Write and solve the system of linear equations described by the application and then answer the question. One hundred sixty feet of fencing encloses a rectangular garden on three sides. One side of the garden is the side of a barn and requires no fencing. The longer side is parallel to the barn.

If the length of the longer side of the rectangle is twice the width, what are the dimensions of the garden?

Answers

Answer 1

Answer:

80 ft x 40 ft

Step-by-step explanation:

Let 'L' be the length of the longer side and 'W' be the length of the shorter side (or the width).

The equations that compose the linear system are:

[tex]L+2W=160\\L=2W[/tex]

Solving the system:

[tex]L+L=160\\L=80\\W=\frac{L}{2}\\W=40[/tex]

The garden is a rectangle with dimensions 80 ft x 40 ft.

Answer 2
Final answer:

The dimensions of the garden are approximately 53.33 feet in width and 106.66 feet in length according to the given linear equations and conditions.

Explanation:

Given that the fencing of 160 feet encloses a rectangular garden on three sides and one side of the rectangle is parallel with the barn, we can derive the linear equations based on these parameters. Let's denote the width of the rectangle as x and the length of the rectangle as 2x, as stated the length is twice the width.

The perimeter of this garden will equal the amount of fencing, which is 160 feet. Because only three sides of the rectangle are enclosed by the fence, the equation for the perimeter becomes 2x + x = 160. Simplifying this, we get 3x = 160. Solving for x, we divide both sides by 3, hence, x = 53.33 ft approximately. The width of the garden is thus around 53.33 feet and the length (being twice the width) would be 2x = 2*53.33 = 106.66 ft.

Learn more about Rectangular Garden Dimensions here:

https://brainly.com/question/9623197

#SPJ3


Related Questions

Which of the following expression is equivalent to 6^−7? A 1/(−6)^−7 B 1/6^7 C (−6^)−7 D 1/6^−7

Answers

Answer:B

Step-by-step explanation: The answer is B. 1/6^7. Your trying to find the reciprocal of 6^-7. The way you do that is put a 1 over the 6 with a power of -7 like this (6^-7)/(1) and that's how you get your answer!

[tex]\huge\text{Hey there!}[/tex]

[tex]\huge\textbf{This equation should be somewhat}\\\huge\textbf{easy because it has like THREE steps}\\\huge\textbf{to solve it.}[/tex]

[tex]\huge\textbf{But....}[/tex]

[tex]\huge\textbf{Your equation should look like:}[/tex]

[tex]\mathsf{6^{-7}}[/tex]

[tex]\huge\textbf{Now, let's get to the steps:}[/tex]

[tex]\mathsf{6^{-7}}\\\\\mathsf{\approx \dfrac{1}{6\times6\times6\times6\times6\times6\times6}}\\\\\mathsf{\approx \dfrac{1}{6^7}}\\\\\mathsf{\approx \dfrac{1}{279,936}}[/tex]

[tex]\huge\textbf{Therefore, the closet answer to your}\\\huge\textbf{question should be:}[/tex]

[tex]\huge\boxed{\frak{Option\ B. \rm{\dfrac{1}{6^7}}}}\huge\checkmark[/tex]

[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]

~[tex]\frak{Amphitrite1040:)}[/tex]

Statistics Question:

Answers

The Correlation coefficient is r = -0.992324879

Step-by-step explanation:

The figure shown is the calculation of all data

Given data :

X y

1 42.2

2 42.14

3 39.38

4 38.22

5 37.46

6 35.2

7 30.24

8 29.38

9 25.92

10 24.86

11 24.8

12 21.04

13 20.98

14 15.42

15 15.46

16 13.4

Step1: Find X mean, Y mean

Mean  = [tex]\frac{\sum x }{N}[/tex]

X mean = [tex]\frac{1+2+3+4+5+...+16}{16}[/tex]

X mean = 8.5

Similarly, we get

Y mean = [tex]\frac{42.2+42.14+39.38+...+15.42+15.46+13.4}{16}[/tex]

Y mean = 28.50625

Step2: Find Standard deviation

Standard deviation = [tex]\sqrt {\frac{ \sum (Xi-X mean)^{2} }{N-1}}[/tex]

Sx = [tex]\sqrt {\frac{ (-7.5)^{2} +  (-6.5)^{2} +(-5.5)^{2} ....+  (7.5)^{2}  }{16-1}}[/tex]

Sx= 4.760952286

Similarly, we get

Sy= 9.765590527

Step3: Find Correlation coefficient

The formula for the Correlation coefficient is given as  

[tex]r=\frac{1}{N-1} \sum(\frac{Xi-X mean }{Sx} ) (\frac{Yi- Y mean }{Sy} )[/tex]

[tex]r=\frac{1}{16-1} \sum(\frac{Xi-8.5 }{4.760952286} ) (\frac{Yi- 28.50625 }{9.765590527} )[/tex]

[tex]r= -0.992324879[/tex]

Thus, The Correlation coefficient is r = -0.992324879

. In the 1980s, it was generally believed that congenital abnormalities affected about 5% of the nation’s children. Some people believe that the increase in the number of chemicals in the environment has led to an increase in the incidence of abnormalities. A recent study examined 384 children and found that 46 of them showed signs of an abnormality. Is this strong evidence that the risk has increased?

a. Define the parameter and state the hypotheses.

b. Define the sampling distribution (mean and standard deviation).

c. Perform the test and calculate P-value

d. State your conclusion.

e. Explain what the p-value means in this context.

