You receive a bonus at work for $5,000. You decide to invest in a bank account for 5 years. The bank gives you a 2.45% interest rate. Determine the amount of money that will be in the account if the interest is compounded

Answers

Answer 1

Answer:

5000(1+0.0245) raise to 5

$5643.26

Step-by-step explanation:

Answer 2

The amount of money that will received after 5 years is $5643.256

Compound Interest

The compound interest of a primary money P with rate of interest r for time t is the total money that include interest and primary as well and can be calculated with the formula

[tex]A=P(1+\frac{r}{100})^t[/tex]

Solution

Here we have given

Primary money = P = $5000

Rate of interest = r = 2.45 %

Time = 5 year

Substitute these values into above formula and we get

[tex]A=5000(1+\frac{2.45}{100})^5[/tex]

[tex]A=5000(1.0245)^5[/tex]

A = $5643.256

Therefore the total amount that will received after 5 year is $5643.256

Learn more about compound interest here-

https://brainly.com/question/24924853

#SPJ2


Related Questions

A​ government's congress has 376 ​members, of which 44 are women. An alien lands near the congress building and treats the members of congress as as a random sample of the human race. He reports to his superiors that a​ 95% confidence interval for the proportion of the human race that is female has a lower bound of 0.085 and an upper bound of 0.149. What is wrong with the​ alien's approach to estimating the proportion of the human race that is​ female?

Answers

Answer:

Alien does not take the sample because alien choose the data of a Government's congress and congress contain less women.

On the other hand general population contain women greater than congress

So as compared to general population confidence interval is not representative.

Answer: The sample is not a simple random sample

Step-by-step explanation:

Henry was buying meals for his family. He bought 3 meals that included a chicken, corn, and a drink and spent a total of $20.25. He paid 6% sales tax. How much did each meal cost before tax?

Answers

Answer:

The price of each meal cost before tax is $ 6.367

Step-by-step explanation:

Given as :

The total price of three meals = $ 20.25

The sales tax included in the total price = 6 %

So, Let the cost of meal before sales tax = x

Or, x + 6 % of x = $ 20.25

or, x + 0.06 x = $ 20.25

Or, 1.06 x = $ 20.25

∴  x = [tex]\frac{20.25}{1.06}[/tex]

I.e x = $ 19.10

Or, price of three meals before tax = $ 19.10

so, The price of each meal = [tex]\frac{19.10}{3}[/tex] = $ 6.367

Hence The price of each meal cost before tax is $ 6.367   answer

a. Consider the following algorithm segment: for i := 1 to 4, for j := 1 to i, [Statements in body of inner loop. None contain branching statements that lead outside the loop.] next j, next i. How many times will the inner loop be iterated when the algorithm is implemented and run?
b. Let n be a positive integer, and consider the following algorithm segment: for i := 1 to n, for j := 1 to i, [Statements in body of inner loop. None contain branching statements that lead outside the loop.], next j, next i. How many times will the inner loop be iterated when the algorithm is implemented and run?

Answers

The number of times the inner loop be iterated when the algorithm is implemented and run is 10.

We are given that;

i := 1 to 4, for j := 1

Now,

a. The inner loop will be iterated 10 times when the algorithm is implemented and run.

| i | j | Iterations |

|---|---|------------|

| 1 | 1 | 1          |

| 2 | 1 | 2          |

| 2 | 2 | 3          |

| 3 | 1 | 4          |

| 3 | 2 | 5          |

| 3 | 3 | 6          |

| 4 | 1 | 7          |

| 4 | 2 | 8          |

| 4 | 3 | 9          |

| 4 | 4 | 10         |

b. The number of iterations of the inner loop depends on the value of i. For each i, the inner loop runs from j = 1 to j = i.

So, the total number of iterations is the sum of i from i = 1 to i = n. This is a well-known arithmetic series, which can be written as:

[tex]$\sum_{i=1}^n i = \frac{n(n+1)}{2}$[/tex]

This is the formula for the number of iterations of the inner loop.

Therefore, by algorithm the answer will be 10.

To learn more about algorithm visit;

https://brainly.com/question/33268466

#SPJ12

a. The inner loop will be iterated 10 times when the algorithm is implemented and run.

b. The total number of iterations for the inner loop when the algorithm is implemented and run will be (n^2 + n)/2.

a. In the given algorithm segment, we have two nested loops. The outer loop runs from 1 to 4, and the inner loop runs from 1 to i. Let's analyze how many times the inner loop will be iterated.

For i = 1, the inner loop will run once.

For i = 2, the inner loop will run twice.

For i = 3, the inner loop will run three times.

For i = 4, the inner loop will run four times.

Therefore, the total number of iterations for the inner loop can be calculated by summing the iterations for each value of i:

1 + 2 + 3 + 4 = 10

b. In this algorithm segment, we have the same nested loops as in part a, but the range of the outer loop is from 1 to n, where n is a positive integer.

The inner loop iterates from 1 to i, where i takes the values from 1 to n. So, for each value of i, the inner loop will run i times.

