Write a net ionic equation to show how triethylamine, (C2H5)3N, behaves as a base in water. The substance 2-methylpiperidine is a weak nitrogenous base like ammonia. Complete the following equation that shows how 2-methylpiperidine reacts when dissolved in water.

Answers

Answer 1

You may find bellow the net ionic equations.

Explanation:

Net ionic equation of triethylamine in water:

(C₂H₅)₃N (l) + H₂O (l) → (C₂H₅)₃NH⁺ (aq) + OH⁻ (aq)

where:

(l) - liquid

(aq) - aqueous

You may find in the attached picture the ionization of 2-methylpiperidine in water.

Learn more about:

net ionic equations

https://brainly.com/question/7018960

https://brainly.com/question/7428881

#learnwithBrainly

Write A Net Ionic Equation To Show How Triethylamine, (C2H5)3N, Behaves As A Base In Water. The Substance
Answer 2
Final answer:

Triethylamine and 2-methylpiperidine act as weak bases in water, accepting protons to form hydroxide ions and their respective conjugate acids. This is an example of base ionization. It was not possible to provide an exact equation for 2-methylpiperidine without a specific structure.

Explanation:

When triethylamine, also a weak nitrogen base like ammonia, is dissolved in water, it accepts a proton from a water molecule to form a hydroxide ion (OH-) and an ethylammonium ion ((C2H5)3NH+). This is represented by the equation: (C2H5)3N(aq) + H2O(l) ⇌ (C2H5)3NH+(aq) + OH-(aq).

Similarly, 2-methylpiperidine being a weak base, will also react with water to form hydroxide ions (OH-) and 2-methylpiperidinium ions. However, without a specific structure for 2-methylpiperdine, it's challenging to write the exact equation.

These are examples of base ionization, where a base reacts with water to produce hydroxide ions and a conjugate acid. Both triethylamine and 2-methylpiperidine act as Brønsted bases, accepting protons from water molecules.

Learn more about Base Ionization here:

https://brainly.com/question/33918764

#SPJ11


Related Questions

Which of the statements applies to oxidation?

(A) Ketones cannot be oxidized further.
(B) Carboxylic acids are oxidized to ketones.
(C) Alcohols are oxidized to alkanes.
(D) Ketones are oxidized to alcohols.

Answers

Answer:

The correct option is: (A) Ketones cannot be oxidized further

Explanation:

Oxidation refers to the gain of oxygen or the formation of carbon-oxygen bond (C-O bond).

Alcohols are organic compounds containing at least one hydroxyl group. These compounds can be further classified into primary (R-CH₂-OH), secondary (R¹R²CH-OH) and tertiary alcohols (R¹R²R³C-OH).

The partial oxidation of primary alcohol gives aldehyde (R-CHO). Further oxidation of aldehyds gives carboxylic acid (R-COOH). Primary alcohol can also be oxidized directly to carboxylic acid. However, the carboxylic acid can not be further oxidized.

[tex]R-CH_{2}-OH \overset{[O]}{\rightarrow} R-CHO \overset{[O]}{\rightarrow} R-COOH \\R-CH_{2}-OH \overset{[O]}{\rightarrow} R-COOH[/tex]

Oxidation of secondary alcohols gives ketones (R¹R²C=O), which can not be oxidized further.

[tex]R^{1}R^{2}CH-OH \overset{[O]}{\rightarrow} R^{1}R^{2}C=O[/tex]

Whereas, tertiary alcohols are resistant to oxidation.

Therefore, the correct statement regarding oxidation is (A) Ketones cannot be oxidized further.

The standard free-energy changes for the reactions below are given.Phosphocreatine → creatine + Pi ∆ G'° = –43.0 kJ/molATP → ADP + Pi ∆ G'° = –30.5 kJ/mol
What is the overall ∆ G'° for the following reaction?
Phosphocreatine + ADP → creatine + ATP

Answers

Answer:

Gibbs free-energy of the reaction = (–12.5 kJ/mol)

Explanation:

The Gibbs free-energy of a reaction predicts the spontaneity or feasibility of a given chemical reaction.

Given the standard Gibbs free energy changes:

Phosphocreatine → creatine + Pi,  ∆G° = –43.0 kJ/mol     ...(1)

ATP → ADP + Pi , ∆G° = –30.5 kJ/mol      ....(2)

Now to calculate the Gibbs free-energy of the given chemical reaction: Phosphocreatine + ADP → creatine + ATP; the equation (2) is reversed to give:

ADP + Pi  → ATP, ∆G° = + 30.5 kJ/mol      ...(3)

Now the equation (3) and (1) are added, to give:

Phosphocreatine + ADP + Pi→ creatine + ATP + Pi

Phosphocreatine + ADP → creatine + ATP  

 

Therefore, to calculate the Gibbs free-energy of the reaction, the standard Gibbs free energy changes of the equations (1) and (3) are added similarly:

Gibbs free-energy of the reaction: ∆G° = (–43.0 kJ/mol) + ( + 30.5 kJ/mol) = (–12.5 kJ/mol)

Therefore, the Gibbs free-energy of the reaction = (–12.5 kJ/mol)

Final answer:

The overall standard free-energy change for the reaction Phosphocreatine + ADP to form creatine and ATP is the sum of the changes for the individual reactions, resulting in −12.5 kJ/mol.

Explanation:

To determine the overall standard free-energy change (Δ G'°) for the reaction where phosphocreatine and ADP react to form creatine and ATP (“Phosphocreatine + ADP → creatine + ATP”), we need to consider the given free-energy changes for the individual reactions:

Phosphocreatine → creatine + Pi (Δ G'° = −43.0 kJ/mol)ATP → ADP + Pi (Δ G'° = −30.5 kJ/mol, which should actually be considered as ADP + Pi → ATP since it occurs in the reverse direction)

By reversing the second reaction, we invert the sign of its standard free-energy change. Therefore, for the reaction ADP + Pi → ATP, the Δ G'° becomes +30.5 kJ/mol.
Now, to find the overall Δ G'° for the reaction Phosphocreatine + ADP → creatine + ATP, we sum up the standard free-energy changes of the two reactions:

Δ G'° (overall) = Δ G'° (Phosphocreatine → creatine + Pi) + Δ G'° (ADP + Pi → ATP)

Δ G'° (overall) = (−43.0 kJ/mol) + (+30.5 kJ/mol) = −12.5 kJ/mol

The result is −12.5 kJ/mol, which indicates that the coupled reaction is also exergonic, releasing energy.

At a certain temperature the rate of this reaction is first order in HI with a rate constant of :7.21s?12HI(g)??H2(g) + I2(g)
Suppose a vessel contains HI at a concentration of 0.440M
Calculate the concentration of HI in the vessel 0.210 seconds later. You may assume no other reaction is important.
Round your answer to 2 significant digits.

Answers

Answer:

[HI] = 0.097 M

Explanation:

Let's consider the following reaction.

2 HI(g) ⇄ H₂(g) + I₂(g)

The order of reaction for HI is 1. Thus, we can calculate the concentration of HI ([HI]) at certain time using the following expression:

ln [HI] = ln [HI]₀ - k. t

where,

[HI]₀ is the initial concentration of HI

k is the rate constant

t is the time elapsed

When [HI]₀ = 0.440 M and t = 0.210 s, the concentration of HI is

ln [HI] = ln (0.440) - 7.21 s⁻¹ × 0.210 s

ln [HI] = -2.33

[HI] = 0.097 M

Use this Initial Rate data to answer Questions 6 and 7. Consider the reaction:

xA + yB → products

The following Initial Rate kinetic data were obtained:

Trial [A] [B] Initial Rate (mol/L-s)
1 0.100 0.400 0.0904
2 0.200 0.800 0.362
3 0.400 1.200 1.08
4 0.200 0.400 0.181
5 0.100 0.800 0.181

The rate law for this reaction is: rate = k[A]m[B]n.
(6) What is m (the reaction order with respect to reactant A)?
(7) What is n (the reaction order with respect to reactant B)?

