The solar panel's  efficiency can be defined as:

[tex] n= \frac{Pe}{Ps}*100\%[/tex]

Where Pe and Ps are the output electrical power and input solar power respectively. The electrical is computing in terms of the voltage and current delivered:

[tex]Pe=I.V[/tex]

[tex]Pe=4.8 A * 15 V[/tex]

[tex]Pe= 72 AV = 72 W [/tex]

The net solar power of panel is found by multiplying the solar intensity by the panel area in square meters:

[tex]Ps = Is.Ap[/tex]

[tex]Ps = 1000 W/m^2 *(0.8 m * 0.5 m)[/tex]

[tex]Ps = 1000 W/m^2 *(0.40 m^2)[/tex]

[tex]Ps = 400 W [/tex]

Finally the panel efficience n is:

[tex] n= \frac{72 W}{400 W}*100\%[/tex]

[tex] n= 0.18*100\% = 18\%[/tex]

Convection is a function of temperature to the fourth power. a)-True b)-False

Answers

Answer:

The given statement for temperature and convection is False.

Explanation:

Convection is not a function of temperature to the fourth power but it depends linearly on temperature. the below equation shows the linear relation of heat transfer due to convection and temperature:

Q = [tex]H_{c}A(T_{hot} - T_{cold} )[/tex]

Whereas, radiation is a function of temperature to the fourth power.

The Stefan-Boltzmann law gives the relationship between an object's temperature and the amount of radiation it emits. The law is given by:

[tex]Q=\sigma T^{4}[/tex]

Crystal lattice can be characterized with a) angle, geometry and coordination number b) the color, size, lattice type; c) hardness, geometry d) atomic size, plasticity

Answers

Answer: a) angle, geometry and coordination number

Explanation: Crystal lattice is described as arrangement of groups of atoms inside three dimensional structure of crystal. It has a particular geometry in which atoms are placed in a symmetry. The also have angle in which placement of atoms are done. Co-ordination number also determines the crystal lattice by counting the atoms with which it is bonded. Thus, option (a) is the correct option.

Describe how the Rotary Engine works.

Answers

Answer:

  Rotary engine was early known by the name of internal combustion engine. It convert heat from a high pressure of combustion. The main advantage of rotary engine is that it can be operate with less number of vibration. It works on the principle of converting pressure into rotating motion. In rotary engine the expansion pressure is applied on the flank rotor.  

Answer: The rotary engine works on the same basic principle as the piston engine: combustion in the power plant releases energy to power the vehicle. However, the delivery system in the rotary engine is wholly unique. The piston engine performs four key operations: intake, compression, combustion, and exhaust.

Explanation:

What are the mechanisms of energy transfer in an open system?

Answers

Answer:

mechanism of energy transfer in system is depend on Heat and Work:

Explanation:

Heat :Heat is described as the type of energy transmitted by a temperature difference between two structures (or a system and its environment).

Work:it is  is an interaction of energy between a system and its environment. In the form of  work   it can cross the boundaries of a closed system. if energy crossing boundary of the system is not heat then it must be work..

In general, this of the following methods yields the most conservative fatigue strength proof (a) Saderberg method (b)-Goodman method (c)-Gerber line (d)-The ASME elliptic curve.

Answers

Answer:

a). Soderberg method

Explanation:

A straight line joining the endurance limit, [tex]S_{e}[/tex] on the ordinate and to the yield strength,[tex]S_{yt}[/tex]  on the abscissa is know as Soderberg line.

   The Soderberg line is the most conservative failure criteria and in this there is no need to consider yielding point in this case.

The equation for Soderberg is given by

[tex]\frac{\sigma _{m}}{S_{yt}}+\frac{\sigma _{a}}{S_{e}}=1[/tex]

where [tex]\sigma _{m}[/tex] is mean stress

           [tex]\sigma _{a}[/tex] is amplitude stress

           

A flat rectangular door in a mine is submerged froa one side in vater. The door dimensions are 2 n high, 1 n vide and the vater level is 1,5 m higher than the top of the door. The door has two hinges on the vertical edge, 160 mm from each corner and a sliding bolt on the other side in the niddle. Calculate the forces on the hinges and sliding bolt. Hint: Consider the door from a side view and from a plaa vies respectively and take moments about a point each time.)