To determine the total number of iterations for the inner loop, we need to sum the iterations for each value of i from 1 to n:

1 + 2 + 3 + ... + n

This is an arithmetic series, and the sum of an arithmetic series can be calculated using the formula:

Sum = (n/2)(first term + last term)

In this case, the first term is 1, and the last term is n. Substituting these values into the formula, we get:

Sum = (n/2)(1 + n) = (n^2 + n)/2

for such more question on total number

https://brainly.com/question/25109150

#SPJ8

An insurance agent receives 16% commission on every premium paid. how much commission is paid on a policy with a premium of $497.69? $31.10 $79.63 $311.06 $796.30

Answers

Answer:

  $79.63

Step-by-step explanation:

You can figure this by estimating. 16% is a little less than 20%, which is 1/5. $497.69 is almost $500. So, 1/5 of that is almost $100, and a little less than that is about $80. The closest answer choice is $79.63.

__

If you want to figure it exactly, you can do the multiplication ...

  16% of $497.69 = 0.16 × $497.69 = $79.6304 ≈ $79.63

A 3 by 3 matrix Bis known to have eigenvalues 0, 1, 2. This information is enough to find three of these (give the answers where possible) : (a) the rank of B (b) thedeterminantofBTB (c) theeigenvaluesofBTB (d) the eigenvalues of (B2 + J)-1.

Answers

Answer with Step-by-step explanation:

We are given that a matrix B .

The eigenvalues of matrix are 0, 1 and 2.

a.We know that

Rank of matrix B=Number of different eigenvalues

We have three different eigenvalues

Therefore, rank of matrix B=3

b.

We know that

Determinant of matrix= Product of eigenvalues

Product of eigenvalues=[tex]0\times 1\times 2=0[/tex]

After transpose , the value of determinant remain same.

[tex]\mid B^TB\mid=\mid B^T\mid \mid B\mid =0\times 0=0[/tex]

c.Let  

B=[tex]\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&2\end{array}\right][/tex]

Transpose of matrix:Rows change into columns or columns change into rows.

After transpose of matrix B

[tex]B^T=\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&2\end{array}\right][/tex]

[tex]B^TB=\left[\begin{array}{ccc}0^2&-&-\\-&1^2&-\\-&-&2^2\end{array}\right][/tex]

[tex]B^TB=\left[\begin{array}{ccc}0&-&-\\-&1&-\\-&-&4\end{array}\right][/tex]

Hence, the eigenvalues of [tex]B^TB[/tex] are 0, 1 and 4.

d.Eigenvalue of Identity matrix are 1, 1 and 1.

Eigenvalues of [tex]B^2+I=(0+1),(1+1),(2^2+1)=1,2,5[/tex]

We know that if eigenvalue of A is [tex]\lambda[/tex]

Then , the eigenvalue of [tex]A^{-1}[/tex] is [tex]\frac{1}{\lambda}[/tex]

Therefore, the eigenvalues of [tex](B^2+I)^{-1}[/tex] are  

[tex]\frac{1}{1},\frac{1}{2},\frac{1}{5}[/tex]

The eigenvalues of [tex](B^2+I)^{-1}[/tex] are 1,[tex]\frac{1}{2}[/tex] and [tex]\frac{1}{5}[/tex]

A bag contains 222 red marbles, 222 green marbles, and 444 blue marbles.
If we choose a marble, then another marble without putting the first one back in the bag, what is the probability that the first marble will be red and the second will be green?

Answers

Answer:

1/14

Step-by-step explanation:

Assuming you mean that there are 2 red, 2 green, and 4 blue marbles, there are a total of 8 marbles.

On the first draw, the probability the marble is red is 2/8.

On the second draw, there's one less marble, so the probability of selecting a green marble is 2/7.

The total probability is:

2/8 × 2/7 = 1/14

The probability that the first marble is red and the second is green is approximately 0.0626 or 6.26%.

To find the probability we need to follow these steps:

Calculate the total number of marbles: 222 (red) + 222 (green) + 444 (blue) = 888 marbles.Determine the probability of drawing a red marble first.

The probability of drawing a red marble first is:

P(Red) = Number of Red Marbles / Total Number of Marbles = 222 / 888 = 1/4 or 0.25.

After drawing a red marble, there are now 887 marbles left and still 222 green marbles in the bag.Calculate the probability of then drawing a green marble.

The probability of drawing a green marble after a red one has been drawn is:

P(Green | Red) = Number of Green Marbles / Remaining Marbles = 222 / 887.

Finally, multiply these probabilities together to find the overall probability.

The overall probability is:

P(Red then Green) = P(Red) * P(Green | Red) = (222 / 888) * (222 / 887) = (1/4) * (222 / 887).

Therefore, the probability that the first marble is red and the second is green is approximately 0.0626 or 6.26%.

A certain list consists of 21 different numbers. If n is in the list and n is 4 times the average(arithmetic mean) of the other 20 numbers in the list, then n is what fraction of the sum of the 21 numbers in the list?
(A) 1/20
(B) 1/6
(C) 1/5
(D) 4/21
(E) 5/21

Answers

Answer:

B. [tex]\frac{1}{6}[/tex]

Step-by-step explanation:

Let x be the sum of the 21 numbers,

In which n is one of the numbers,

Since,

[tex]\text{Average}=\frac{\text{Sum of the observations}}{\text{Number of observations}}[/tex]

So, the average of 20 numbers excluded n = [tex]\frac{x-n}{20}[/tex]

According to the question,

[tex]n = 4\times \frac{x-n}{20}[/tex]

[tex]n = \frac{x-n}{5}[/tex]

[tex]5n = x - n[/tex]

[tex]6n = x[/tex]

[tex]\imples n = \frac{1}{6}x = \frac{1}{6}\text{ of the sum of the 21 numbers}[/tex]

Hence, OPTION 'B' is correct.