Answers

Answer:

m = 1

n = 1

Explanation:

The rate law is:

[tex]r=k.[A]^{m} .[B]^{n}[/tex]

where,

r is the rate of the reaction

k is the rate constant

m is the order of reaction with respect to A

n is the order of reaction with respect to B

Let's consider trials 1 and 4. We know that [B]₁ = [B]₄ . The rate r₁/r₄ is:

[tex]\frac{r_{1}}{r_{4}} =\frac{k.[A]_{1}^{m}.[B]_{1}^{n}  }{k.[A]_{4}^{m}.[B]_{4}^{n}} \\\frac{r_{1}}{r_{4}} =(\frac{[A]_{1}}{[A]_{4}} )^{m} \\\frac{0.0904M/s}{0.181M/s}=(\frac{0.100M}{0.200M})^{m} \\m=1[/tex]

Let's consider trial 1 and 5. We know that [A]₁ = [A]₅. The rate r₁/r₅ is:

[tex]\frac{r_{1}}{r_{5}} =\frac{k.[A]_{1}^{m}.[B]_{1}^{n}  }{k.[A]_{5}^{m}.[B]_{5}^{n}} \\\frac{r_{1}}{r_{5}} =(\frac{[B]_{1}}{[B]_{5}} )^{n} \\\frac{0.0904M/s}{0.181M/s}=(\frac{0.400M}{0.800M})^{n} \\n=1[/tex]

If 45.0 mL of ethanol (density=0.789 g/mL) initially at 9.0 C is mixed with 45.0 mL of water (density=1.0 g/mL) initially at 28.6 C in an insulated beaker, and assuming that no heat is lost, what is the final temperature of the mixture?



I tried many times in trying to get the answer, but I keep getting it wrong. I appreciate who answers this writes it step by step. Thank you.

Answers

Applying the principle of conservation of energy and the heat equation, the final temperature of the ethanol-water mixture is calculated to be 22.7°C

The specific example used in the image is for a mixture of ethanol and water.

Step 1: Understand the principle

The underlying principle is that heat lost by the hot object is equal to the heat gained by the cold object. This principle is known as the law of conservation of energy.

Step 2: Form an equation

We can express this principle mathematically using the following equation:

q₁ = -q₂

where:

q₁ is the heat lost by the hot object

q₂ is the heat gained by the cold object

We can further expand this equation using the following relationship between heat, mass, specific heat capacity, and temperature change:

q = mcΔT

where:

m is the mass of the object

c is the specific heat capacity of the object

ΔT is the change in temperature

Substituting this relationship into the first equation, we get:

m₁c₁(T₁ - T_f) = -m₂c₂(T_f - T₂)

where:

m₁ and c₁ are the mass and specific heat capacity of the hot object, respectively

m₂ and c₂ are the mass and specific heat capacity of the cold object, respectively

T₁ and T₂ are the initial temperatures of the hot and cold objects, respectively

T_f is the final temperature of the mixture

Step 3: Apply the formula to the specific case

In the example given, the hot object is ethanol and the cold object is water. The following values are provided:

m₁ = 45.0 g (mass of ethanol)

c₁ = 2.3 J/g°C (specific heat capacity of ethanol)

T₁ = 9.0°C (initial temperature of ethanol)

m₂ = 45.0 g (mass of water)

c₂ = 4.18 J/g°C (specific heat capacity of water)

T₂ = 28.6°C (initial temperature of water)

T_f = ? (final temperature of the mixture)

Step 4: Solve for the unknown

Substituting the known values into the equation and solving for T_f, we get:

(0.789 g/mL x 45.0 mL) x (2.3 J/g°C) x (T_f - 9.0°C) = -(1.0 g/mL x 45.0 mL) x (4.18 J/g°C) x (T_f - 28.6°C)

Solving this equation, we get:

T_f = 22.7°C

Therefore, the final temperature of the mixture is 22.7°C.

Consider the following equilibrium:

O2(g) + 2F2(g)--> 2OF2(g); Kp = 2.3 x 10-15

Which of the following statements is true?

A) If the reaction mixture initially contains only OF2(g), then at equilibrium, the
reaction mixture will consist of essentially only O2(g) and F2(g).

B) For this equilibrium, Kc = Kp.

C) If the reaction mixture initially contains only OF2(g), then the total pressure at
equilibrium will be less than the total initial pressure.

D) If the reaction mixture initially contains only O2(g) and F2(g), then at equilibrium,
the reaction mixture will consist of essentially only OF2(g).

E) If the reaction mixture initially contains only O2(g) and F2(g), then the total
pressure at equilibrium will be greater than the total initial pressure.

Answers

Answer:

A) is true

Explanation:

For the reaction:

O₂(g) + 2F₂(g) ⇄ 2OF₂(g); Kp = 2,3x10⁻¹⁵

kp is defined as:

Kp = 2,3x10⁻¹⁵ = [OF₂]²/[O₂] [F₂]²

A) If the reaction mixture initially contains only OF₂(g), then at equilibrium, the  reaction mixture will consist of essentially only O₂(g) and F₂(g).  TRUE. As the kp is 2,3x10⁻¹⁵ means per 1 of [O₂] [F₂]² you will have just 2,3x10⁻¹⁵ of [OF₂]²

B) For this equilibrium, Kc = Kp.  FALSE. That is true just when moles of reactants are the same than moles of products. Here there are 3 moles of reactants vs 2 moles of products.

C) If the reaction mixture initially contains only OF₂(g), then the total pressure at  equilibrium will be less than the total initial pressure.  FALSE. Because per 2 moles of OF₂(g) you will produce 3 moles of gas increasing pressure.

D) If the reaction mixture initially contains only O₂(g) and F₂(g), then at equilibrium,  the reaction mixture will consist of essentially only OF₂(g).  FALSE. For the same reason of A), the mixture will contains essentially only O₂(g) and F₂(g)

E) If the reaction mixture initially contains only O₂(g) and F₂(g), then the total  pressure at equilibrium will be greater than the total initial pressure. FALSE. If mixture initially contains only O₂(g) and F₂(g), 3 moles will of gas will react to produce 2 moles of gas doing pressure decreases.

I hope it helps!

On a lab exam, you have to find the concentrations of the monoprotic (one proton per molecule) acids HA and HB. You are given 43.5 mL of HA solution in one flask.You titrate this flask of HA solution with 87.3 mL of 0.0906 M NaOH. Calculate the molarity of the HA solution

Answers

Final answer:

To find the molarity of the HA solution, calculate the number of moles of NaOH used in the titration and use the ratio of moles of HA to moles of NaOH to determine the number of moles of HA in the solution. Then, calculate the molarity of the HA solution using the moles of HA and the volume of the solution.

Explanation:

To find the molarity of the HA solution, we can first calculate the number of moles of NaOH used in the titration. The balanced chemical equation for the reaction between HA and NaOH is:

HA + NaOH → NaA + H2O

From the equation, we can see that the ratio of moles of HA to moles of NaOH is 1:1. We can use the molarity and volume of NaOH used in the titration to calculate the number of moles of NaOH, and since the ratio is 1:1, this will also be the number of moles of HA in the solution.