Answers

Answer:

Reject null hypothesis

Step-by-step explanation:

a) [tex]H_0: p =0.05\\H_a: p >0.05[/tex]

(Right tailed test at 5% level)

p = risk proportion

Sample proportion = [tex]\frac{46}{384} \\\\=0.1198[/tex]

Std error = [tex]\sqrt{\frac{pq}{n} } \\=\sqrt{\frac{0.05(0.95)}{384} } \\=0.0111[/tex]

p difference = [tex]0.1198-0.05=0.0698[/tex]

b) Sampling proportion is Normal with mean = 0.05 and std error = 0.0698

c) Z = test statistic = p diff/std error

= 6.29

p value <0.05

d) Since p < alpha we reject null hypothesis.

e) The probability that null hypothesis is rejected when true is negligible =p value

Answer:

Step-by-step explanation:

Reject null hypothesis

Personnel selection. Suppose that 7 female and 5 male applicants have been successfully screened for 5 positions. If the 5 positions are filled at random from the 12 âfinalists, what is the probability of selecting â

(A) 3 females and 2â males? â
(B) 4 females and 1â male? â
(C) 5â females?
â(D) At least 4â females?

Answers

Final answer:

The question involves calculating the probabilities of different combinations of females and males being selected for positions using the hypergeometric distribution, a concept in mathematics related to probability without replacement from two distinct groups.

Explanation:

The question is related to the concept of probability in mathematics, specifically the use of the hypergeometric distribution, which is appropriate when sampling without replacement from a finite population divided into two groups. To calculate the probability of various combinations of female and male applicants selected for the positions, we need to use the hypergeometric probability formula:

For part (A), calculating the probability of selecting 3 females and 2 males:For part (B), calculating the probability of selecting 4 females and 1 male:For part (C), calculating the probability of selecting 5 females:For part (D), calculating the probability of selecting at least 4 females (which includes scenarios of selecting 4 or 5 females):

These calculations involve combinations (denoted as C(n, k)) and the formula for hypergeometric probability, which is:

Hypergeometric Probability = [C(group1 size, group1 subset size) * C(group2 size, group2 subset size)] / C(total population size, total subset size)

Consider a triangle with vertices at (0,0) and (x1, 71) and (x2, 92). a. Use the interpretation of a determinant as area of a parallelogram to explain why the following formula calculates the area of the triangle. (Hint: A diagonal of a parallelogram cuts the parallelogram into two triangles of equal size A =\det (i 2) b. Set (x1, y.) = (1,2) and (x2,Y2) = (3,-1). Use the formula to calculate the area of the triangle.

Answers

I can't really read the formula so I'll give a lecture.

With two vectors we can make a parallelogram.  If the vectors are u and v, and one vertex is the origin O, the others are O+u, O+v, and O+v+u.   If we draw any diagonal of the parallelogram, that divides it into two congruent triangles.  So each triangle is half the area of parallelogram.

The signed area of the parallelogram is given by the two D cross product of the vectors, aka the determinant.   So the area of a triangle with vertices (0,0), (a,b) and (c,d) is

[tex]A = \frac 1 2 |ad - bc| = \left| \frac 1 2 \begin{vmatrix} a & b \\ c & d\end{vmatrix} \right|[/tex]

Applying that to vertices

[tex](0,0), (x_1, 71), (x_2, 92)[/tex]

we get area

[tex]A = \frac 1 2 |\ 92x_1 - 71x_2|[/tex]

That formula is accurate for any values of x₁ and x₂

b. (1,2),(3,-1)

[tex]A=\frac 1 2|1(-1)-2(3)| = \frac 1 2 |-7| = \frac 7 2[/tex]

Answer: 7/2

McPhee Company manufactures rugs in the cutting and assembly process. Rugs are manufactured in 70-rug batch sizes. The cutting time is 14 minutes per rug. The assembly time is 24 minutes per rug. It takes 18 minutes to move a batch of rugs from cutting to assembly. What is the value-added lead time?

Answers

Answer:38 min

Step-by-step explanation:

Given

Cutting time [tex]t_1=14 min[/tex]

Assembly Line time [tex]t_2=24 min[/tex]

[tex]t_3=18[/tex] to move a batch of rugs from cutting to assembly

Value-added refers to a process or phase in a system that turns raw materials or work in progress into much more desirable goods and services for downstream consumers.

thus value added time is [tex]t_1+t_2=14+24 =38 min[/tex]                

A group of 24 people have found 7.2 kg of gold. Assuming the gold is divided evenly, how much gold will each one get in grams?

Answers

Answer:

Step-by-step explanation:

Convert 7.2 to grams then divide the grams evenlly to the 24 people then you get 300

Suppose the returns on long-term government bonds are normally distributed. Assume long-term government bonds have a mean return of 6.0 percent and a standard deviation of 9.9 percent. a. What is the approximate probability that your return on these bonds will be less than −3.9 percent in a given year?

Answers

Answer:

0.1587

Step-by-step explanation:

Let X be the random variable that represents a return on long-term government bond. We know that X has a mean of 6.0 and a standard deviation of 9.9, in order to compute the approximate probability that your return on these bonds will be less than -3.9 percent in a given year, we should compute the z-score related to -3.9, i.e., (-3.9-6.0)/9.9 =  -1. Therefore, we are looking for P(Z < -1) = 0.1587

Flip a coin 100 times. We want the chance of getting exactly 50 heads. What is the exact probability, correct to six decimal places? What is the Normal approximation of the probability, to six decimal places?