Answers

Answer:

Force on the bolt = 24.525 kN

Force on the 1st hinge = 8.35 kN

Force on the 2nd hinge = 16.17 kN

Explanation:

Given:

height = 2 m

width =1 m

depth of the door from the water surface = 1.5 m

Therefore,

[tex]\bar{y}[/tex] =1.5+1 = 2.5 m

Hydrostatic force acting on the door is

[tex]F= \rho \times g\times \bar{y}\times A[/tex]

[tex]F= 1000 \times 9.81\times 2.5\times 2\times 1[/tex]

         = 49050 N

         = 49.05 kN

Now finding the Moment of inertia of the door about x axis

[tex]I_{xx}=\frac{1}{12}\times b\times h^{3}[/tex]

[tex]I_{xx}=\frac{1}{12}\times1\times 2^{3}[/tex]

               = 0.67

Now location of force, [tex]y^{*}[/tex]

[tex]y^{*}=\bar{y}+\frac{I_{xx}}{A\times \bar{y}}[/tex]

[tex]y^{*}=2.5+\frac{0.67}{2\times 1\times 2.5}[/tex]

             = 2.634

Therefore, calculating the unknown forces

[tex]F=F_{A}+R_{B}+R_{C} = 49.05[/tex]  ------------------(1)

Now since [tex]\sum M_{R_{A}}=0[/tex]

∴ [tex]R_{B}\times L+R_{C}\times L-F\times \frac{1}{2}=0[/tex]

  [tex]R_{B}+R_{C}-F\times \frac{1}{2}=0[/tex]

  [tex]R_{B}+R_{C}=\frac{F}{2}[/tex]

  [tex]R_{B}+R_{C}=24.525[/tex]        -----------------------(2)

From (1) and (2), we get

[tex]R_{A} = 49.05-24.525[/tex]

                = 24.525 kN

This is the force on the Sliding bolt

Taking [tex]\sum M_{R_{C}}=0[/tex]

[tex]F\times 0.706-R_{A}\times 0.84-R_{B}\times 1.68 = 0[/tex]

[tex]49.05\times 0.706-24.525\times 0.84-R_{B}\times 1.68 = 0[/tex]

[tex]R_{B}[/tex] =8.35 kN

This is the reaction force on the 1st hinge.

Now from (1), we get

[tex]R_{C}[/tex] =16.17 kN

This is the force on the 2nd hinge.

The product second moment of area Ixy is found by multiplying Ix and Iy. a)True b)- False

Answers

Answer:

(b)False

Explanation:

[tex]I_{xy}[/tex] defined as

      [tex]I_{xy}[/tex] =[tex]\int \left (x\cdot y\right )dA[/tex]

Where x is the distance from centroidal x-axis

           y is the distance from centroidal y-axis

          dA is the elemental area.

The product of x and y can be positive or negative ,so the value of  [tex]I_{xy}[/tex] can be positive as well as negative .

So from the above expressions we can say that the product of [tex]I_{x},I_y[/tex] is different from [tex]I_{xy}[/tex] .

Critical Reynolds number for internal turbulent flow is 500,000. a) True b) False

Answers

Answer:

FALSE

Explanation:

REYNOLDS NUMBER :Reynolds number is used to indicate whether the fluid flow past a body or turbulent. it is a dimensionless number

REYNOLDS NUMBER OF A INTERNAL TURBULENT FLOW: For a flow in a pipe experimental observation show that the critical reynolds number is about  2300 for the practical purpose . so the reynolds number can not be so high as 500000

The process in which the system pressure remain constant is called a)-isobaric b)-isochoric c)-isolated d)-isothermal

Answers

Answer:

Isobaric process

Explanation:

The process in which the system pressure remain constant is called is called isobaric process. The word "iso"means same and baric means pressure.