First, we calculate the number of moles of NaOH:

Moles of NaOH = Molarity of NaOH * Volume of NaOH

= 0.0906 M * 0.0873 L

= 0.0078958 mol NaOH

Since the ratio of moles of HA to moles of NaOH is 1:1, the number of moles of HA in the solution is also 0.0078958 mol.

Now, we can calculate the molarity of the HA solution:

Molarity of HA = Moles of HA / Volume of HA solution

= 0.0078958 mol / 0.0435 L

= 0.181 M

The molarity of the HA solution is [tex]\boxed{0.1817 \text{ M}}[/tex]

To calculate the molarity of the HA solution, we need to use the concept of a neutralization reaction. The reaction between the monoprotic acid HA and the strong base NaOH is as follows:

[tex]\[ \text{HA} + \text{NaOH} \rightarrow \text{NaA} + \text{H}_2\text{O} \][/tex]

 In this reaction, one mole of HA reacts with one mole of NaOH to produce one mole of NaA (the salt) and one mole of water. The moles of NaOH used in the titration can be calculated using the formula

[tex]\[ \text{moles of NaOH} = \text{volume of NaOH} \times \text{molarity of NaOH} \][/tex]

 Given that the volume of NaOH is 87.3 mL (which we convert to liters by dividing by 1000) and the molarity of NaOH is 0.0906 M, we can calculate the moles of NaOH:

[tex]\[ \text{moles of NaOH} = 0.0873 \text{ L} \times 0.0906 \text{ M} \][/tex]

[tex]\[ \text{moles of NaOH} = 0.00790358 \text{ mol} \][/tex]

Since the stoichiometry of the reaction is 1:1, the moles of HA that reacted with NaOH are equal to the moles of NaOH used. Now we can calculate the molarity of the HA solution using the formula:

[tex]\[ \text{molarity of HA} = \frac{\text{moles of HA}}{\text{volume of HA solution}} \][/tex]

 The volume of the HA solution is given as 43.5 mL, which we convert to liters:

[tex]\[ \text{volume of HA solution} = 0.0435 \text{ L} \][/tex]

Now we can calculate the molarity of HA:

[tex]\[ \text{molarity of HA} = \frac{0.00790358 \text{ mol}}{0.0435 \text{ L}} \][/tex]

[tex]\[ \text{molarity of HA} = 0.18167287 \text{ M} \][/tex]

 Rounding to a reasonable number of significant figures, the molarity of the HA solution is approximately 0.1817 M.

Therefore, the molarity of the HA solution is [tex]\boxed{0.1817 \text{ M}}[/tex]

The answer is: [tex]0.1817 \text{ M}.[/tex]

For the following species, draw a Lewis structure for one important resonance form. Include all lone pair electrons and assign formal charge to any atom with a non-zero formal charge
NO2+
NO2F (N is central)

Answers

Final answer:

NO2+ has a Lewis structure with a single bond between the Nitrogen and one Oxygen, and a double bond with the other Oxygen. Nitrogen has a +1 formal charge. NO2F's Lewis structure has Nitrogen double bonded with one Oxygen and single bonded with the other Oxygen and Fluorine; all atoms have three lone electron pairs, and there is no non-zero formal charge.

Explanation:

In Chemistry, the process of drawing Lewis structures involves representing the molecules' bonding electrons and any lone pairs. The Lewis structure for NO2+ is drawn with a single bond between the Nitrogen (N) and one of the Oxygen (O), as well as a double bond between Nitrogen and the other Oxygen. Nitrogen has a +1 formal charge due to the extra positive charge on the molecule.

For NO2F, Nitrogen (N) is the central atom which is double bonded with one Oxygen (O) atom and single bonded with the other Oxygen and Fluorine (F) atoms. Every Oxygen atom has three lone pairs of electrons and Fluorine has three lone pairs as well. The Nitrogen has one lone pair of electrons. There is no atom with a non-zero formal charge in this molecule.

Learn more about Lewis Structure here:

https://brainly.com/question/20300458

#SPJ12

Final answer:

To draw the Lewis structure for NO2+ and NO2F, count the valence electrons and distribute them to satisfy the octet rule.

Explanation:

To draw the Lewis structure for NO2+, we start by counting the valence electrons. N has 5 valence electrons, and each O contributes 6 valence electrons, giving us a total of 24 valence electrons. We place N in the center and connect each O to it using a single bond. The remaining electrons are distributed as lone pairs and double bonds to satisfy the octet rule. In one important resonance form, the double bond can be between N and any of the O atoms.

For NO2F, we again count the valence electrons, which are 5 for N, 6 for each O, and 7 for F. So we have a total of 24+7=31 valence electrons. We place N in the center and connect each O and F to it using a single bond. The remaining electrons are distributed as lone pairs and double bonds. In one important resonance form, we have a double bond between N and one of the O atoms, and a single bond between N and the other O atom, with F having a single bond to one of the O atoms.

Learn more about Lewis structures here:

https://brainly.com/question/20300458

#SPJ11

Which of the following statements concerning galvanic cells is/are true?
A.) The two half-cells are connected by a salt bridge
B.) Electrons flow from the anode to the cathode
C.) Reduction occurs at the cathode
D.) All of the above are true

Answers

Answer: Correct answer is D.) Every option is true and correct for a galvanic cell.

Final answer:

All the given statements are true: a galvanic cell consists of two half-cells connected by a salt bridge, electrons flow from the anode to the cathode, and reduction occurs at the cathode.

Explanation:

The statement 'D.) All of the above are true' is the correct selection regarding galvanic cells. A.) In a galvanic cell, the two half-cells are indeed connected by a salt bridge. The salt bridge serves to balance the charge, allowing ions to migrate and maintain a neutral charge in the cell. B.) Electrons flow from the anode to the cathode. This is the basic concept of electricity – the flow of electrons. The anode is the electrode where oxidation (loss of electrons) happens, and the electrons released from the oxidation reaction at the anode flow through a wire to the cathode. C.) Reduction occurs at the cathode, meaning that it gains electrons. The cathode is the electrode where reduction (gain of electrons) happens in redox (oxidation-reduction) reactions.

Learn more about galvanic cells here:

https://brainly.com/question/32505497

#SPJ11

2) An ideal gas flows through a horizontal tube at steady state. No heat is added and no shaft work is done. The cross- sectional area of the tube changes with length and this causes the velocity to change. Derive an equation relating the temperature to the velocity of the gas. If nitrogen at 150 °C flows past one section of the tube at a velocity of 2.5 m/s, what its temperature at another section where its velocity is 50 m/s? Cp = 7/2 R.

Answers

Answer:

The temperature of the nitrogen gas at another section is [tex]148.8^{o}C[/tex]

Explanation:

Energy balance equation for steady state flow of gas under negiligible potential energy.

The negligible heat transfer and no shaft work is as follows.

[tex]\Delta H+\frac{\Delta u^{2}}{2}=Q+W[/tex]

[tex]\Delta H+\frac{\Delta u^{2}}{2}=0..........(1)[/tex]

[tex]\Delta H[/tex] is enthalphy of gas and it is changes with the temperature.

[tex]\Delta H=C_{p}(T_{2}-T_{1}).................(2)[/tex]

[tex]C_{p}[/tex]=  Molar heat capacity of the gas at constant pressure.[tex]T_{1}[/tex]= Initial temperature at section 1

[tex]T_{2}[/tex] = Final temperature at section 2

Substitute the equation (2) in equation (1)

[tex]C_{p}(T_{2}-T_{1})+\frac{u_{2}^2-u_{1}^2}{2}=0[/tex]

Solve the above equation is as follows.