Answers

Answer: a) 0.079589 b) 0.079656

Step-by-step explanation:

Since we have given that

Number of times a coin is flipped = 100 times

Number of times he get exactly head = 50

Probability of getting head = [tex]\dfrac{1}{2}[/tex]

We will use "Binomial distribution":

Probability would be

[tex]^{100}C_{50}(\dfrac{1}{2})^{50}(\dfrac{1}{2})^50\\\\=0.079589[/tex]

Using "Normal approximation":

n = 100

p = 0.5

So, mean = [tex]np=100\times 0.5=50[/tex]

Standard deviation is given by

[tex]\sqrt{np(1-p)}\\\\=\sqrt{50(1.05)}\\\\=\sqrt{50\times 0.5}\\\\=\sqrt{25}\\\\=5[/tex]

So,

[tex]P(X<x)=P(Z<\dfrac{\bar{x}-\mu}{\sigma})\\\\So, P(X=50)=P(49.5<X<50.5)\\\\=P(\dfrac{49.5-50}{5}<Z<\dfrac{50.5-50}{5})\\\\=P(-0.1<Z<0.1)\\\\=P(Z<0.1)-P(Z<-0.1)\\\\=0.539828-0.460172\\\\=0.079656[/tex]

Hence, a) 0.079589 b) 0.079656

According to the Census Bureau, 3.36 people reside in the typical American household. A sample of 25 households in Arizona retirement communities showed the mean number of residents per household was 2.71 residents. The standard deviation of this sample was 1.10 residents. At the .10 significance level, is it reasonable to conclude the mean number of residents in the retirement community household is less than 3.36 persons? State the null hypothesis and the alternate hypothesis

Answers

Answer:

We conclude that  the mean number of residents in the retirement community household is less than 3.36 persons.

Step-by-step explanation:

We are given the following in the question:  

Population mean, μ = 3.36

Sample mean, [tex]\bar{x}[/tex] = 2.71

Sample size, n =  25

Alpha, α = 0.10

Sample standard deviation, s = 1.10

First, we design the null and the alternate hypothesis

[tex]H_{0}: \mu = 3.36\text{ residents per household}\\H_A: \mu < 3.36\text{ residents per household}[/tex]

We use One-tailed(left) t test to perform this hypothesis.

Formula:

[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex] Putting all the values, we have

[tex]t_{stat} = \displaystyle\frac{2.71 - 3.36}{\frac{1.10}{\sqrt{25}} } = -2.95[/tex]

Now, [tex]t_{critical} \text{ at 0.10 level of significance, 24 degree of freedom } =-1.31[/tex]

Since,                  

[tex]t_{stat} < t_{critical}[/tex]

We reject the null hypothesis and fail to accept it.

Thus, we conclude that  the mean number of residents in the retirement community household is less than 3.36 persons.

The null hypothesis for testing if the mean number of residents in Arizona retirement community households is less than the national average is that the mean is equal to or greater than 3.36 residents. The alternate hypothesis is that it is less than 3.36 residents. A one-sample t-test would typically be used to test these hypotheses.

Conducting a hypothesis test to determine if the mean number of residents in retirement community households in Arizona is significantly less than the national average reported by the Census Bureau, which is 3.36 residents per household. To address this,

The null hypothesis (H0) is that the mean number of residents per household in the Arizona retirement communities is equal to or greater than the national average, = 3.36 residents.

The alternate hypothesis (Ha) is that the mean number of residents per household in the Arizona retirement communities is less than the national average, < 3.36 residents.

To test this hypothesis at a 0.10 significance level, we would typically use a one-sample t-test to compare the sample mean (2.71 residents) against the national average (3.36 residents) considering the sample standard deviation (1.10 residents) and sample size (25 households).

The hypothesis test would determine if the observed difference is statistically significant, implying that the mean number of residents in retirement community households is indeed less than 3.36 persons.

Some sources report that the weights of​ full-term newborn babies in a certain town have a mean of 8 pounds and a standard deviation of 0.6 pounds and are normally distributed. a. What is the probability that one newborn baby will have a weight within 0.6 pounds of the meaning dash that ​is, between 7.4 and 8.6 ​pounds, or within one standard deviation of the​ mean

Answers

Answer:

0.682 is the probability that one newborn baby will have a weight within one standard deviation of the​ mean.

Step-by-step explanation:

We are given the following information in the question:

Mean, μ =  8 pounds

Standard Deviation, σ = 0.6 pounds

We are given that the distribution of weights of​ full-term newborn babies is a bell shaped distribution that is a normal distribution.

Formula:

[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]

P(weight between 7.4 and 8.6 ​pounds)

[tex]P(7.4 \leq x \leq 8.6) = P(\displaystyle\frac{7.4 - 8}{0.6} \leq z \leq \displaystyle\frac{8.6-8}{0.6}) = P(-1 \leq z \leq 1)\\\\= P(z \leq 1) - P(z < -1)\\= 0.841 - 0.159 = 0.682 = 68.2\%[/tex]

[tex]P(7.4 \leq x \leq 8.6) = 6.82\%[/tex]

This could also be found with the empirical formula.

0.682 is the probability that one newborn baby will have a weight within 0.6 pounds of the mean.

An article describes a factorial experiment designed to determine factors in a high-energy electron beam process that affect hardness in metals. The first factor is the travel speed in mm/s (three levels: 10, 20, 30). The second fact g

Answers

Final answer:

The subject of this question is Physics and the grade level is High School. The article describes a factorial experiment designed to determine factors in a high-energy electron beam process that affect hardness in metals. The experiment focuses on two factors: travel speed and beam current. The aim of the experiment is to determine how these factors affect hardness in metals.

Explanation:

In the given article, the subject of the question is physics, specifically the experimentation involving a high-energy electron beam process that affects hardness in metals. The experiment focuses on two factors: travel speed and beam current. The travel speed is measured in mm/s and has three levels: 10, 20, and 30. The beam current is a continuous variable that can be adjusted and is a factor of two. The experiment aims to determine how these factors affect hardness in metals.

In a multiple-choice question, a student is asked to match 3 dates withIn a multiple-choice question, a student is asked to match 3 dates with 3 events. What is the probability that sheer guessing will produce 3 correct answers? g 3 events.