At constant pressure, the work done is given by :

[tex]W=p\times \Delta V[/tex]

Where

W is the work done by the system

p is the constant pressure

[tex]\Delta V[/tex] is the change in volume

So, the correct option is (c) " isobaric process ".

What is (a) body forces (b) surface forces?

Answers

Answer:

A) Body forces-

  Body forces is the forces which acts throughout the volume of the body.     It is basically distributed over the volume and mass of the element of the body. In a body force other body exerts a force without being contract.  

For example : Gravity forces, electromagnetic forces, centrifugal forces.

B) Surface forces-

   Surface forces is the forces which are distributed all over the free surface of the body. Surfaces forces can be further divided into two perpendicular components as: normal forces and shear forces.

For example : Pressure forces and viscous forces.              

A long homogeneous resistance wire of radius ro = 5 mm is being used to heat the air in a room by the passage of electric current. Heat is generated in the wire uniformly at a rate of g=5'107 W/m as a result of resistance heating. If the temperature of the outer surface of the wire remains at 180°C, determine the temperature at r = 2 mm after steady operation conditions are reached. Take the thermal conductivity of the wire to be k = 8 W/m x °C.

Answers

Answer:

T = 212.8125°C

Explanation:

Given

radius of the wire, [tex]r_{0}[/tex] = 5 mm 0.005 m

heat generated, g = 5 x [tex]10^{7}[/tex] W/[tex]m^{3}[/tex]

outer surface temperature, [tex]T_{S}[/tex] = 180°C

Thermal conductivity, k = 8 W / m-k

Now maximum temperature occurs at the center of the wire

that is at r=0,

Therefore, [tex]T_{o}=T_{S}+\frac{g\times r_{o}^{2}}{4\times k}[/tex]

                  [tex]T_{o}=180+\frac{5\times 10^{7}\times 0.005^{2}}{4\times 8}[/tex]

                 [tex]T_{o}=219.0625[/tex]°C

Therefore, temperature at r = 2 mm

[tex]\frac{T-T_{S}}{T_{O}-T_{S}}= 1-\left (\frac{r}{r_{O}}  \right )^{2}[/tex]

[tex]\frac{T-180}{219.0625-180}= 1-\left (\frac{2}{5}  \right )^{2}[/tex]

Therefore, T = 212.8125°C

_______On what basis composites are classified a)- shape of dispersed phase b)-matrix materials c)-chemistry of dispersed phase d)-a & b

Answers

Answer: d) a & b

Explanation: Composite materials are made up of two or more different types of phases which include dispersed phase and matrix phase as most important phases.

Matrix phase is a types of continuous phase which is responsible for holding of the dispersed phase.It shows good property of ductility.Dispersed phase is also known as the secondary phase which is harder in nature than matrix phase.

How much power is needed to operate a Carnot heat pump if the pump receives heat 10°C and delivers 50 kW of heat at 40°C? at A) 5.30 kw B) 151 kw C) 37.5 kW D) 4.79 kw

Answers

Answer:

Power needed to pump=4.79 KW.

Explanation:

Given that:[tex]T_{1}=283K,T_{2}=313K,Q_{H}=50KW[/tex]

We know that coefficient of performance of heat pump

 COP=[tex]\dfrac{T_{H}}{T_{H}-T_{L}}[/tex]

So COP=[tex]\dfrac{313}{313-283}[/tex]

      COP=10.43

COP=[tex]\frac{Q_{H}}{W_{in}}[/tex]

      10.43 =[tex]\frac{50}{W_{in}}[/tex]

[tex]W_{in}[/tex]=4.79 KW

So power needed to pump=4.79 KW.

Explain the following terms; i.Water content in air ii. Relative humidity iii. Enthalpy

Answers

Answer:

Explanation:

WATER CONTENT IN AIR-the water content of the air varies from place to place and from time to time because water content in air is dependent on temperature if temperature is change then water content also change water exist in air as a solid liquid and gas

RELATIVE HUMIDITY-Relative humidity is the ratio of partial pressure of water vapor to the equilibrium vapor pressure of water at a given temperature  relative humidity depends on temperature and pressure of the system

Enthalpy-when a substance changes at constant pressure enthalpy tells how much heat and work was added or removed from the substance

enthalpy is equal to the sum of system internal energy and product of its pressure and volume.it is denoted H

Briefly describe the function of the thermostatic expansion valve in a vapour compression refrigeration system

Answers

Answer:

Explanation:

Thermostatic expansion valve is mainly a throttling device commonly used in air conditioning systems and refrigerators.