[tex]T_{2}=T_{1}-\frac{u_{2}^{2}-u_{1}^{2}}{2}=0...............(3)[/tex]

From the given,

[tex]T_{1}=150+273=423K[/tex]

[tex]C_{p}=\frac{7R}{2}[/tex]

[tex]u_{1}=2.5\,m/s[/tex]

[tex]u_{2}=50\,m/s[/tex]

Molar mass of nitrogen gas = 0.02802 kg/mol

Substitute the all values in the equation (3)

[tex]T_{2}=423K-\frac{(50m/s)^{2}-(2.5m/s)^{2}}{2\times \frac{7}{2}\times8.314\,J\,mol^{-1}K^{-1}}\times \frac{J/kg}{m^{2}/s^{2}}\times \frac{0.02802\,kg}{mol}[/tex]

=421.8K=148.8^{o}C

Therefore,The temperature of the nitrogen gas at another section is [tex]148.8^{o}C[/tex].

Final answer:

The equation that relates temperature to velocity of an ideal gas flowing through a horizontal tube with changing cross-sectional area is T1/V1 = T2/V2. Using the given values, we can solve for the temperature at the other section where the velocity is given as 50 m/s, which is found to be 300 °C.

Explanation:

Based on the principle of continuity of flow, the equation that relates temperature to velocity of an ideal gas flowing through a horizontal tube with changing cross-sectional area is:

T1/V1 = T2/V2

To solve for the temperature at another section where the velocity is 50 m/s, we can use the given temperature and velocity at the initial section (T1 = 150 °C, V1 = 2.5 m/s) and plug them into the equation:

150 / 2.5 = T2 / 50

By solving for T2, we find that the temperature at the other section is 300 °C.

What concentrations of acetic acid (pKa = 4.76) and acetate would be required to prepare a 0.15 M buffer solution at pH 5.0? Note that the concentration and/or pH value may differ from that in the first question. STRATEGY 1. Rearrange the Henderson-Hasselbalch equation to solve for the ratio of base (acetate) to acid (acetic acid), [A–]/[HA]. 2. Use the mole fraction of acetate to calculate the concentration of acetate. 3. Calculate the concentration of acetic acid. Step 1: Rearrange the Henderson Hasselbalch equation to solve for (A-)/(HA) if the solution is at ph 5.0

Answers

Answer:

Acetic acid 0,055M and acetate 0,095M.

Explanation:

It is possible to prepare a 0,15M buffer of acetic acid/acetate at pH 5,0 using Henderson-Hasselblach formula, thus:

pH = pka + log₁₀ [A⁻]/[HA] -Where A⁻ is acetate ion and HA is acetic acid-

Replacing:

5,0 = 4,76 + log₁₀ [A⁻]/[HA]

1,7378 =  [A⁻]/[HA] (1)

As concentration of buffer is 0,15M, it is possible to write:

[A⁻] + [HA] = 0,15M (2)

Replacing (1) in (2):

1,7378[HA] + [HA] = 0,15M

2,7378[HA] = 0,15M

[HA] = 0,055M

Thus, [A⁻] = 0,095M

That means you need acetic acid 0,055M and acetate 0,095M to obtain the buffer you need.

i hope it helps!

Final answer:

To make a 0.15 M buffer solution at a pH of 5.0 using acetic acid (pKa=4.76) and acetate, the concentrations of acetic acid and acetate need to be about 0.064 M and 0.086 M respectively, determined through rearranging the Henderson-Hasselbalch equation.

Explanation:

To prepare a 0.15 M buffer solution at pH 5.0 using acetic acid (pKa = 4.76) and acetate, we first utilize the Henderson-Hasselbalch equation to determine the ratio of acetate (A-) to acetic acid (HA). This rearranged equation is: [A-]/[HA] = 10^(pH - pKa) = 10^(5.0 - 4.76).

From this, the ratio of [A-]/[HA] comes out to be approximately 1.74. Since an ideal buffer has roughly equal concentrations of acid and base, we know that the sum of the acetic acid and acetate concentrations should be 0.15 M. Therefore, to achieve a buffer at pH 5.0, the acetic acid concentration is approximately 0.064 M (0.037 M * (1/(1+1.74))) and the acetate concentration is approximately 0.086 M (0.15 M - 0.064 M).

Learn more about Acetic Acid and Acetate Buffer Solution here:

https://brainly.com/question/31810881

#SPJ11

Write the electron configuration for the element titanium, Ti.
Express your answer in order of increasing orbital energy as a string without blank space between orbitals. For example, the electron configuration of Li could be entered as 1s^22s^1 or [He]2s^1.

Answers

Answer:

1s^22s^22p^63s^23p^63d^24s^2

Explanation:

Titanium with the chemical symbol Ti, is a transition element, and in fact the second transition element after scandium. It has an atomic number of 22. It is the second element in the first transition series.

To write the electronic configuration, we consider the atomic number of titanium. The atomic number of titanium is 22. Hence, since an atom is electrically neutral, the number of electrons in the titanium metal is 22.

It should be noted that while filling,the maximum number of electrons the s subshell is 2. The maximum number of electrons in the p subshell is 6 while the number in the d shell is 10

When the concentration of PCl3(g) is increased to 1.2 M, the ratio of products to reactants is 4.0. The equilibrium constant for the reaction is 24. In which direction will the reaction shift to regain equilibrium?

toward the reactants
toward the products

Answers

Answer:

toward the products

Explanation:

The equilibrium constant of an equilibrium reaction measures relative amounts of the products and the reactants present at equilibrium. It is the ratio of the concentration of the products and the reactants each raised to their stoichiometric coefficients. The concentration of the liquid and the gaseous species does not change and thus is not written in the expression.

Thus, on increasing the concentration of any one of the reactant, the value of equilibrium constant will decrease.

The reaction quotient of an equilibrium reaction measures relative amounts of the products and the reactants present during the course of the reaction at  particular point in the time.

Q < Kc , reaction will proceed in forward direction.

Q > Kc , reaction will proceed in backward direction.

Q = Kc , reaction at equilibrium.

Since, given that The equilibrium constant for the reaction is 24. On increasing the concentration of one of the reactant, the reaction quotient will become less than Kc and thus, go in forward direction which means that towards the product.

You have 41.6 g of O2 gas in a container with twice the volume as one with CO2 gas in another container. The pressure and temperature of both containers are the same. Calculate the mass of carbon dioxide gas you have in the container.

Answers

Answer:

The mass of carbon dioxide is 28.6 grams

Explanation:

Step 1: Data given

Mass of O2 = 41.6 grams

Volume of the O2 container = 2V

Volume of the CO2 container = V

Pressure and temperature are the same

Step 2: Ideal gas law

The ideal gas law = p*V=nRT

For O2: p*2V = n(O2)*R*T

For CO2: p*V = n(CO2)*R*T

n(O2)*R*T / P*2V = n(CO2)*R*T / P*V

Since P, R and T are contstant, we can simplify this to:

n(O2)/2 = n(CO2)

Step 3:  Calculate moles of O2

Moles O2 = mass O2/ Molar mass O2

Moles O2 = 41.6 grams / 32 g/mol

Moles O2 = 1.3 mol O2

The number of moles CO2 = 0.65 mol

Mass of CO2 = Moles CO2 * Molar Mass CO2

Mass of CO2 = 0.65 mol * 44.01 g/mol

Mass of CO2 = 28.6 grams

The mass of carbon dioxide is 28.6 grams

Compound A, C6H12 reacts with HBr/ROOR to give compound B, C6H13Br. Compound C, C6H14, reacts with bromine and light to produce compound B, C6H13Br. Suggest structures for compounds A, B, and C. Draw structure of the compound A.

Answers

Answer:

The question involves drawing of structures and showing mechanism in which brainly text editor did not support. I made sure I created a pdf file with both the anwsers and explanations in it. The pdf can be found in the attachment below.  