Answers

Answer:

P = 1/6 or 0.1667

Step-by-step explanation:

Let A,B and C be the three events and 1,2 and 3 be the three dates. The sample space for this problem is:

{A1,B2,C3} {A1,B3,C2} {A2,B1,C3} {A2,B3,C1} {A3,B1,C2} {A3,B2,C1}

There are six possible outcomes and since there is only one correct answer, the possibility of guessing all 3 questions right is:

P = 1/6

P = 0.1667

what is the slope of the line that passes through the points (-2, 5) and (1, 4)

Answers

Answer:

-1/3

Step-by-step explanation:

rise / run = slope

4-5/ 1-(-2)

= -1/3

-1/3
You use the formula y1-y2 over x1-x2
You do 5-4 over -2-1 to get -3
That gives you -1/3

In a study of red/green color blindness, 550 men and 2400 women are randomly selected and tested. Among the men, 48 have red/green color blindness. Among the women, 5 have red/green color blindness. Test the claim that men have a higher rate of red/green color blindness than women. Also, construct a 98% confidence interval for the difference between color blindness rates of men and women. Does there appear to be a significant difference?

Answers

Answer: 98% confidence interval is (0.06,0.11).

Step-by-step explanation:

Since we have given that

Number of men = 550

Number of women = 2400

Number of men have color blindness = 48

Number of women have color blindness = 5

So, [tex]p_M=\dfrac{48}{550}=0.087\\\\p_F=\dfrac{5}{2400}=0.0021[/tex]

So, at 98% confidence interval, z = 2.326

so, interval would be

[tex](p_M-P_F)\pm z\sqrt{\dfrac{p_M(1-p_M)}{n_M}+\dfrac{p_F(1-p_F)}{n_F}}\\\\=(0.087-0.0021)\pm 2.326\sqrt{\dfrac{0.087\times 0.912}{550}+\dfrac{0.0021\times 0.9979}{2400}}\\\\=0.0849\pm 2.326\times 0.012\\\\=(0.0849-0.027912, 0.0849+0.027912)\\\\=(0.06,0.11)[/tex]

Hence, 98% confidence interval is (0.06,0.11).

No, there does not appears to be a significant difference.

In a random sample of 27 ​people, the mean commute time to work was 32.8 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99 ​% confidence interval for the population mean mu . What is the margin of error of mu ​? Interpret the results.

The confidence interval for the population mean ___ , ___

​(Round to one decimal place as​ needed.)

A) Using the given sample​ statistics, find the left endpoint of the interval using​ technology, rounding to one decimal place.

B) Using the given sample​ statistics, find the right endpoint of the interval using​ technology, rounding to one deci?mal place.

C) Using the formulas and values for the left​ and/or right​endpoints, find the margin of error from​ technology, rounding to two decimal places.

Answers

Final answer:

To calculate the 99% confidence interval for the population mean commute time, we use the formula CI = x± t * (s/√n), where x is the sample mean, t is the t-value, s is the sample standard deviation, and n is the sample size. By substituting the given values into the formula, we find that the confidence interval is approximately (29.4, 36.2) and the margin of error is 1.7. This means we are 99% confident that the population mean commute time lies within the interval, and the margin of error represents the possible deviation of the sample mean from the population mean.

Explanation:

To construct a 99% confidence interval for the population mean μ, we can use the formula:

CI = x± t * (s/√n)

Where CI is the confidence interval, x is the sample mean, t is the t-value, s is the sample standard deviation, and n is the sample size. In this case, x = 32.8, s = 7.2, and n = 27.

To find the t-value, we need to determine the degrees of freedom (df), which is equal to n - 1. So, df = 27 - 1 = 26. Looking up the t-value for a 99% confidence level with 26 degrees of freedom in a t-table or using calculator software, we find it to be approximately 2.787.

Substituting these values into the formula, we get:

CI = 32.8 ± 2.787 * (7.2/√27)

Calculating this, we find that the confidence interval is approximately (29.4, 36.2).

The margin of error, also known as the error bound for a population mean (EBM), is half the width of the confidence interval. So, the margin of error in this case is (36.2 - 32.8)/2 = 1.7.

Interpreting the results, we can say that we are 99% confident that the population mean μ lies within the range of 29.4 to 36.2 minutes. Furthermore, the margin of error of 1.7 indicates how much the sample mean could vary from the population mean, taking into account the variability in the data.

A statistician uses Chebyshev's Theorem to estimate that at least 15 % of a population lies between the values 9 and 20. Use this information to find the values of the population mean, μ , and the population standard deviation σ.

Answers

Answer:

\mu = 14.5\\

\sigma = 5.071\\

k = 1.084

Step-by-step explanation:

given that a  statistician uses Chebyshev's Theorem to estimate that at least 15 % of a population lies between the values 9 and 20.

i.e. his findings with respect to probability are

[tex]P(9<x<20) \geq 0.15\\P(|x-14.5|<5.5) \geq 0.15[/tex]

Recall Chebyshev's inequality that

[tex]P(|X-\mu |\geq k\sigma )\leq {\frac {1}{k^{2}}}\\P(|X-\mu |\leq k\sigma )\geq 1-{\frac {1}{k^{2}}}\\[/tex]

Comparing with the Ii equation which is appropriate here we find that

[tex]\mu =14.5[/tex]

Next what we find is

[tex]k\sigma = 5.5\\1-\frac{1}{k^2} =0.15\\\frac{1}{k^2}=0.85\\k=1.084\\1.084 (\sigma) = 5.5\\\sigma = 5.071[/tex]

Thus from the given information we find that

[tex]\mu = 14.5\\\sigma = 5.071\\k = 1.084[/tex]

Find the work required to move an object in the force field F = ex+y <1,1,z> along the straight line from A(0,0,0) to B(-1,2,-5). Also, deternine if the force is conservative.