It is an automatic valve that maintains proper flow of refrigerant in the evaporator according to  the load inside the evaporator. When the load in the evaporator is higher the valve opens and  allows the increase in flow of refrigerant and when the load reduces the valve closes a bit and  reduces the flow of refrigerant. This process leads to higher efficiency of compressor as well as the whole refrigeration system.  Thus TEV works to reduce the pressure of refrigerant from higher condenser pressure to the lower evaporator pressure. It also keeps the evaporator active.      

A strip ofmetal is originally 1.2m long. Itis stretched in three steps: first to a length of 1.6m, then to 2.2 m, and finally to 2.5 m. Compute the true strain after each step, and the true strain for the entire process (i.e. for stretching from 1.2 m to 2.5 m).

Answers

Answer:

strains for the respective cases are

0.287

0.318

0.127

and for the entire process 0.733

Explanation:

The formula for the true strain is given as:

[tex]\epsilon =\ln \frac{l}{l_{o}}[/tex]

Where

[tex]\epsilon =[/tex] True strain

l= length of the member after deformation

[tex]l_{o} = [/tex] original length of the member

Now for the first case we have

l= 1.6m

[tex]l_{o} = 1.2m[/tex]

thus,

[tex]\epsilon =\ln \frac{1.6}{1.2}[/tex]

[tex]\epsilon =0.287[/tex]

similarly for the second case we have

l= 2.2m

[tex]l_{o} = 1.6m[/tex]   (as the length is changing from 1.6m in this case)

thus,

[tex]\epsilon =\ln \frac{2.2}{1.6}[/tex]

[tex]\epsilon =0.318[/tex]

Now for the third case

l= 2.5m

[tex]l_{o} = 2.2m[/tex]

thus,

[tex]\epsilon =\ln \frac{2.5}{2.2}[/tex]

[tex]\epsilon =0.127[/tex]

Now the true strain for the entire process

l=2.5m

[tex]l_{o} = 1.2m[/tex]

thus,

[tex]\epsilon =\ln \frac{2.5}{1.2}[/tex]

[tex]\epsilon =0.733[/tex]

In a vapour absorption refrigeration system, the compressor of the vapour compression system is replaced by a a)- absorber, generator and liquid pump. b)-absorber and generator. c)- liquid pump. d)-generator.

Answers

Answer:

a). absorber, generator and liquid pump

Explanation:

The Vapour absorption system consists of compression, expansion, condensation and evapouration processes. This system uses ammonia, lithium bromide or water as refrigerant.

                  An absorber, pump and generator is used in place of a compressor in the vapour compression refrigeration system. The operation is smooth in vapour absorption system since all the moving elements are in the pump only. This system make use of low energy like heat and can work on lower evapourator pressure. It has low Coefficient of performance.

Which of the following is/are FALSE about refining aluminum from the ore state (mark all that apply) a)- A blast furnace is used b)-The ore is called bauxite c)-The process uses a lot of electricity d)-Coke is used to produce the heat

Answers

Answer:

The options a)- A blast furnace is used and d)-Coke is used to produce the heat are FALSE.

Explanation:

Aluminium is a chemical element and the most abundant metal present in the Earth's crust. An aluminium ore is called bauxite. Aluminium is extracted from its ore by the process of electrolysis, called the Hall–Héroult process. The extraction of aluminium is an expensive process as it requires large amount of electricity. The bauxite is purified to produce aluminium oxide. Then, aluminium is extracted from the aluminium oxide.

Therefore, the refining of aluminum from its ore does not involve the use of a blast furnace and coke to produce heat.