The bill is $330. We want to split it but a friend gave us $50 for it. Therefore we each owe $140 after the $50. Since I have the $50 in my possession I wok give him $165 since were splitting the $50. Correct?

Answers

I don't think that's correct

Step-by-step explanation:

Why are you splitting the $50? you'd end up paying more than the bill and he'd be getting back more money than he put in. Sounds like a rip off. If he had given you each $50 than maybe you'd each owe $140. I assume there is 3 friends, the original bill price would have been $110 for each of you. But then one friend gave $50 to help pay the bill, if you had split the $50 you'd still not be paying back that much. Also why are YOU paying so much more? Everyone else is paying $140 and you're paying $165? You would not be giving him that much, all of you would not be paying an extra $30 either. you'd be splitting it to where it equals $50 all around, so instead it'd be around $93.00. Not $140 or $165. $16.7 multipled by 3 = $50.1

But at the end of the day, just tell him to take his money back. He really didn't help pay the bill that much with his $50, he still owes you $60 if he too had participated in whatever you guys were doing. So instead of going through the trouble, just tell him to take back his money.

A certain car depreciates such that its value at the end of each year is p % less than its value at the end of the previous year. If that car was worth a dollars on December 31, 2010 and was worth b dollars on December 31, 2011, what was the car worth on December 31, 2013 in terms of a and b ?

Answers

Answer:

b(b/a)^2

Step-by-step explanation:

Given that the value of the car depreciates such that its value at the end of each year is p % less than its value at the end of the previous year and that car was worth a dollars on December 31, 2010 and was worth b dollars on December 31, 2011, then

b = a - (p% × a) = a(1-p%)

b/a = 1 - p%

p% = 1 - b/a = (a-b)/a

Let the worth of the car on December 31, 2012 be c

then

c = b - (b × p%) = b(1-p%)

Let the worth of the car on December 31, 2013 be d

then

d = c - (c × p%)

d = c(1-p%)

d = b(1-p%)(1-p%)

d = b(1-p%)^2

d = b(1- (a-b)/a)^2

d = b((a-a+b)/a)^2

d = b(b/a)^2 = b^3/a^2

The car's worth on December 31, 2013 =  b(b/a)^2 = b^3/a^2

A normal distribution is observed from the times to complete an obstacle course. The mean is 69 seconds and the standard deviation is 6 seconds. Using the Empirical Rule, what is the probability that a randomly selected finishing time is greater than 87 seconds?

Answers

Answer:

P ( z > 87 ) < 0,0015        

P ( z > 87 ) < 0,15 %

Step-by-step explanation:

Applying the simple rule that:

μ ± 3σ  , means that between

μ - 9  = 60   and

μ + 9 = 78

We will find 99,7 of the values

And given that  z(s) = 87 > 78  (the upper limit of the above mention interval ) we must conclude that the probability of find a value greater than 87 is smaller than 0.0015 ( 0r 0,15 %)

Final answer:

To determine the probability of a finish time greater than 87 seconds, we apply the Empirical Rule and find it equates to 3 standard deviations above mean, resulting in a probability of 0.15%.

Explanation:

The question revolves around the use of the Empirical Rule to determine the probability in a normal distribution. The mean time to complete an obstacle course is given as 69 seconds with a standard deviation of 6 seconds. According to the Empirical Rule:

   

To find out the probability of a finishing time being greater than 87 seconds, we first determine how many standard deviations above the mean this is:

(87 - 69) / 6 = 3

This indicates that 87 seconds is 3 standard deviations above the mean. Using the Empirical Rule, if 99.7% of the data falls within three standard deviations, this would leave 0.3% (or 0.003 in decimal form) of the data outside, which would be the tails of the distribution (both ends combined). Since we are looking for the area above 87 seconds, we only consider one tail, hence, we divide the 0.3% equally for each tail to get 0.15% (or 0.0015 in decimal form) for the probability that a randomly selected finish time is greater than 87 seconds.

Farmer bob's square plot ofland is slowly eroding away. Worried about the future of his farm. Farmer Bob measures the rate of erosion and finds that the length of each side of his square plot is decreasing at the constant rate of 2 feet/year. If he currently owns 250,000 square feet of land, what is the current rate of change of the area of Farmer Bob's land?
a) Farmer bob is losing 2,000 square feet of land per year
b) losing 1,000,000 square feet of land per year
c) losing 1,000 square feet of land per year
d) losing 4 square feet of land per year

Answers

Answer:

Option A.

Step-by-step explanation:

Area of a square is

[tex]A=x^2[/tex]               .... (1)

where, x is side length.

The length of each side of his square plot is decreasing at the constant rate of 2 feet/year.

[tex]\dfrac{dx}{dt}=2[/tex]

It is given that bob currently owns 250,000 square feet of land.

Fist find the length of each side.

[tex]A=250000[/tex]

[tex]x^2=250000[/tex]

Taking square root on both sides.

[tex]x=500[/tex]

Differentiate with respect to t.

[tex]\dfrac{dA}{dt}=2x\dfrac{dx}{dt}[/tex]

Substitute x=500 and [tex]\frac{dx}{dt}=2[/tex] in the above equation.

[tex]\dfrac{dA}{dt}=2(500)(2)[/tex]

[tex]\dfrac{dA}{dt}=2000[/tex]

Farmer bob is losing 2,000 square feet of land per year.

Therefore, the correct option is A.