Find the work required to move an object in the fo

Answers

Answer:

Work = e+24

F is not conservative.

Step-by-step explanation:

To find the work required to move an object in the force field  

[tex]\large F(x,y,z)=(e^{x+y},e^{x+y},ze^{x+y})[/tex]

along the straight line from A(0,0,0) to B(-1,2,-5), we have to parameterize this segment.

Given two points P, Q in any euclidean space, you can always parameterize the segment of line that goes from P to Q with

r(t) = tQ + (1-t)P with 0 ≤ t ≤ 1

so  

r(t) = t(-1,2,-5) + (1-t)(0,0,0) = (-t, 2t, -5t)  with 0≤ t ≤ 1

is a parameterization of the segment.

the work W required to move an object in the force field F along the straight line from A to B is the line integral

[tex]\large W=\int_{C}Fdr [/tex]

where C is the segment that goes from A to B.

[tex]\large \int_{C}Fdr =\int_{0}^{1}F(r(t))\circ r'(t)dt=\int_{0}^{1}F(-t,2t,-5t)\circ (-1,2,-5)dt=\\\\=\int_{0}^{1}(e^t,e^t,-5te^t)\circ (-1,2,-5)dt=\int_{0}^{1}(-e^t+2e^t+25te^t)dt=\\\\\int_{0}^{1}e^tdt-25\int_{0}^{1}te^tdt=(e-1)+25\int_{0}^{1}te^tdt[/tex]

Integrating by parts the last integral:

[tex]\large \int_{0}^{1}te^tdt=e-\int_{0}^{1}e^tdt=e-(e-1)=1[/tex]

and  

[tex]\large \boxed{W=\int_{C}Fdr=e+24}[/tex]

To show that F is not conservative, we could find another path D from A to B such that the work to move the particle from A to B along D is different to e+24

Now, let D be the path consisting on the segment that goes from A to (1,0,0) and then the segment from (1,0,0) to B.

The segment that goes from A to (1,0,0) can be parameterized as  

r(t) = (t,0,0) with 0≤ t ≤ 1

so the work required to move the particle from A to (1,0,0) is

[tex]\large \int_{0}^{1}(e^t,e^t,0)\circ (1,0,0)dt =\int_{0}^{1}e^tdt=e-1 [/tex]

The segment that goes from (1,0,0) to B can be parameterized as  

r(t) = (1-2t,2t,-5t) with 0≤ t ≤ 1

so the work required to move the particle from (1,0,0) to B is

[tex]\large \int_{0}^{1}(e,e,-5et)\circ (-2,2,-5)dt =25e\int_{0}^{1}tdt=\frac{25e}{2}[/tex]

Hence, the work required to move the particle from A to B along D is

 

e - 1 + (25e)/2 = (27e)/2 -1

since this result differs from e+24, the force field F is not conservative.

A music professor says that his school's new test for "creative musical analysis" can't be trusted because the test counts and discordant string of pitches as creative. The music professor is attacking the test's:
A) confidence level.
B) margin of error.
C) validity.
D) reliability.

Answers

Answer:

C i think i already answerd this

Step-by-step explanation:

The music professor attacking the test is validity. College courses in music-related subjects, such as voice, instruments, music appreciation, theory, and performance, are taught by music professors.

What is meant by music professor ?

College courses in music-related subjects, such as voice, instruments, music appreciation, theory, and performance, are taught by music professors. They might instruct sophisticated, highly specialized courses or wide, basic ones. They design curricula, teach classes, and evaluate students' work.

Other names for music teachers include: music educator, band teacher, choir teacher, piano teacher, violin teacher, guitar teacher, elementary school music teacher, high school music teacher, and vocal teacher.

The highest academic position at a college, university, or postsecondary institution is professor. Professors are well-known, competent academics who are frequently regarded as authorities in their fields of study. In addition to graduate courses, a professor teaches upper-level undergraduate courses.

To learn more about music professor refer to:

https://brainly.com/question/16462757

#SPJ2

An appliance dealer sells three different models of upright freezers having 14.5, 16.9, and 19.1 cubic feet of storage space. Let x = the amount of storage space purchased by the next customer to buy a freezer. Suppose that x has the following probability distribution.x p(x)14.5 .216.9 .519.1 .3(a) Calculate the mean and standard deviation of x.(b) If the price of the freezer depends on the size of the storage space, x, such that Price = 25x - 8.5, what is the mean value of the variable Price paid by the next customer?(c) What is the standard deviation of the price paid?

Answers

Final answer:

The question is about calculating the mean and standard deviation of a discrete random variable representing the size of the freezer model a customer buys, and then the mean and standard deviation of the price paid, which is a function of the freezer size.

Explanation:

The random variable X in this scenario represents the size of the freezer model (in cubic feet) that the next customer buys from the appliance dealer. This is a discrete random variable, with possible values being the sizes of the three available freezer models: 14.5, 16.9, and 19.1 cubic feet.

To calculate the mean and standard deviation of X, we can use the formula for the mean of a discrete random variable and the formula for the standard deviation respectively, which are given as follows:
Mean (expected value), E(X) = Σ [x * p(x)]
Standard Deviation, σ(X) = sqrt{Σ [(x - μ)² * p(x)]}

The mean value of the second variable (Price) can be calculated by plugging the expected value of X into the given Price = 25X - 8.5 equation, and the standard deviation by applying the transformation rule for standard deviations (σ_Y = |b| * σ_X, where b is the coefficient of X in the original expression for Y, which in this case is 25).