Explanation:

Final answer:

Compound A, C6H12, is most likely cyclohexane, a 6-carbon ring structured alkane. It reacts via a radical addition reaction with HBr/ROOR to produce Compound B, C6H13Br, a bromocyclohexane. Compound C, C6H14, is most likely hexane, an 6-carbon linear alkane. It undergoes a radical reaction with bromine and light to also form bromocyclohexane.

Explanation:

The subject of this question is organic chemistry, specifically dealing with the structures of different compounds and their reactions. Compound A, C6H12, is likely cyclohexane - a 6-carbon cyclic alkane - which reacts with HBr/ROOR (a radical addition reaction) to form compound B, C6H13Br, a bromocyclohexane. Compound C, C6H14, on the other hand, is hexane - a linear alkane. It reacts with bromine and light (again, another radical reaction) to also give bromocyclohexane.

The structure of compound A (cyclohexane) is drawn as a hexagon representing the 6-carbon cyclic structure, with each corner representing one carbon and its associated hydrogen atoms. This is a very simplified version of chemical structures used for ease of drawing. Detailed representation would include all the Hydrogen atoms.

Chemistry of these Reactions

Cyclohexane will readily react with hydrogen bromide in the presence of a radical initiator (ROOR), producing a bromocyclohexane. Hexane, on the other hand, will react with bromine in the presence of light to form the same product. The light provides the energy needed to break the bromine molecule into bromine radicals, which then react with hexane.

Learn more about Organic Chemistry here:

https://brainly.com/question/14623424

#SPJ3

Determine whether each redox reaction occurs spontaneously in the forward direction.
a. Ni(s) + Zn2 + (aq) ¡ Ni2 + (aq) + Zn(s)
b. Ni(s) + Pb2 + (aq) ¡ Ni2 + (aq) + Pb(s)
c. Al(s) + 3 Ag+ (aq) ¡ Al3 + (aq) + 3 Ag(s)
d. Pb(s) + Mn2 + (aq) ¡ Pb2 + (aq) + Mn(s)

Answers

Answer:

a) non spontaneous

b) spontaneous

c) spontaneous

d) non spontaneous

Answer:

Explanation:

a. Ni(s) + Zn2 + (aq) ¡ Ni2 + (aq) + Zn(s)   non spontaneous

b. Ni(s) + Pb2 + (aq) ¡ Ni2 + (aq) + Pb(s)      spontaneous

c. Al(s) + 3 Ag+ (aq) ¡ Al3 + (aq) + 3 Ag(s)    Reduction spontaneous

d. Pb(s) + Mn2 + (aq) ¡ Pb2 + (aq) + Mn(s)     non spontaneous

Which one of the following statements best explains why convection doesn't occur in solids? Group of answer choices Solids are less compressible than gases. The molecules in a solid vibrate at a lower frequency than those of a liquid. Solids are more compressible than liquids. The molecules in a solid are more closely spaced than in a gas. The molecules in a solid are not free to move throughout its volume.

Answers

Final answer:

Convection does not occur in solids because the molecules are tightly packed and locked in position, restricting their movement and preventing circulation needed for convection. Gases and liquids, with their more freely moving molecules, permit this kind of heat transfer.

Explanation:

The molecules in a solid are more closely spaced than in a gas, which is the reason why convection doesn't occur in solids. In a solid, the molecules are tightly packed together, and the forces between them are strong enough to keep them locked in position, making solids incapable of flowing like liquids or gases.

Each molecule has limited freedom of movement, mostly restricted to vibrations about its fixed point within the lattice structure of the solid. As a result, unlike in gases and liquids where molecules can move freely throughout the volume, the molecules in a solid cannot circulate to transfer heat by convection.

On the other hand, gases have widely separated molecules which interact primarily through collisions, making it easy for gas molecules to move and spread out to occupy the available space. This characteristic allows for the movement of warmer and cooler portions of a gas, leading to convection currents. Likewise, liquids, although more ordered than gases, have molecules that are not rigidly fixed, enabling them to slide past each other and also allowing for convection.

Consider the reaction BF3 + NH3 → F3B―NH3
What changes in hybridization (if any) of the B atom are a result of this reaction?
A. Before the reaction boron is sp2 hybridized, and after the reaction it is sp3d hybridized.
B. Before the reaction boron is sp3 hybridized, and after the reaction it is sp3 hybridized.
C. Before the reaction boron is sp2 hybridized, and after the reaction it is sp3 hybridized.
What changes in hybridization (if any) of the N atom are a result of this reaction?
A. Before the reaction nitrogen is sp3 hybridized, and after the reaction it is sp2 hybridized.
B. Before the reaction nitrogen is sp3 hybridized, and after the reaction it is sp3 hybridized.
C. Before the reaction nitrogen is sp3d hybridized, and after the reaction it is sp3 hybridized.

Answers

Answer:

The correct answer is given below

Explanation:

B before the reaction boron is sp2 hybridized and after the reaction boron is it is sp3 hybridized.

    Before the reaction boron is joined to 3 fluorine atoms by 3 covalent bonds between them one is s and rest of the 2 are p.That"s why before the reaction boron is sp2 hybridized.

   Whereas after the reaction boron is joined to 3 fluorine atoms by 3 covalent bonds and one nitrogen atom by one co ordinate bond.That"s why after reaction boron is sp3 hybridized.

B  before the reaction nitrogen is sp3 hybridized and after the reaction it is sp3 hybridized.

  Before the reaction Nitrogen is joined to 3 hydrogen atoms by 3 covalent bonds and contain one lone pair of electron.That"s why before the reaction Nitrogen atom is sp3 hybridized.

 whereas after the reaction Nitrogen is joined to 3 hydrogen atoms by 3 covalent bonds and with one boron atom by a co ordinate bond.That"s why after reaction Nitrogen atom is sp3 hybridized.

Final answer:

Boron atom's hybridization changes from sp2 to sp3 as a result of the reaction while Nitrogen's hybridization remains sp3 both before and after the reaction.

Explanation:

In the given reaction, BF3 + NH3 → F3B―NH3, the hybridization of both Boron (B) and Nitrogen (N) atoms change. For the Boron atom, before the reaction, it is sp2 hybridized. After the reaction, when it bonds with NH3, it becomes sp3 hybridized. Hence, the change in Boron's hybridization as a result of this reaction is from sp2 to sp3.

For the Nitrogen atom, before the reaction, it is sp3 hybridized. After the reaction, it remains sp3 hybridized because it still maintains four regions of electron density. So, there is no change in Nitrogen's hybridization as a result of the reaction. It remains sp3 both before and after the reaction.

Learn more about Chemical hybridization here:

https://brainly.com/question/34629373

#SPJ3

Toluene (C6H5CH3 ), an organic compound often used as a solvent in paints, is mixed with a similar organic compound, benzene (C6H6 ). Calculate the molarity, molality, mass percent, and mole fraction of toluene in 200. mL of solution that contains 75.8 g of toluene and 95.6 g of benzene. The density of the solution is 0.857 g/cm3.

Answers

Explanation:

The given data is as follows.

 Weight of solute = 75.8 g,   Molecular weight of solute (toulene) = 92.13 g/mol,    volume = 200 ml

Therefore, molarity of toulene is calculated as follows.

      Molarity = [tex]\frac{\text{weight of solute}}{\text{molecular weight of solute}} \times \frac{1000}{\text{volume of solution in ml}}[/tex]

                    = [tex]\frac{75.8 g}{92.13 g/mol} \times \frac{1000}{200 ml}[/tex]

                    = 4.11 M

Hence, molarity of toulene is 4.11 M.