In a flow over a flat plate, the Stanton number is 0.005: What is the approximate friction factor for this flow a)- 0.01 b)- 0.02 c)- 0.001 d)- 0.1

Answers

Answer:

(a) .01

Explanation:

stanton number is a dimensionless quantity stanton is expressed as [tex]\frac{heat transer}{thermal capacity}[/tex]stanton number is discovered by Thomas edward stanton

there is relation between friction factor and stanton number and friction factor that is stanton number is half of friction factor

stanton number =[tex]\frac{friction factor}{2}[/tex]

.005=[tex]\frac{friction factor}{2}[/tex]

friction factor =2×.005

friction factor=.01

A metal rod, 20 mm diameter, is tested in tension (force applied axially). The total extension over a length of 80 mm is 3.04 x 102 mm for a pull of 25 kN. Calculate the normal stress, normal strain and modulus of elasticity (Young's modulus), assuming the rod is linear elastic over the load range.

Answers

Answer:stress=79.56MPa

strain=[tex]3.8\times 10^{-4}[/tex]

Young Modulus=209.36 GPa

Explanation:

Given data

d=20 mm

Length[tex]\left ( L\right )[/tex]=80mm

[tex]\Delta {L}[/tex]=[tex]3.04\times 10^{-2}[/tex]mm

Load=[tex]25\times 10^{3}[/tex]N

[tex]\left ( i\right )[/tex]

Stress=[tex]\frac{Load\ applied}{cross-section}[/tex]

Stress=[tex]\frac{25\times 10^{3}}{314.2}[/tex]

Stress=79.56MPa

[tex]\left ( ii\right )[/tex]

Strain=[tex]\frac{Change\ in\ length}{Length}[/tex]

Strain=[tex]\frac{3.04\times 10^{-3}}{80}[/tex]

Strain=[tex]3.8\times 10^{-4}[/tex]

[tex]\left ( iii\right )[/tex]

young modulus[tex]\left ( E\right )[/tex]=[tex]\frac{Stress}{Strain}[/tex]

E=[tex]\frac{79.56\times 10^{6}}{3.8\times 10^{-4}}[/tex]

E=209.36GPa

Refectories are one of the types of ceramics that have low melting temperature. a)-True b)-False

Answers

Answer:

b). False

Explanation:

A refractory material is a type of material that can withstand high temperatures without loosing its strength. They are used in reactors, furnaces, kilns, etc.

    Refractory materials are certain super alloys and ceramics materials.

Properties of refractory materials :

1. Refractory materials have high melting point.

2.They acts barriers between high heat zone and low heat zone.

3. The specific heat of refractory material is very low.

4. Refractories that have high bulk densities are better in quality.

Hence, Refractory materials have a very high melting temperature.

Convert 30.12345 degrees into degrees, minutes and seconds.

Answers

Answer:

30.12345° can be written as : 30°7'20.42''

Or,

30 degrees 7 minutes and 20.42 seconds.

Explanation:

1 degree consists of 60 arc minutes.  

1 arc minutes consists of 60 arc seconds.  

Thus, 30.12345° can be written as:

30.12345°= 30° + 0.12345°

1° = 60'

So,

0.12345° = 0.12345*60' = 7.407'

Thus, 7.407' can be written as:

7.407' = 7' + 0.407'

1' = 60''

So,

0.407' = 0.407*60'' = 20.42''

Thus,

30.12345° can be written as : 30°7'20.42''

A typical aircraft fuselage structure would be capable of carrying torsion moment. a)True b)- False

Answers

Answer:

True

Explanation:

An aircraft is subject to 3 primary rotations

1) About longitudinal axis known as rolling

2) About lateral axis known as known as pitching

3) About the vertical axis known as yawing

The rolling of the aircraft induces torsion in the body of the aircraft thus the fuselage structure should be capable of carrying torsion

It is true about polymers: a)-They are light-weight materials b)-There are three general classes: thermosets, thermoplastics and thermoset c)-They present long term instability under load d)-All the above

Answers

Answer: d) All of the above

Explanation: Polymers are the substances that have molecular structure with having same bonds in the entire molecule together.There are light weight substance which occur natural as well as artificially. They are also categorized  as thermoplastics ,thermosets, and elastomers. They also have the property of being stretching and bending under the pressure or load they are also instable. Therefore, all the options are correct statement about polymers.