Learn more about Discrete Random Variables here:

https://brainly.com/question/17238412

#SPJ2

A machine dispenses water into a glass. Assuming that the amount of water dispensed follows a continuous uniform distribution from 10 ounces to 16 ounces, what is the probability that 13 or more ounces will be dispensed in a given glass? .3333 .5000 .6666 .1666

Answers

Answer:

I guess they rounded, but the answer is .5000 or 50% chance

Step-by-step explanation:

Count the total chances. There is a chance it will be 10oz, 11oz, 12oz, 13oz, 14oz, 15oz, or 16oz. The question asked 13 or more. That is 13, 14, 15, and 16.

That is a 4/7 chance or probability it will be more than 13oz. Divide 4 and 7 to get your answer.

0.57 or 57%

Suppose Clay, a grocery store owner, is monitoring the rate at which customers enter his store. After watching customers enter for several weeks, he determines that the amount of time in between customer arrivals follows an exponential distribution with mean 25
What is the 70th percentile for the amount of time between customers entering Clay's store? Round your answer to the nearest two decimal places. 70th percentile

Answers

Answer:

70th percentile for the amount of time between customers entering is 30.10

Step-by-step explanation:

given data

mean =  25

to find out

What is the 70th percentile for the amount of time between customers entering Clay's store

solution

we know that here mean is

mean = [tex]\frac{1}{\lambda}[/tex]   ..................1

so here 25 =  [tex]\frac{1}{\lambda}[/tex]

and we consider time value corresponding to 70th percentile = x

so we can say

P(X < x) = 1 - [tex]e^{- \lambda *x}[/tex]      

P(X < x) = 70 %

1 - [tex]e^{\frac{-x}{25}}[/tex]  = 70 %

1 - [tex]e^{\frac{-x}{25} }[/tex]  = 0.70

[tex]e^{\frac{- x}{25} }[/tex]  = 0.30

take ln both side

[tex]\frac{-x}{25}[/tex] = ln 0.30

[tex]\frac{x}{25}[/tex]  = 1.203973

x = 30.10

70th percentile for the amount of time between customers entering is 30.10

The 70th percentile for the amount of time between customers entering Clay's store is 30

How to determine the 70th percentile?

The mean of an exponential distribution is:

[tex]E(x) = \frac 1\lambda[/tex]

The mean is 25.

So, we have:

[tex]\frac 1\lambda = 25[/tex]

Solve for [tex]\lambda[/tex]

[tex]\lambda = \frac 1{25}[/tex]

[tex]\lambda = 0.04[/tex]

An exponential function is represented as:

[tex]P(x < x) = 1 - e^{-\lambda x}[/tex]

For the 70th percentile, we have:

[tex]1 - e^{-\lambda x} = 0.70[/tex]

This gives

[tex]e^{-\lambda x} = 1 - 0.70[/tex]

[tex]e^{-\lambda x} = 0.30[/tex]

Substitute [tex]\lambda = 0.04[/tex]

[tex]e^{-0.04x} = 0.30[/tex]

Take the natural logarithm of both sides

[tex]-0.04x = \ln(0.30)[/tex]

This gives

[tex]-0.04x = -1.20[/tex]

Divide both sides by -0.04

[tex]x = 30[/tex]

Hence, the 70th percentile for the amount of time between customers entering Clay's store is 30

Read more about probability distribution at:

https://brainly.com/question/4079902

2log4x(x^3)=5log2x(x)

Answers

Good evening ,

Answer:

x=2

Step-by-step explanation:

Look at the photo below for the details.

:)

Consider the sequence −8, −4, 0, 4, 8, 12, ellipsis. Select True or False for each statement. A recursive rule for the sequence is f(1) = −8; f(n) = −4 (n − 1) for all n ≥ 2. A True B False An explicit rule for the sequence is f(n) = −8 + 4 (n − 1). A True B False The tenth term is 28.

Answers

Answer:

A recursive rule for the sequence is f(1) = -8; f(n) = -4 (n – 1) for all n ≥ 2 is "FALSE"

An explicit rule for the sequence is f(n) = -8 + 4 (n – 1) is "TRUE"

The tenth term is 28 is "TRUE"

Step-by-step explanation:

Statement (1)

While the first part [f(1) = –8] is TRUE, the second part [f(n) = –4 (n – 1) for all n ≥ 2] would only be true if the sequence ends at the second term.

Check: Since the fifth term of the sequence is 8, then f(5) = 8

From the statement,

f(5) = –4 (5 – 1)

f(5) = –4 × 4 = –16

:. f(5) ≠ 8

Statement (2)

f(n) = –8 + 4 (n – 1) is TRUE

Check: The fifth term of the sequence is 8 [f(5) = 8]

From the statement,

f(5) = –8 + 4 (5 – 1)

f(5) = –8 + 4 (4)

f(5) = –8 + 16 = 8

:. f(5) = 8

Statement (3)

f(10) = 28 is TRUE

Since the explicit rule is TRUE, use to confirm if f(10) = 28:

f(10) = –8 + 4 (10 – 1)

f(10) = –8 + 4 (9)

f(10) = –8 + 36

f(10) = 28

:. f(10) = 28

Help me please and explain

Answers

Answer:

its 114

Step-by-step explanation:

180-66=114 so that's it

The answer to your question is 114!

Suppose that 250 students take a test, of which 100 are sophomores, 140 are juniors and 110 are seniors. Let X be the random variable representing the score of each student on the test. Suppose that the sophomores have an average of 60 juniors have an average of 67 and the seniors have an average of 77. Find E(X) using conditioning. Use the appropriate notation to explain your answer.