Two bicycles are traveling along perpendicular roads. Bicycle A is traveling due east at 4 mi/hr, and bicycle B is travelling due north at 6 mi/hr. At noon, when bicycle A reaches the intersection, bicycle B is 9 mi away and moving toward the same intersection If t is the number of hours after noon, the bicycles are closest together when t isA. 0B. 27/26C. 9/5D. 3/2E. 14/13

Answers

Answer:

Step-by-step explanation:

Given

speed of cyclist A is [tex]v_a=4 mi/hr[/tex]

speed of cyclist B is [tex]v_b=6 mi/hr[/tex]

At noon cyclist B is 9 mi away

after noon Cyclist B will travel a distance of 6 t and cyclist A travel 4 t miles in t hr

Now distance of cyclist B from intersection is 9-6t

Distance of cyclist A from intersection is 4 t

let distance between them be z

[tex]z^2=(9-6t)^2+(4t)^2[/tex]

Differentiate z w.r.t time

[tex]2z\frac{\mathrm{d} z}{\mathrm{d} t}=2\times (9-6t)\times (-6)+2\times (4t)\times 4[/tex]

[tex]z\frac{\mathrm{d} z}{\mathrm{d} t}=(-6)(9-6t)+4(4t)[/tex]

[tex]\frac{\mathrm{d} z}{\mathrm{d} t}=\frac{16t+36t-54}{z}[/tex]

Put [tex]\frac{\mathrm{d} z}{\mathrm{d} t}\ to\ get\ maximum\ value\ of\ z[/tex]

therefore [tex]52t-54=0[/tex]

[tex]t=\frac{54}{52}[/tex]

[tex]t=\frac{27}{26} hr [/tex]

Please Help!!

Create two radical equations: one that has an extraneous solution, and one that does not have an extraneous solution. Use the equation below as a model:

[tex]a\sqrt{x+b} +c=d[/tex]

Answers

Given

[tex]a\sqrt{x+b}+c=d[/tex]

we have

[tex]\sqrt{x+b}=\dfrac{d-c}{a}[/tex]

Squaring both sides, we have

[tex]x+b=\dfrac{(d-c)^2}{a^2}[/tex]

And finally

[tex]x=\dfrac{(d-c)^2}{a^2}-b[/tex]

Note that, when we square both sides, we have to assume that

[tex]\dfrac{d-c}{a}>0[/tex]

because we're assuming that this fraction equals a square root, which is positive.

So, if that fraction is positive you'll actually have roots: choose

[tex]a=1,\ b=0,\ c=2,\ d=6[/tex]

and you'll have

[tex]\sqrt{x}+2=6 \iff \sqrt{x}=4 \iff x=16[/tex]

Which is a valid solution. If, instead, the fraction is negative, you'll have extraneous roots: choose

[tex]a=1,\ b=0,\ c=10,\ d=4[/tex]

and you'll have

[tex]\sqrt{x}+10=4 \iff \sqrt{x}=-6[/tex]

Squaring both sides (and here's the mistake!!) you'd have

[tex]x=36[/tex]

which is not a solution for the equation, if we plug it in we have

[tex]\sqrt{x}+10=4 \implies \sqrt{36}+10=4 \implies 6+10=4[/tex]

Which is clearly false

Combine like terms to create an equivalent expression. 4\left(1.75y-3.5\right)+1.25y4(1.75y−3.5)+1.25y4, left parenthesis, 1, point, 75, y, minus, 3, point, 5, right parenthesis, plus, 1, point, 25, y

Answers

Answer:

8.25y-14

Step-by-step explanation:

The simplified expression is 8.25y - 14, which is obtained by combining the like terms 7y and 1.25y and adding the constant term -14.

How to combine like terms?

Break down the expression step by step.

4(1.75y - 3.5): This is a product of a number and a sum. Distribute the 4 to get 4 × 1.75y + 4 × (-3.5).

4 × 1.75y: This is multiplication of a number and a variable. The product is 7y.

4 × (-3.5): This is multiplication of a number and a constant. The product is -14.

1.25y: This is a single term.

Now, combine the like terms. Like terms are terms that have the same variable and the same exponent. In this case, the like terms are 7y and 1.25y.

When combined, the like terms are, 7y + 1.25y = 8.25y.

Add the constant term, -14.

Therefore, the simplified expression is 8.25y - 14.

Find out more on like terms here: https://brainly.com/question/7852084

#SPJ3

The workers at Sandbachian, Inc. took a random sample of 800 manhole covers and found that 40 of them were defective. What is the 95% CI for p, the true proportion of defective manhole covers, based on this sample?a) (37.26, 42.74)b) (.035, .065)c) (.047, .053)d) (.015, .085)

Answers

Answer: b) [tex](0.035,\ 0.065)[/tex]

Step-by-step explanation:

The confidence interval for proportion (p) is given by :-

[tex]\hat{p}\pm z^*\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]

, where[tex]\hat{p}[/tex] = Sample proportion

n= sample size.

z* = Critical z-value.

Let p be the true proportion of defective manhole covers, based on this sample.

Given : The workers at Sandbachian, Inc. took a random sample of 800 manhole covers and found that 40 of them were defective.