As molality is the number of moles of solute present in kg of solvent.

So, we will calculate the molality of toulene as follows.

   Molality = [tex]\frac{\text{given weight of solute}}{\text{given molecular weight of solute}} \times \frac{1000}{\text{weight of solvent in grams}}[/tex]

             = [tex]\frac{75.8 g}{92.13 g/mol} \times \frac{1000}{95.6 g}[/tex]

             = 8.6 m

Hence, molality of given toulene solution is 8.6 m.

Now, calculate the number of moles of toulene as follows.

       No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]

                             = [tex]\frac{75.8 g}{92.13 g/mol}[/tex]

                             = 0.8227 mol

Now, no. of moles of benzene will be as follows.

     No. of moles = [tex]\frac{mass}{\text{molar mass}}[/tex]

                             = [tex]\frac{95.6 g}{78.11 g/mol}[/tex]

                             = 1.2239 mol

Hence, the mole fraction of toulene is as follows.

         Mole fraction = [tex]\frac{\text{moles of toulene}}{\text{total moles}}[/tex]

                             = [tex]\frac{0.8227 mol}{(0.8227 + 1.2239) mol}[/tex]

                             = 0.402

Hence, mole fraction of toulene is 0.402.

As density of given solution is 0.857 [tex]g/cm^{3}[/tex] so, we will calculate the mass of solution as follows.

         Density = [tex]\frac{mass}{volume}[/tex]

     0.857 [tex]g/cm^{3}[/tex] = [tex]\frac{mass}{200 ml}[/tex]      (As 1 [tex]cm^{3}[/tex] = 1 g)

                      mass = 171.4 g

Therefore, calculate the mass percent of toulene as follows.

      Mass % = [tex]\frac{\text{mass of solute}}{\text{mass of solution}} \times 100[/tex]

                   = [tex]\frac{75.8 g}{171.4 g} \times 100[/tex]

                   = 44.22%

Therefore, mass percent of toulene is 44.22%.

Final answer:

The molarity, molality, mass percent, and mole fraction of toluene in a solution can be calculated using the given information.

Explanation:

To calculate the molarity of toluene in the solution, we first need to calculate the moles of toluene and benzene. The molarity is then the moles of toluene divided by the volume of the solution in liters. The molality is calculated by dividing the moles of toluene by the mass of the solvent in kilograms. The mass percent is calculated by dividing the mass of toluene by the total mass of the solution and multiplying by 100. Finally, the mole fraction of toluene is calculated by dividing the moles of toluene by the total moles of all components in the solution.

Learn more about Calculating molarity, molality, mass percent, and mole fraction of a solute in a solution here:

https://brainly.com/question/35439282

#SPJ3

What is the new solution concentration when 150. mL of water is added to 200. mL of a 3.55 M HBr solutions.

Answers

Answer:

The new concentration is 2.03M

Explanation:

Step 1: Data given

A 200 mL 3.55 M HBr is diluted with 150 mL

Step 2: The dilution

In a dilution, the ratio that exists between the concentration of the stock solution and the concentration of the diluted solution equals the ratio that exists between the volume of the diluted solution and the volume of the stock solution.

Dilution factor = [stock sample]/[diluted sample] = diluted volume / stock volume

In this case, the volume of the stock solution is 200 mL

Adding  150 mL  of water to the stock solution will dilute it to a final volume of 200 + 150 = 350 mL

The dilution factor wll be 350/200 = 1.75

This makes the diluted concentration:

3.55/1.75 = 2.03M

The new concentration is 2.03M

Consider the following reaction: 2NO(g)+O2(g)→2NO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures and predict whether or not the reaction will be spontaneous. (Assume that ΔH∘ and ΔS∘ do not change too much within the give temperature range.) 718k

Answers

Final answer:

The Gibbs free energy change (ΔG∘) for the reaction can be estimated using the equation ΔG∘ = ΔH∘ - TΔS∘. At a temperature of 718K, if ΔG∘ is negative, the reaction will be spontaneous.

Explanation:

The Gibbs free energy change (ΔG∘) for a reaction can be estimated using the equation ΔG∘ = ΔH∘ - TΔS∘, where ΔH∘ is the change in enthalpy and ΔS∘ is the change in entropy. At a temperature of 718K, you can estimate ΔG∘ by substituting the given values into the equation. If the value of ΔG∘ is negative, the reaction will be spontaneous. If it is positive or zero, the reaction will not be spontaneous.

Learn more about Gibbs free energy change here:

https://brainly.com/question/34469503

#SPJ12

The reaction is spontaneous at 298 K and 723 K but non-spontaneous at 842 K as determined by calculating ΔG∘ at each temperature using the Gibbs free energy equation. Negative ΔG∘ values indicate spontaneity while positive values indicate non-spontaneity.

To determine the spontaneity of the reaction 2NO(g) + O₂(g) → 2NO₂(g) at different temperatures (298 K, 723 K, and 842 K), we use the Gibbs free energy equation:

ΔG∘ = ΔH∘ - TΔS∘

Given that ΔH∘ (standard enthalpy change) and ΔS∘ (standard entropy change) are assumed to be constant over the temperature range, we need to calculate ΔG∘ for each temperature:

At 298 K:
ΔG∘ = ΔH∘ - 298 x ΔS∘At 723 K:
ΔG∘ = ΔH∘ - 723 x ΔS∘At 842 K:
ΔG∘ = ΔH∘ - 842 x ΔS∘

If ΔG∘ is negative, the reaction is spontaneous at that temperature. Conversely, if ΔG∘ is positive, the reaction is non-spontaneous.

Determining Spontaneity:

Using standard thermodynamic tables or given data for ΔH∘ and ΔS∘:

Suppose: ΔH∘ = -114.1 kJ/mol and ΔS∘ = -146.5 J/(mol·K)

At 298 K:
ΔG∘ = (-114.1 kJ/mol) - (298 K x -0.1465 kJ/(mol·K))
= -114.1 kJ/mol + 43.622 kJ/mol
= -70.478 kJ/mol
The reaction is spontaneous.At 723 K:
ΔG∘ = (-114.1 kJ/mol) - (723 K x -0.1465 kJ/(mol·K))
= -114.1 kJ/mol + 105.9095 kJ/mol
= -8.1905 kJ/mol
The reaction is spontaneous.At 842 K:
ΔG∘ = (-114.1 kJ/mol) - (842 K x -0.1465 kJ/(mol·K))
= -114.1 kJ/mol + 123.463 kJ/mol
= 9.363 kJ/mol
The reaction is non-spontaneous.

In summary, the reaction is spontaneous at 298 K and 723 K, but non-spontaneous at 842 K

complete question.

Consider the reaction:

2NO(g)+O₂(g)→2NO₂(g)

Estimate ΔG∘ for this reaction at each temperature and predict whether or not the reaction will be spontaneous. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range.)

A) 298 K

B) 723 K

C) 842 K

Alcohols can be oxidized by chromic acid derivatives. One such reagent is pyridinium chlorochromate, (C5H5NH )(ClCrO3–), commonly known as PCC. Draw the proposed (neutral) intermediate and the organic product in the oxidation of 1-butanol by PCC when carried out in an anhydrous solvent such as CH2Cl2."

Answers

Answer:

See figure attached.

Explanation:

Pyridinium chlorochromate (PCC) is a weaker oxidizing agent when compared with oth chromic acid derivatives as dichromate, for example. This results in the fact that PCC wil oxidize a primary alcohol transforming it to a aldehyde.

The entire mechanism of the reaction of 1-butanol with PCC in an anhydrous solvent is shown in the figure attached.

The neutral intermediate and the organic product (1-butanal) are both represented in the figure.