Answers

Answer:

95.4

Step-by-step explanation:

The overall average score would be the total score divided by the total number of students. The total score is the sum of the product of the average of each student body and their average score

[tex]E(x) = \frac{E_1n_1 + E_2n_2+E_3n_3}{n_1+n_2+n_3}[/tex]

[tex]E(x) = \frac{100*60+140*67+110*77}{250} = \frac{23850}{250} = 95.4[/tex]

The advertised claim for batteries for cell phones is set at 48 operating hours with proper charging procedures. A study of 5000 batteries is carried out and 15 stop operating prior to 48 hours.

Do these experimental results support the claim that less than 0.2 percent of the company’s batteries will fail during the advertised time period (assuming proper charging procedures were followed)?

Use a hypothesis testing procedure with α = 0.01. State H0 and H1, test statistic, critical value(s), critical (rejection) region, p-value, and conclusion. Hint: Here, H1 is something against what the company claims.

Answers

Final answer:

The experimental results support the claim that less than 0.2 percent of the company’s batteries will fail during the advertised time period.

Explanation:

To test if the experimental results support the claim that less than 0.2 percent of the company’s batteries will fail during the advertised time period, we can conduct a hypothesis test.

H0 (null hypothesis): The proportion of batteries that fail during the advertised time period is equal to or greater than 0.2 percent.

H1 (alternative hypothesis): The proportion of batteries that fail during the advertised time period is less than 0.2 percent.

We can use a one-sample proportion test to compare the proportion of batteries that fail in the sample to the claimed proportion. The test statistic for this hypothesis test is the z-test statistic.

The critical value(s) for a one-sided test with α = 0.01 is z = -2.33.

The critical (rejection) region is z < -2.33.

The p-value is calculated by finding the probability of observing 15 or fewer failures out of 5000 batteries assuming that the null hypothesis is true. Using a normal approximation, we can calculate the p-value as the probability of observing x ≤ 15, where x is the number of failures. We find the p-value is less than 0.01.

Since the p-value is less than the significance level of 0.01, we reject the null hypothesis. We have sufficient evidence to support the claim that less than 0.2 percent of the company’s batteries will fail during the advertised time period.

: Planning a summer study schedule About Susan plans on studying four different subjects (Math, Science, French, and Social Studies) over the course of the summer. There are 100 days in her summer break and each day she will study one of the four subjects. A schedule consists of a plan for which subject she will study on each day (a) How many ways are there for her to plan her schedule if there are no restrictions on the number of days she studies each of the four subjects? (b) How many ways are there for her to plan her schedule if she decides that the number of days she studies each subject will be the same?

Answers

Answer:

Part (A): The total number of ways are [tex]4^{100}[/tex]

Part (B): The total number of ways are [tex]1.6122075076\times10^{57}[/tex]

Step-by-step explanation:

Consider the provided information.

Part(A) a) How many ways are there for her to plan her schedule if there are no restrictions on the number of days she studies each of the four subjects?

She plans on studying four different subjects.

That means she has 4 choices for each day also there is no restriction on the number of days.

Hence, the total number of ways are:

[tex]4\times 4\times4\times4\times......4=4^{100}[/tex]

Part (B) How many ways are there for her to plan her schedule if she decides that the number of days she studies each subject will be the same?

She wants that the number of day she studies each subject will be the same that means she studies for 25 days each subject.

Therefore, the number of ways are:

[tex]^{100}C_{25}\times ^{75}C_{25}\times ^{50}C_{25}\times ^{25}C_{25}=1.6122075076\times10^{57}[/tex]

Final answer:

In the case of no restrictions, there are 4^100 possible study schedules. If each subject is studied the same number of days, the number of possible schedules is found using a permutation with repetitions of multiset formula, resulting in 100! / (25! * 25! * 25! * 25!).

Explanation:

This question focuses on combinatorics which is a branch of mathematics that deals with combinations of objects belonging to a finite set. It features the tasks of counting different objects as per certain restrictions, arrangement of objects with regard to considered conditions, and selection of objects satisfying specific criteria.

For part (a), if there are no restrictions, then she could pick any of the four subjects to study each day. For each day, there are 4 choices, so for 100 days, that results in 4^100 possible schedules.

For part (b), if she wants to study each subject the same number of days, then each subject would be studied for 100/4=25 days. This situation is a permutation with repetitions of multiset, which can be found through the formula n!/(r1! * r2! * ... * rk!) where n is total number of items, and r1, r2, ..., rk are numbers of same elements of multiset. Using this equation, the number of ways would be 100! / (25! * 25! * 25! * 25!).

Learn more about Combinatorics here:

https://brainly.com/question/31293479

#SPJ3

How much TV do college students watch? A survey of 361 students recorded the number of hours of television they watched per week. The sample mean was 6.504 hours with a standard deviation of 5.584. The standard error of the mean was 0.294. Find a 90% confidence interval for the population mean. Round your answer to three decimal places

Answers

Answer: 90% confidence interval would be (6.022,6.986).

Step-by-step explanation:

Since we have given that

Number of students = 361

Sample mean = 6.504

Sample standard deviation = 5.584

Standard error of the mean = 0.294

At 90% confidence level,

So, α = 0.01

So, z = 1.64

Margin of error is given by

[tex]z\times \text{Standard error}\\\\=1.64\times 0.294\\\\=0.48216[/tex]

So, Lower limit would be

[tex]\bar{x}-0.482\\\\=6.504-0.482\\\\=6.022[/tex]

Upper limit would be

[tex]\bar{x}+0.482\\\\=6.504+0.482\\\\=6.986[/tex]

So, 90% confidence interval would be (6.022,6.986).