Then , n= 800

[tex]\hat{p}=\dfrac{40}{800}=0.05[/tex]

Confidence interval = 95%

We know that the critical value for 95% Confidence interval : z*=1.96

Then, the 95% CI for p, the true proportion of defective manhole covers will be :-

[tex]0.05\pm (1.96)\sqrt{\dfrac{0.05(1-0.05)}{800}}\\\\=0.05\pm (1.96)(0.0077055)\\\\=0.05\pm0.01510278\\\\=(0.05-0.01510278,\ 0.05+0.01510278)\\\\=(0.03489722,\ 0.06510278)\approx(0.035,\ 0.065) [/tex]

Hence, the required confidence interval : b) [tex](0.035,\ 0.065)[/tex]

The doubling time of a population of flies is 4 hours . By what factor does the population increase in 48 hours?

Answers

Answer:

  4096

Step-by-step explanation:

The population doubles 12 times in that period, so is multiplied by 2^12 = 4096.

Which graph represents a quadratic function with a vertex at (0, 0)? On a coordinate plane, a parabola opens up. It goes through (negative 5, 6), has a vertex of (0, 1), and goes through (5, 6). On a coordinate plane, a parabola opens up. It goes through (negative 6, 6), has a vertex of (0, negative 1), and goes through (6, 6). On a coordinate plane, a parabola opens up. It goes through (negative 5, 6), has a vertex of (0, 0), and goes through (5, 6). On a coordinate plane, a parabola opens up. It goes through (negative 2.5, 6), has a vertex of (3, 0), and goes through (7.5, 4).

Answers

Answer:

  On a coordinate plane, a parabola opens up. It goes through (negative 5, 6), has a vertex of (0, 0), and goes through (5, 6).

Step-by-step explanation:

Since you want a graph with a vertex of (0, 0), choose the one that is described as having a vertex of (0, 0).

Answer:

Option C.

Step-by-step explanation:

We need to find the graph which represents a quadratic function with vertex at (0,0).

The graph of quadratic function is a parabola (either upward or downward) and the extreme point of the parabola is know as vertex.

All graphs represent different parabolas.

Vertex of first parabola = (0,1)

Vertex of second parabola = (0,-1)

Vertex of third parabola = (0,0)

Vertex of fourth parabola = (3,0)

In option C, a parabola opens up on a coordinate plane. It goes through (-5, 6), has a vertex of (0, 0), and goes through (5, 6).

Only third graph represents a quadratic function with a vertex at (0, 0).

Therefore, the correct option is C.

find one positive and one negative angle coterminal with an angle of 166 Question 4 options:

526°, –194°

516°, –14°

526°, –76

256°,-76

Answers

Answer: Choice A) 526 degrees,  -194 degrees

==============================

Work Shown:

A coterminal angle points in the same exact direction as the original angle.

Because there are 360 degrees in a circle, this means we can add 360 to the original angle to get 166+360 = 526, which is one positive coterminal angle to 166 degrees.

Subtract 360 from the original angle and we'll get a negative coterminal angle

166 - 360 = -194

The age of Noelle's dad is 6 less than 3 times Noelle's age. The sum of their ages is 74 . Find their ages. Provide your answer below: $$ Noelle: , Noelle's Dad

Answers

Answer:

The age of Noelle  =  20 years

Age of Noelle's dad   = 54 years

Step-by-step explanation:

Here, Let us assume:

The age of Noelle's age = m years

So, the age of Noelle's dad = 3 x ( Age of Noelle)  - 6    =  3(m)  - 6

Also, sum of both the ages = 74

So, sum of (Noelle's age  +  Noelle's dad's)  age = 74 years

⇒ m + ( 3 m  - 6)  = 74

or, 4 m =  74+ 6 = 80

or,m = 80 / 4  = 20

⇒ m  = 20

Hence, the age of Noelle =  m - 3   =   20 years

Age of Noelle's dad  = 3 m - 6 = 3(20) - 6 = 54 years

21. The parent function of the following graph is f(x) = 2^x. What is the equation of the following graph?

Answers

Answer:

5

Step-by-step explanation:

Plug x = 0 into f(x) to get

f(x) = 2^x

f(0) = 2^0

f(0) = 1

The y intercept (0,1) is on the graph of f(x).

The y intercept for the red curve shown is (0,3). It has been moved up two units compared to (0,1)

Therefore, g(x) = f(x)+2 where g(x) represents the red curve.

g(x) = f(x) + 2

[tex]g(x) = 2^x + 2[/tex] is the answer

Rita purchased a prepaid phone card for $30. Long distance cost 16 cents a minute using the card. Rita used her card only once to make a long distance call. If the remaining credit on her card if $26.48, how many minutes did her call last?

Answers

Answer: her call lasted for 22 minutes

Step-by-step explanation:

Rita purchased a prepaid phone card for $30. This means that the total credit on her card is $30. Long distance cost 16 cents a minute using the card. Converting to dollars, it costs 16/100 = $0.16

Rita used her card only once to make a long distance call. If the number of minutes if long distance call that she made is x, total cost of x minutes long distance calls will be 0.16 × x = $0.16x

The remaining credit on her card would be 30 - 0.16x

If the remaining credit on her card if $26.48, it means that

30 - 0.16x = 26.48

0.16x = 30 - 26.48 = 3.52

x = 3.52/0.16 = 22 minutes.

According to a candy​ company, packages of a certain candy contain 24​% orange candies. Find the approximate probability that the random sample of 200 candies will contain 26​% or more orange candies.

Answers

Final answer:

To find the approximate probability that the random sample of 200 candies will contain 26% or more orange candies, we can use the binomial distribution.

Explanation:

To find the approximate probability that the random sample of 200 candies will contain 26% or more orange candies, we need to use the binomial distribution.