In a photonic material, signal transmission occurs by which of the following? a)- Electrons b)- Photons

Answers

B. Photons.

In a photonic material, signal transmission occurs by photons which are light particles.

The velocity of flow over a flat plate is doubled. Assuming the flow remains laminar over the entire plate, what is the ratio of the new thermal boundary layer thickness to the original boundary layer thickness?

Answers

Answer:

Given:

laminar flow

and since velocity of flow is doubled, we consider [tex]v_{n}[/tex] as new velocity and [tex]v_{o}[/tex] as original velocity

Explanation:

As per laminar flow, thickness, t is given by

t = [tex]\frac{4.91x}{\sqrt( R_{ex}) }[/tex]

t =  [tex]\frac{4.91x}{\sqrt{\frac{\rho vx}{\mu }}}[/tex]

t = [tex]\frac{4.91x\mu }{\sqrt{\rho vx}}[/tex]

where,

[tex]R_{ex}[/tex] = Reynold's no.

therefore,

t ∝ [tex]\frac{1}{\sqrt{v} }[/tex]

Now,

[tex]\frac{t_{n} }{t_{o} }[/tex] = [tex]\sqrt{(\frac{v_{o} }{v_{n} })}[/tex]

[tex]\frac{t_{n} }{t_{o} }[/tex] = [tex]\sqrt{(\frac{v_{o} }{2v_{o} } )} =\frac{1}{\sqrt{2} }[/tex]

therefore,

[tex]t_{n}:t_{o} = 1:\sqrt{2}[/tex]

Determine the work done by an engine shaft rotating at 2500 rpm delivering an output torque of 4.5 N.m over a period of 30 seconds.

Answers

Answer:

work done= 2.12 kJ

Explanation:

Given

N=2500 rpm

T=4.5 N.m

Period ,t= 30 s

[tex]torque =\frac{power}{2\pi N}[/tex]

[tex]power=2\pi N\times T[/tex]

P=[tex]2\times \pi \times2500 \times 4.5[/tex]

P=70,685W

P=70.685 KW

power=[tex]\frac{work done}{time}[/tex]

work done = power * time

                  = 70.685*30=2120.55J

                  = 2.12 kJ

Water flovs in a pipe of diameter 150 mm. The velocity of the water is measured at a certain spot which reflects the average flow velocity. A pitot static tube has a meter coefficient of C = 1,05 and is joined to a mercury manometer indicating a reading of 167 mm. Determine the flow rate of the water.

Answers

Answer:

Q = 0.118 [tex]m^{3}[/tex]/s

Explanation:

Given :

diameter of the pipe, d = 150 mm

                                       = 0.15 m

Pitot tube co efficient, [tex]C_{v}[/tex] = 1.05

manometer reading is given, x = 167 mm

                                                   = 0.167 m

From manometer reading,we can find the difference between the manometer height, h

 [tex]h =x\times\left [ \frac{S_{m}}{S_{w}}-1 \right ][/tex]

[tex]h =0.167\times\left [ \frac{13.6}{1}-1 \right ][/tex]

h = 2.1042 m

Now, average velocity is v = [tex]C_{v}[/tex][tex]\sqrt{2.g.h}[/tex]

                                            = [tex]1.05\times \sqrt{2\times 9.81\times 2.1042}[/tex]

                                            = 6.74 m/s

Area of the pipe, A = [tex]\frac{\pi }{4}\times d^{2}[/tex]

                                = [tex]\frac{\pi }{4}\times 0.15^{2}[/tex]

                                = 0.0176 [tex]m^{2}[/tex]