A technician compares repair costs for two types of microwave ovens (type I and type II). He believes that the repair cost for type I ovens is greater than the repair cost for type II ovens. A sample of 60 type I ovens has a mean repair cost of $⁢85.79, with a standard deviation of $⁢15.13. A sample of 56 type II ovens has a mean repair cost of $78.67, with a standard deviation of $⁢17.84. Conduct a hypothesis test of the technician's claim at the 0.1 level of significance. Let μ1 be the true mean repair cost for type I ovens and μ2 be the true mean repair cost for type II ovens.Step 1 of 4: State the null and alternative hypotheses for the test.Step 2 of 4: Compute the value of the test statistic. Round your answer to two decimal places.Step 3 of 4: Determine the decision rule for rejecting the null hypothesis H0. Round the numerical portion of your answer to three decimal places.Step 4 of 4: Make the decision for the hypothesis test. Reject or Fail to Reject Null Hypothesis

Answers

Answer:

Since p value <0.1 accept the claim that oven I repair costs are more

Step-by-step explanation:

The data given for two types of ovens are summarised below:

Group   Group One     Group Two  

Mean 85.7900 78.6700

SD 15.1300 17.8400

SEM 1.9533 2.3840

N 60       56      

Alpha = 10%

[tex]H_0: \mu_1 - \mu_2 =0\\H_a: \mu_1 - \mu_2> 0[/tex]

(Right tailed test)

The mean of Group One minus Group Two equals 7.1200

df = 114

 standard error of difference = 3.065

 t = 2.3234

p value = 0.0219

If p value <0.10 reject null hypothesis

4) Since p value <0.1 accept the claim that oven I repair costs are more

 

Other Questions
Which countries occupied Germany after WWII?SwitzerlandGreat Britain, France, and the Soviet UnionUS, Great Britain, and the Soviet UnionUS, France, Great Britain, and the Soviet Union Consider the titration of 30.0 mL of 0.050 M NH3 with 0.025 M HCl. Calculate the after the following volumes of titrant have been added. a)0 mLb)20.0mLc)59.2mLd)60.0mLe)71.3mLf)73.3mL What minus -4 2/3 equals a positive number How does this cartoon express the sentiments of american anti-imperialists of the late 1800s and early 1900s? Three consecutive integers have a sum of 132? What is the domain of the function shown in the mapping?InputOutput{x|x=-5, -3, 1, 2, 6}{yl y = -9,6, 0, 2, 4}{x|x = -9, -6, -5, -3,0, 1, 2, 4, 6}{yly = -9, -6, -5, -3,0, 1, 2, 4, 6} Shelton Co. purchased a parcel of land six years ago for $877,500. At that time, the firm invested $149,000 in grading the site so that it would be usable. Since the firm wasn't ready to use the site itself at that time, it decided to lease the land for $56,000 a year. The company is now considering building a warehouse on the site as the rental lease is expiring. The current value of the land is $929,000. What value should be included in the initial cost of the warehouse project for the use of this land? Do graduates from uf tend to have a higher income than students at fsu New Gadgets is growing at a very fast pace. As a result, the company expects to pay annual dividends of $0.55, 0.80, and $1.10 per share over the next three years, respectively. After that, the dividend is projected to increase by 5 percent annually. The last annual dividend the firm paid was $0.40 a share. What is the current value of this stock if the required return is 16 percent? in all three complex carbohydrates the subunits of glucose are bonded together differently. Because they have different structures, they most likely- Explain why ionic compounds are electrically neutral The atomic mass of an element whose atoms consist of eight protons, nine neutrons, and eight electrons is(Ignore the periodic table entry for this element and only consider what the atomic mass would be given the number ofsubatomic particles in this question). Pea flowers may be purple (P) or white (p). Pea seeds may be round (R) or wrinkled (r). What proportion of the offspring from a cross between purple-flowered, round-seeded individuals (heterozygous for both traits) will have both white flowers and round seeds? b. 1/2 c. 3/16 a. 1/16 e. 9/16 d. 3/4 Draw the Lewis structure (including resonance structures) for the acetate ion (CH3COO). For each resonance structure, use square brackets to denote the overall charge. Draw the Lewis dot structures for the acetate ion. Include all hydrogen atoms and nonbonding electrons. 1. Two pieces of equipment were purchased for a total of $4000. If one piece cost $850 more feanthe other, find the price of the less expensive piece of equipment. Assume all data ze 2002to two significant agits unless grezier 20curacy is given If a rectangular area is rotated in a uniform electric field from the position where the maximum electric flux goes through it to an orientation where only half the flux goes through it, what has been the angle of rotation? A) 45 B) 26.6 C) 90 D) 30 E You are responsible for sales promotion for Replenishmints, long-lasting breath mints that contain a blend of vitamins and other nutrients specifically formulated for smokers and for people exposed to tobacco in their environment. You need to introduce the mints to supermarket managers and owners, attract and identify new store contacts, and test market the response to Replenishmints. Which type of trade promotion would most likely help you reach your objectives? Group of answer choicesa.trade showsb.trade allowances and direct incentivesc.push moneyd.contests and sweepstakese.direct sampling and store demonstration Which of the following is true of resources? Group of answer choices All of these are true. Entrepreneurship organizes resources to produce goods and services. Labor is the mental and physical capacity of workers to produce goods and services. Resources are inputs used to produce goods and services. A = {1, 2, 5, 7} B = {3, 4, 6, 7} C = {0, 5, 8, 9} Find A U B U C. A){0,1,2,3,4,5,6,7,8,9} B){1,2,3,4,5,6,7} C){3,4,5,6,7} D){3,4,7} Media coverage of the Selma March for voting rights, passage of the Voting Rights Act of 1965,congressional oversight of implementation of the act, and the review of constitutional challengesto the act by the federal courts are examples of which aspect of policy making?formulationevaluationimplementationpolicy legitimation