The probability of selecting an orange candy is 24%. Let's define success as selecting an orange candy.

Using the binomial distribution formula, we can calculate the probability:

P(X ≥ k) = 1 - P(X < k)

where X is the random variable representing the number of orange candies in the sample, and k is the number of orange candies we want to have (26% of 200 is 52).

First, let's calculate P(X < 52). We can use a binomial probability table, or a binomial calculator to find this value. Once we have P(X < 52), we can find P(X ≥ 52) by subtracting it from 1.

If​ A, B, and C are the measures of the angles of any triangle and if​ a, b, and c are the lengths of the sides opposite the corresponding​ angles, then which of the following expressions does not represent the area of the​ triangle?
A. (1/2)bcsinA
B. (1/2)acsinB
C. (1/2)acsinA
D. (1/2)absinC

Answers

Answer:

C. (1/2)acsinA

Step-by-step explanation:

Given is that, A, B, and C are the measures of the angles of a triangle and a, b, and c are the lengths of the sides opposite the corresponding​ angles.

So, the expression that does not represent the area of the​ triangle is :

C. (1/2)acsinA

An Izod impact test was performed on 20 specimens of PVC pipe. The sample mean is and the sample standard deviation is s = 0.22. Find a 99% lower confidence bound on the true Izod impact strength. Assume the data are normally distributed.

Answers

Final answer:

For a 99% lower confidence bound, we use the Z-score of -2.33 with the formula for a confidence interval. The lower bound will be: 'Sample Mean - (-2.33) * (Sample Standard Deviation/√Sample Size).'

Explanation:

The solution to this problem involves using concepts of statistics, primarily regarding normal distribution and confidence intervals. Given that we're finding a 99% lower confidence bound, we're interested only in the lower range of the spectrum, not the upper.

We need to look at the Z-score associated with a 99% confidence interval in a standard normal distribution. The Z-score for 99% is approximately 2.33 (meaning it cuts off the lowest 0.5% and highest 0.5% of the curve). However, since we're only interested in the lower bound, we will be using a Z-score of -2.33.

The formula for a confidence interval is: µ = X ± Z(s/√n), where µ is the population mean, X is the sample mean, Z is the Z-score, s is the sample standard deviation, and n is the size of the sample. In our question, X is unspecified, s = 0.22, and n = 20. So, assuming 'Xbar' is your sample mean, your lower bound would be: Xbar - (-2.33) * (0.22/√20)

Learn more about Confidence Interval here:

https://brainly.com/question/34700241

#SPJ12

Final answer:

To find a 99% lower confidence bound on the true Izod impact strength, use the formula: Lower Confidence Bound = Sample Mean - (Critical Value × (Sample Standard Deviation / √n)). Substitute the given values into the formula and perform the necessary calculations.

Explanation:

To find a 99% lower confidence bound on the true Izod impact strength, we can use the formula:

Lower Confidence Bound = Sample Mean - (Critical Value × (Sample Standard Deviation / √n))

Given that the sample mean is ______ and the sample standard deviation is s = 0.22, we need to calculate the critical value for a 99% confidence level. The critical value for a 99% confidence level is approximately 2.576. Plug in the values into the formula, substituting n = 20:

Lower Confidence Bound = ______ - (2.576 × (0.22 / √20))

Perform the necessary calculations to find the lower confidence bound.

Learn more about confidence interval here:

https://brainly.com/question/34700241

#SPJ11

Express each statement using an inequality involving absolute value: The height of the plant must be within 2 inches of the standard 13-inch show size

Answers

Answer:

  |h-13| ≤ 2

Step-by-step explanation:

The difference between the height of the plant (h) and show size (13 in) can be written as ...

  h - 13

This value is allowed to be positive or negative, but its absolute value must not exceed 2 inches. Thus, the desired inequality is ...

  |h -13| ≤ 2

To express the statement using an Inequality involving absolute value, use |height - 13| ≤ 2. This means the difference between the height of the plant and 13 inches must be less than or equal to 2 inches.

To express the statement using an inequality involving absolute value, we can use the inequality |height - 13| ≤ 2. This means that the difference between the height of the plant and 13 inches must be less than or equal to 2 inches.

For example, if the height of the plant is 12 inches, then |12 - 13| = |-1| = 1, which is less than 2, so it satisfies the inequality. However, if the height of the plant is 16 inches, then |16 - 13| = |3| = 3, which is not less than 2, so it does not satisfy the inequality.

Learn more about Inequalities here:

brainly.com/question/256214

#SPJ2

Please help with these! I don't know how they work.

Answers

Answer:

1. all real numbers

2. y ≥ -8

3. It is all of the possible values of a function

4. Domain:{-4,-2,0,2,4} and Range:{-2,0,1,2,3}

Step-by-step explanation:

Let f:A→B be a function. In general sets A and B can be any arbitary non-empty sets.

Values in set A are the input values to the function and values in set B are the output values

Hence Set A is called the domain of the function f.

Set B is called co-domain or range of function f.

Now coming back to problem,

In first picture,

Given function is a straight line ⇒it can take any real number as its input

and for each value it gives a unique output value.

Hence output value is set of all real numbers, i.e. range of the function represented by the graph is set of all real numbers.