Therefore, flow rate is given by, Q = A.v

                                                          = 0.0176 X 6.74

                                                          = 0.118[tex]m^{3}[/tex]/s

Other Questions
Use the given data to find the 95% confidence interval estimate of the population mean . Assume that the population has a normal distribution. IQ scores of professional athletes: Sample size n=10 Mean x=104 Standard deviation s=10 Which of the following is a power the Constitution allows that could limit individual rights? Assuming vecList is a vector container, the expression ____ deletes all elements from the container.A.vecList.erase(position)B.vecList.erase(beg, end)C.vecList.clear() If you draw a card with a value of three or less from a standard deck of cards, I will pay you $146. If not, you pay me $24. (Aces are considered the highest card in the deck.)Step 1 of 2 :Find the expected value of the proposition. Round your answer to two decimal places. Losses must be expressed as negative values. Solve please Im desperate The whole batch cost $28,000 and contained 140 items. Write the two rates (ratios) impliedby this statement. What would be the price for 200 items?Please show work Name one aluminium alloy used in low pressure die casting and one in high pressure die casting? Explain the major reasons why one is different to the other? Air with a mass flow rate of 2.3 kg/s enters a horizontal nozzle operating at steady state at 420 K, 350 kPa, and velocity of 3 m/s. At the exit, the temperature is 300 K and the velocity is 460 m/s. Using the ideal gas model for air with constant ep=1.011 k/kg. K, determine: (a) the area at the inlet, in m2 (b) the heat transfer to the nozzle from its surroundings, in kW. A car starts from the origin and is driven 1.88 km south, then 9.05 km in a direction 47 north of east. Relative to the origin, what is the car's final location? a) Express your answer in terms of an angle (in degree)b) and a distance. 1) Some sacrifices are made for ideals. People who believe in justice, such as Martin Luther King Jr. and Nelson Mandela, often make sacrifices for their beliefs. (2) In fact, both of these leaders spent time in prison because they stood up for their beliefs. (3) It is upsetting to think that society punished these people who are now considered heroes. (4) The sacrifices they made helped change the world.Which sentence is off topic?the first sentencethe second sentencethe third sentencethe fourth sentence Who was the 34th president of the United States? Read the sentences. When bricking a building, masons must fit the bricks together. Sometimes, masons slice bricks in half for a better fit. Which is the best way to combine the sentences? When bricking a building, masons must fit the bricks together; sometimes they slice bricks in half for a better fit. When bricking a building: masons must fit the bricks together; sometimes they slice bricks in half for a better fit. When bricking a building, masons must fit the bricks together; Sometimes they slice bricks in half for a better fit. The sun hung bright and warm in the sky. The breeze blewsoftly across the meadow. The grass rustled lazily for amoment and stood still.Which word best describes the tone of the sentences?'OA. FrightfulOOB. Gratefulc. PeacefulOD. Excited A _____ cause is an unforeseeable event which interrupts the causal chain between the defendant's breach of duty and the damages the plaintiff suffered.Multiple Choicesubordinate superseding parallel contributory comparative A population of 1,000 bacteria is treated with a medicine and begins to die 5% each hour. How can the bacteria population be determined after a number of hours, ?a. ()=0.95(+1,000)b. ()=1,000^0.95c. ()=0.95+1,000d. ()=1,0000.95^ 3y2+5y-(4y2+5)-8y2-(-7-3y2) Let R be a communtative ring and a, b elements in R. Prove that if a and b are units, then so is ab. What can we say about ab when a is a unit and b is a zero divisor? Prove your claim. A student was given the following diagram and asked to prove that 21 4 22.What would be the reason for the third step in the proof?Given: Line A and line Bare parallel.Prove: 21 22 What is(y^4/3 x y^2/3)^-1/2 Which of the factors of industrialization does Bainescite in the reading? Check all that applyA great number of streams ...furnish water-poweradequate to turn many hundred mills: they afford theelement of water, indispensable for scouring, bleaching,printing, dyeing, and other processes of manufacture:and when collected in their larger channels, or employedto feed canals, they supply a superior inland navigation,so important for the transit of raw materials andmerchandise.water power to run machinesrivers for transportation of goodsa growing population to work in factories naturalresources for productionnatural resources for productionwealthy people to invest in manufacturing