What is the concentration in molarity of a solution made using 30.0 grams of CH3OH in 300.0 mL of water?
Please help me right now!!! :(

Answers

The answer is in the attached photo

A compound, C4H6O, exhibits IR absorption at 1705 cm-1. Its carbon NMR shifts are given below. The number of hydrogens at each carbon, determined by DEPT, is given in parentheses after the chemical shift. 13C NMR: δ 14.0 (3), 134.4 (2), 146.0 (0), 194.7 (1) Draw the structure of this compound

Answers

Answer:

Methacrylaldehyde

Explanation:

The first step is the calculation of the IHD (index hydrogen deficiency):

[tex]IHD=~\frac{2C+2+N-H-X}{2}[/tex]

[tex]IHD=~\frac{2(2)+2-6}{2}=2[/tex]

This value indicates that we have 2 double bonds. Now, if we check the IR info we can conclude that we have an oxo group (C=O) due to the signal in 1705 cm^-1 . So, the options that we can have are aldehyde or ketone.

If we analyze the NMR info we have a signal in 194.7 with only 1 hydrogen. This indicates that necessary we have an aldehyde due to the hydrogen. Also, for the signal in 14 we will have a [tex]CH_3[/tex], for the signal at 134.2 we will have a [tex]CH_2[/tex] and for the signal at 146.0 we will have a quaternary carbon (no hydrogens present).

So, we will have a [tex]CH_3[/tex], [tex]CH_2[/tex], C (without hydrogens), an aldehyde group and a double bond.

When we put all this together we will obtain the Methacrylaldehyde (see figure).

A mixture of gaseous CO and H2, called synthesis gas, is used commercially to prepare methanol (CH3OH), a compound considered an alternative fuel to gasoline. Under equilibrium conditions at 550.3 K, [H2] = 0.07710 mol/L, [CO] = 0.02722 mol/L, and [CH3OH] = 0.0401 mol/L. What is the value of Kc for this reaction at 550.3 K?

Answers

Answer: The value of [tex]K_c[/tex] for the reaction at 550.3 K is 247.83

Explanation:

Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as [tex]K_{c}[/tex]

For a general chemical reaction:

[tex]aA+bB\rightarrow cC+dD[/tex]

The expression for [tex]K_{c}[/tex] is written as:

[tex]K_{c}=\frac{[C]^c[D]^d}{[A]^a[B]^b}[/tex]

The chemical equation for the production of methanol follows:

[tex]CO+2H_2\rightleftharpoons CH_3OH[/tex]

The expression of [tex]K_c[/tex] for above equation follows:

[tex]K_c=\frac{[CH_3OH]}{[CO][H_2]^2}[/tex]

We are given:

[tex][CH_3OH]=0.0401mol/L[/tex]

[tex][CO]=0.02722mol/L[/tex]

[tex][H_2]=0.07710mol/L[/tex]

Putting values in above equation, we get:

[tex]K_c=\frac{0.0401}{0.02722\times (0.07710)^2}\\\\K_c=247.83[/tex]

Hence, the value of [tex]K_c[/tex] for the reaction at 550.3 K is 247.83

Final answer:

The equilibrium constant (Kc) for the synthesis of methanol from CO and H₂ at 550.3 K is 30.36, calculated using the given equilibrium concentrations.

Explanation:

The question concerns calculating the equilibrium constant (Kc) at 550.3 K for the synthesis of methanol from CO and H₂. The balanced chemical equation for this process is CO(g) + 2H₂(g) => CH₃OH(g). Given equilibrium concentrations: [H₂] = 0.07710 mol/L, [CO] = 0.02722 mol/L, and [CH₃OH] = 0.0401 mol/L, the equilibrium constant (Kc) can be calculated using the expression Kc = [CH₃OH]/([CO][H₂]²). Plugging in the given values yields Kc = (0.0401)/((0.02722)(0.07710)²) = 30.36.

Which is not true of the standard conditions for electrochemical cell measurements?

Gases are at 1 bar pressure.
Liquids are in the pure state.
Solids are in the pure state.
Solutes are at 1.0 M concentration.
The cell voltage is always positive.

Answers

Answer:

Gases are at 1 bar pressure.

Explanation:

Option a is incorrect . Standard  Pressure in chemistry is always taken in atm and not in bar. The standard condition for electro chemical cell measurements are

Gases must be at 1 atm pressure.

Liquids must be in pure state

Solids must also be in pure state

Solutes are at 1.0 M concentration

And the cell voltages are positive.

Final answer:

In the context of electrochemical cells, the statement 'The cell voltage is always positive' is incorrect as cell voltage can be negative in an electrolytic cell.

Explanation:

The statement that is not true of the standard conditions for electrochemical cell measurements is that 'The cell voltage is always positive.' While the cell voltage can be positive in a galvanic/voltaic cell as it produces an electrical current, it can be negative in an electrolytic cell, where electrical energy is being consumed to bring about a chemical change.

The other statements about gases at 1 bar pressure, liquids and solids being in a pure state, and solutes at a 1.0 M concentration are indeed part of the standard conditions for measuring the properties of an electrochemical cell.

Learn more about Electrochemical Cells here:

https://brainly.com/question/30375518

#SPJ11

When a double replacement reaction produced one compound that is soluble and one compounds that is insoluble,a. only the solution of dissolved ion resultsb. only a solid is formedc. the soluble compound exists as dissolved ions in a solution while insoluble compound forms as a precipitated. none

Answers

Answer:

c. the soluble compound exists as dissolved ions in a solution while insoluble compound forms as a precipitated.

Explanation:

Let's consider an example of a double displacement reaction that produces a soluble compound and an insoluble one.

BaCl₂(aq) + Na₂SO₄(aq) ⇒ NaCl(aq) + BaSO₄(s)↓

NaCl is a soluble compound so it is dissolved in the solution. It is also an electrolyte so it ionizes in water according to the following equation:

NaCl(aq) ⇒ Na⁺(aq) + Cl⁻(aq)

BaSO₄ is insoluble so it remains as a precipitate.

Which of the following does not correctly describe Sn2 reactions of alkyl halides? A) The mechanism consists of a single step with no intermediates. B) Tertiary halides react faster than secondary halides. C) The transition state species has a pentavalent carbon atom. D) Rate of reaction depends on the concentrations of both the alkyl halide and the nucleophile.

Answers

Answer:

The correct answer is B the tertiary halides reacts faster than primary halides.

Explanation:

During SN2 reaction the nucleophile attack the alkyl halide from the opposite side resulting in the formation of transition state in which a bond is not completely broken or a new bond is not completely formed.

   After a certain period of time the nucleophile attach with the substrate by substituting the existing nuclophile.

  An increase in the bulkiness in the alkyl halide the SN2 reaction rate of that alkyl halide decreases.This phenomenon is called steric hindrance.

  So from that point of view the that statement tertiary halides reacts faster that secondary halide is not correct.

Final answer:

The correct answer is C) The transition state species has a pentavalent carbon atom.

Explanation:

The correct answer is C) The transition state species has a pentavalent carbon atom.

In an Sn2 reaction, the mechanism consists of a single step with no intermediates, which eliminates option A as a correct description. Option B is also incorrect because tertiary halides react slower than secondary halides due to steric hindrance. Option D is true, as the rate of the Sn2 reaction depends on the concentrations of both the alkyl halide and the nucleophile.

Thus, option C does not correctly describe Sn2 reactions of alkyl halides.

Learn more about Sn2 reactions of alkyl halides here:

https://brainly.com/question/32823806

#SPJ3

The standard enthalpy change for the following reaction is 873 kJ at 298 K.
2 KCl(s) 2 K(s) + Cl2(g) ΔH° = 873 kJ
What is the standard enthalpy change for this reaction at 298 K?
K(s) + 1/2 Cl2(g) KCl(s)_________KJ

Answers

Answer:  - 436.5 kJ.