In the second picture,

The graph is x values are extending from -∞ to ∞ but the y values is the set of values of real numbers greater than -8 since we can see that the graph has global minimum of -8

Therefore range of the graph is y≥-8

in the third picture,

as we have already discussed the range of a function is the set of all possible output values of the function

In the fourth picture,

Let the function be 'f'.

from question we can tell that we can take only -4,-2,0,2,4 as the values for x and for corresponding x values we get 1,3,2,-2,0 as y values which are the output values.

hence we can tell that domain, which is set of input values, is {-4,-2,0,2,4}

and range, which is the of possible output values, is {-2,0,1,2,3}

The exponential model Upper A equals 104.8 e Superscript 0.001 t describes the​ population, A, of a country in​ millions, t years after 2003. Use the model to determine when the population of the country will be 106 million.

Answers

Answer:  The population of the country will be 106 millions in 2014.

Step-by-step explanation:

The exercise gives you the following exponential model, which describes the​ population "A" (in​ millions) of a country "t" years after 2003:

[tex]A=104.8 e^{0.001 t}[/tex]

In this case you must determine when the population of that country will be 106 millions, so you can identify that:

[tex]A=106[/tex]

Now you need to substitute this value into the exponential model given in the exercise:

[tex]106=104.8 e^{0.001 t}[/tex]

Finally, you must solve for "t", but first it is important to remember the following Properties of logarithms:

[tex]ln(a)^b=b*ln(a)\\\\ln(e)=1[/tex]

Then:

[tex]\frac{106}{104.8}=e^{0.001 t}\\\\ln(\frac{106}{104.8})=ln(e)^{0.001 t}\\\\ln(\frac{106}{104.8})=0.001 t(1)\\\\\frac{ln(\frac{106}{104.8})}{0.001}}=t\\\\t=11.38\\\\t\approx11[/tex]

Notice that in 11 years the population will be 106 millions, then the year will be:

[tex]2003+11=2014[/tex]

The population of the country will be 106 millions in 2014.

Please find the center of dialation given the information in the link. Real answers only.

Answers

Answer:

  (-4, 0)

Step-by-step explanation:

The scale factor of 1/2 means each "dilated" point is 1/2 the distance from the center of dilation that the original point is. That is, the dilated point is the midpoint between the original and the dilation center.

If O is the origin of the dilation, then ...

  (O + X)/2 = P . . . . . P is the dilation of point X

  O +X = 2P

  O = 2P -X = 2(0, 2) -(4, 4)

  O = (-4, 0)

The center of dilation is (-4, 0).

_____

Another way to find the center of dilation is to realize that dilation moves points along a radial line from the center. Hence the place where those radial lines converge will be the center of dilation. See the attachment for a solution that way.

Due to a manufacturing error, four cans of regular soda were accidentally filled with diet soda and placed into an 18 pack. Suppose that two cans are randomly selected from the 18 pack.a. Determine the probability that both contain diet soda. (Round to four decimal places as needed.)b. Determine the probability that both contain regular soda. (Round to four decimal places as needed.)Would this be unusual?A. YesB. Noc. Determine the probability that exactly one is diet and exactly one is regular. (Round to four decimal places as needed.)

Answers

Final answer:

The probability of drawing two diet sodas is 0.0392, two regular sodas is 0.5948, and one of each is 0.3660. It would be unusual to select two diet sodas.

Explanation:

To answer this question, we will be using combinatorial probability. The pack contains 4 cans of diet soda and 14 cans of regular soda (18 in total).

a. The probability that both cans are diet soda can be calculated as follows: There are 4 ways to choose the first can of diet soda and 3 ways to choose the second one. Thus, there are 4 * 3 = 12 favorable outcomes. There are 18 ways to choose the first can and 17 ways to choose the second, totaling 18 * 17 = 306 possible outcomes. Hence, the probability is 12/306 = 0.0392b. The probability that both cans are regular soda can be calculated similarly: There are 14 ways to select the first can of regular soda and 13 ways to select the second one. So, there are 14 * 13 = 182 favorable outcomes. Using the same total possible outcomes, the probability is 182/306 = 0.5948c. The probability that one is a diet soda and one is a regular soda can also be calculated: There are 4 ways to select the diet soda and 14 ways to select the regular soda. Thus, there are 4 * 14 = 56 favorable outcomes. However, since the soda can be selected in any order (regular then diet or diet then regular), we double these outcomes, resulting in 112. Hence, the probability is 112/306 = 0.3660

Unusual results are typically those that have low probability. So in this context, it would be unusual to select two diet sodas (a).

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ12

Final answer:

The probabilities of selecting two cans of diet soda, regular soda, and one of each (diest and regular) from an 18 pack are 0.0235, 0.5378, and 0.3878, respectively.

Explanation:

These types of calculations fall under the category of combinatorics, specifically combinations. We are interested in the number of ways we can select cans from a total of 18 where order does not matter.

a. The probability that both randomly selected cans are diet soda is calculated by the formula: (Number of ways to select diet soda) / (Total ways to select two cans). Here we have 4 cases in which we could select diet soda and 18 ways to select any two cans from the pack. Hence, we calculate the probability as:

(4/18) * (3/17) = 0.0235

b. In a similar manner, the probability that both randomly selected cans are non-diet soda (regular soda) is calculated as:

(14/18) * (13/17) = 0.5378

These results are not unusual as there are more regular soda cans in the pack, hence the probability of picking two regular soda cans is higher.

c. The probability that exactly one is diet and exactly one is regular, we have two cases: selecting diet soda first and then regular soda second or selecting regular soda first then diet soda. Hence we calculate the probability as:

(4/18) * (14/17) + (14/18) * (4/17) = 0.3878

Learn more about Probability here:

https://brainly.com/question/32117953

#SPJ2

Two gardeners can do the weekly yard maintenance in 8 minutes if they work together. The older gardener takes 12 minutes more than the younger gardener to finish the job by himself. How long does it take for each gardener to do the weekly yard maintainence individually?

Answers

Answer:

Let x be the time taken( in minutes ) by younger gardener,

So, the one minute work of younger gardener = [tex]\frac{1}{x}[/tex]

Also, the time taken by older gardener = (x+12) minutes ( given ),

So, the one minute work of older gardener = [tex]\frac{1}{x+12}[/tex]

Total work done in one minute = [tex]\frac{1}{x}+\frac{1}{x+12}[/tex]

Now, total time taken = 8 minutes,

Total work done in one minute = [tex]\frac{1}{8}[/tex]

Thus,

[tex]\frac{1}{x}+\frac{1}{x+12}=\frac{1}{8}[/tex]

[tex]\frac{x+12+x}{x^2+12x}=\frac{1}{8}[/tex]

[tex]\frac{2x+12}{x^2+12x}=\frac{1}{8}[/tex]

[tex]16x + 96 = x^2+12x[/tex]

[tex]x^2 -4x -96=0[/tex]

[tex]x^2 - 12x + 8x - 96=0[/tex]

[tex]x(x-12) + 8(x-12)=0[/tex]

[tex](x+8)(x-12)=0[/tex]

By zero product product property,

x + 8 =0 or x - 12 =0

⇒ x = -8 ( not possible ), x = 12

Hence, the time taken by younger gardener = 12 minutes,

And, the time taken by older gardener = 12 + 12 = 24 minutes.

Other Questions
forces between compounds that hold them in place When aluminum is placed in concentrated hydrochloric acid, hydrogen gas is produced. 2 Al ( s ) + 6 HCl ( aq ) 2 AlCl 3 ( aq ) + 3 H 2 ( g ) What volume of H 2 ( g ) is produced when 3.60 g Al ( s ) reacts at STP? If the u.S. President is suspected of certain treasonous acts or other "high crimes", the House of Representatives may choose to indict them Or do which of the selections below to them a flag pole is 30 feet tall a bug crawls 14 feet up the pole then it crawls another4 feet up the pole how much firther must the bug crawl to get to the top I NEED HELP!!!! Which of the following were activities that were common ways for women to participate in the Revolutionary War? Select ALL that is correct.Helped to educate British soldiersSpiesCamp followers (marched with and assisted the army)Sewed blankets, socks, and shirts for the soldiersWomen ran family farms and businessesLeft the colonies and went to join the Native Americans Plz explain and prove the triangles congruence. a. At what frequency would an inductor and a capacitor have the same reactance? b. What would the reactance be? c. Show that this frequency would be the natural frequency of an oscillating circuit with the same L and C. Shauna is 10 inches shorter than Ryan. Together their heights total 140 inches. How tall is each person? Artemis took out a 30-year loan from her bank for $190,000 at an APR of9.6%, compounded monthly. If her bank charges a prepayment fee of 6months' interest on 80% of the balance, what prepayment fee would Artemisbe charged for paying off her loan 16 years early?OA. $5822.42OB. $7390.60O C. $6182.58O D. $7382.56 The Human Genome Project is devoted to mapping the general DNA sequence of our species. This could lead to the development of new medicines, as well as the possibility of using gene therapy to treat certain diseases. However, there are some ethical issues surrounding the mapping of individual genomes. One concern is A)that your genes may change over time, making the project useless. B)that insurance companies could discriminate based on genetic make-up. C)that since this has never been done before, we should probably not do it now. Reactivate D)that sequencing our individual genomes is so expensive, it is a counter-productive strategy. Interpret the following quote:"You can't declare a war on drugs without declaring a war on people." Seller Joe Needy lists his home for $40,000 and the broker tells the prospective buyer to submit a low offer because the seller is desperate. The buyer offers $38,000 and the seller accepts. Which statement is TRUE about this situation?A: the broker was unethical but because no one was hurt,it is not improper B: the broker violated the realationshipC: the broker's action was proper in obtaining a quick offer D: any broker is authorized to encourage bidders Write a class definition of a class named Value with the following: a boolean instance variable named modified, initialized to false an int instance variable named val a constructor accepting a single parameter whose value is assigned to the instance variable val a method getVal that returns the current value of the instance variable val a method setVal that accepts a single parameter, assigns its value to val, and sets the modified instance variable to true a boolean method, wasModified that returns true if setVal was ever called. Please answer this correctly Is the answer 5:15pm6:03am2:15pm7:03am The steps to convert 23/4 to a decimal are shown below 101. The process of encoding refers to: A) the persistence of learning over time. B) the recall of information previously learned. C) getting information into memory. D) the motivated forgetting of painful memories. E) a clear memory of an emotionally significant event. Julian looks at his desk, sees all of the books and the papers that he has gathered for his research paper, and considers ignoring the mess, thinking he still has time before his paper is due. How should he approach this situation? Friction a. is slow but steady movement along a fault. b. happens when rock is weak and can slip smoothly, without creating shock waves. c. is the process by which faults release energy. d. is the force that resists sliding along a surface What is the Federal Government decision that determined slaves to not be considered citizens and therefore do not have the rights afforded to citizens under the constitution. Write an expression to describe the sequence below. Use n to represent the position of a term in the sequence, where n = 1 for the first term. 9, 10, 11, 12, ...