Explanation:

According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.

According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation.

The given chemical reaction is,

[tex]2KCl(s)\rightarrow 2K(s)+Cl_2(g)[/tex]  [tex]\Delta H_1=873kJ[/tex]

Now we have to determine the value of [tex]\Delta H[/tex] for the following reaction i.e,

[tex]K(s)+\frac{1}{2}Cl_2(g)\rightarrow KCl(s)[/tex] [tex]\Delta H_2=?[/tex]

According to the Hess’s law, if we divide the reaction by half then the [tex]\Delta H[/tex] will also get halved and on reversing the reaction , the sign of enthlapy changes.

So, the value [tex]\Delta H_2[/tex] for the reaction will be:

[tex]\Delta H_2=\frac{1}{2}\times (-873kJ)[/tex]

[tex]\Delta H_2=-436.5kJ[/tex]

Hence, the value of [tex]\Delta H_2[/tex] for the reaction is -436.5 kJ.

Final answer:

The standard enthalpy change for the formation of KCl from K(s) and Cl2(g) is -436.5 kJ, calculated by reversing and halving the given reaction's enthalpy change of 873 kJ for 2 moles of KCl.

Explanation:

The student asks about the standard enthalpy change for the reaction where potassium (K) reacts with chlorine gas (Cl2) to form potassium chloride (KCl).

To find the standard enthalpy change for the formation of KCl from K(s) and Cl2(g), we use the given reaction 2 KCl(s) → 2 K(s) + Cl2(g) with a ΔH° of 873 kJ. Since this is the reverse reaction of the formation of KCl, and because enthalpy is a state function, the enthalpy change of the forward reaction is the negative of the reverse reaction. Furthermore, the given reaction involves 2 moles of KCl, so we need to divide the enthalpy by 2 to find the enthalpy change for the formation of 1 mole of KCl.

Therefore, the standard enthalpy change for the reaction K(s) + 0.5 Cl2(g) → KCl(s) is -873 kJ / 2 = -436.5 kJ.

An atom of 135I has a mass of 134.910023 amu. Calculate the binding energy in MeV per atom. Enter your answer with 4 significant figures and no units. Use the masses:
mass of 1H atom = 1.007825 amu
mass of a neutron = 1.008665 amu
1 amu = 931.5 Me

Answers

Answer:

1132 MeV/atom

Explanation:

Atomic number : It is defined as the number of electrons or number of protons present in a neutral atom.

Also, atomic number of I = 5

3

Thus, the number of protons = 53

Mass number is the number of the entities present in the nucleus which is the equal to the sum of the number of protons and electrons.

Mass number = Number of protons + Number of neutrons

135 =  53 + Number of neutrons

Number of neutrons = 82

Mass of neutron = 1.008665 amu

Mass of proton = 1.007825 amu

Calculated mass = Number of protons*Mass of proton + Number of neutrons*Mass of neutron

Thus,

Calculated mass = (53*1.007825 + 82*1.008665) amu = 136.125255 amu

Mass defect = Δm = |136.125255 - 134.910023| amu = 1.215232 amu

The conversion of amu to MeV is shown below as:-

1 amu = 931.5 MeV

So, Energy = 1.215232*931.5 MeV/atom = 1132 MeV/atom

Other Questions
____ is the regulatory process of establishing standards that will achieve organizational goals, comparing actual performance to those standards, and then, if necessary, taking corrective action to restore performance to those standards. genetically-identical individuals Within kingdom Protista, _____ are subdivided into the flagellates, the amoebas, the apicomplexans, and the ciliates. During meetings, Renata has a tendency to go through the motions of working on the tasks at hand. However, she actually allows all of the other members do the work, though shes more than happy to take an equal share of the credit for the completed work. Renata appears to be a(n) ______ in terms of the types of problem members in a meeting. Mrs. Nguyen agrees with the following statement: As I get older, things are better than I thought they d be. Mrs. Nguyen s self-perception __________.a) is an example of a stereotype threat b) may help her live a longer life c) suggests that she is in denial d) is consistent with the prevailing Western stereotype of late adulthood The profit function p(x) of a tour operator is modeled by p(x) = 2x^2 + 700x 10000, where x is the average number of tours he arranges per day. What is the range of the average number of tours he must arrange per day to earn a monthly profit of at least $50,000? yer yerrr help me for 12 points. give me the statement and reason chart. Sophie Black works as a computer programmer for a software company. Her boss, Mike Jones, is responsible for developing a new software game for the Wii. After completion of the project, Mike gives all of the team members a free copy of the game without consent from the company. Sophie is a little hesitant and unsure about accepting the game because legally it would be considered ________. Which of the following types of glial cells are the most abundant and versatile, and aid in making exchanges between capillaries and neurons? a. microglia b. ependymal cells c. oligodendrocytes d. astrocytes The National Origins Act of 1924:a. discriminated against northwestern Europeans. b. included a quota system for the first time. c. entirely banned immigration from East Asia to the United States. d. set a rigid limit of 150,000 immigrants a year. e. was designed to alter the sources but not the overall number of immigrants. Please help!!!!!!!!!! Which of the following is a true equation?A. 16 + 4 - 1 = 20B. 16 + 4 - 1 < 20C. 16 + 4 - 1 = 19 - 1D. 16 + 4 - 1 = 20 - 1 On January 1, Year 1, McClurg Corporation issues 5%, 11-year bonds with a face amount of $70,000 for $76,180. The market interest rate is 4%. Interest is paid semiannually on June 30 and December 31. Complete the necessary journal entry for the issuance of the bonds by selecting the account names from the drop-down menus and entering the associated dollar amounts. (If no entry is required for a particular transaction/event, select "No Journal Entry Required" in the first account field.) 100 POINTS AND BRAINLIEST PLEASE HELP ASAP!!!! Which topic is more appropriate for an explanatory text rather a simply informative one?A. how soccer balls are manufacturedB. popular cold weather sportsC. the role of a soccer team's goalieD. the basic rules of soccer In an If-Then-Else statement, the Else clause marks the beginning of the statements to be executed when the Boolean expression is ________. When they produce 20,000 units per month, Sanders Incorporated has variable costs of $392,000 and fixed costs of $242,000. If Sanders increases their production to 25,000 units, by how much will they have to increase their budget? A : $98,000 B : $158,500 C : $490,000 D : $792,500 Bramble Company took a physical inventory on December 31 and determined that goods costing $216,300 were on hand. Not included in the physical count were $22,720 of goods purchased from Pelzer Corporation, f.o.b. shipping point, and $19,770 of goods sold to Alvarez Company for $29,450, f.o.b. destination. Both the Pelzer purchase and the Alvarez sale were in transit at year-end. What amount should Bramble report as its December 31 inventory? What reasons do the authors give to support their claim about the importance of social media in the Arab uprisings? Select two options. the description of social media as a causal mechanism the explanation that most Egyptians do not use the technology the clarification that Twitter is relatively new and frequently used the fact that information from bitly links was shared around the worldthe detail that a US institute collected data in multiple countriesTHE ANSWER IS B AND D Select the correct answer. What is the best definition of detoxification? A. a gradual but complete withdrawal from drugs B. a lifelong commitment to living alcohol-free C. the process of withdrawing from tobacco use Judy has a sugar cone and wants to know how many cubic inches of ice cream it will hold if it is filled completely to the top ofthe cone and no more. The cone has a height of 4.5 inches and a radius of 1.5 inches. work shown understandbly